From 57f0f512b273f60d52568b8c6b77e17f5636edc0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andr=C3=A9=20Fabian=20Silva=20Delgado?= Date: Wed, 5 Aug 2015 17:04:01 -0300 Subject: Initial import --- drivers/dma/ste_dma40.c | 3762 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3762 insertions(+) create mode 100644 drivers/dma/ste_dma40.c (limited to 'drivers/dma/ste_dma40.c') diff --git a/drivers/dma/ste_dma40.c b/drivers/dma/ste_dma40.c new file mode 100644 index 000000000..3c10f034d --- /dev/null +++ b/drivers/dma/ste_dma40.c @@ -0,0 +1,3762 @@ +/* + * Copyright (C) Ericsson AB 2007-2008 + * Copyright (C) ST-Ericsson SA 2008-2010 + * Author: Per Forlin for ST-Ericsson + * Author: Jonas Aaberg for ST-Ericsson + * License terms: GNU General Public License (GPL) version 2 + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "dmaengine.h" +#include "ste_dma40_ll.h" + +#define D40_NAME "dma40" + +#define D40_PHY_CHAN -1 + +/* For masking out/in 2 bit channel positions */ +#define D40_CHAN_POS(chan) (2 * (chan / 2)) +#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan)) + +/* Maximum iterations taken before giving up suspending a channel */ +#define D40_SUSPEND_MAX_IT 500 + +/* Milliseconds */ +#define DMA40_AUTOSUSPEND_DELAY 100 + +/* Hardware requirement on LCLA alignment */ +#define LCLA_ALIGNMENT 0x40000 + +/* Max number of links per event group */ +#define D40_LCLA_LINK_PER_EVENT_GRP 128 +#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP + +/* Max number of logical channels per physical channel */ +#define D40_MAX_LOG_CHAN_PER_PHY 32 + +/* Attempts before giving up to trying to get pages that are aligned */ +#define MAX_LCLA_ALLOC_ATTEMPTS 256 + +/* Bit markings for allocation map */ +#define D40_ALLOC_FREE BIT(31) +#define D40_ALLOC_PHY BIT(30) +#define D40_ALLOC_LOG_FREE 0 + +#define D40_MEMCPY_MAX_CHANS 8 + +/* Reserved event lines for memcpy only. */ +#define DB8500_DMA_MEMCPY_EV_0 51 +#define DB8500_DMA_MEMCPY_EV_1 56 +#define DB8500_DMA_MEMCPY_EV_2 57 +#define DB8500_DMA_MEMCPY_EV_3 58 +#define DB8500_DMA_MEMCPY_EV_4 59 +#define DB8500_DMA_MEMCPY_EV_5 60 + +static int dma40_memcpy_channels[] = { + DB8500_DMA_MEMCPY_EV_0, + DB8500_DMA_MEMCPY_EV_1, + DB8500_DMA_MEMCPY_EV_2, + DB8500_DMA_MEMCPY_EV_3, + DB8500_DMA_MEMCPY_EV_4, + DB8500_DMA_MEMCPY_EV_5, +}; + +/* Default configuration for physcial memcpy */ +static struct stedma40_chan_cfg dma40_memcpy_conf_phy = { + .mode = STEDMA40_MODE_PHYSICAL, + .dir = DMA_MEM_TO_MEM, + + .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, + .src_info.psize = STEDMA40_PSIZE_PHY_1, + .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, + + .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, + .dst_info.psize = STEDMA40_PSIZE_PHY_1, + .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, +}; + +/* Default configuration for logical memcpy */ +static struct stedma40_chan_cfg dma40_memcpy_conf_log = { + .mode = STEDMA40_MODE_LOGICAL, + .dir = DMA_MEM_TO_MEM, + + .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, + .src_info.psize = STEDMA40_PSIZE_LOG_1, + .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, + + .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE, + .dst_info.psize = STEDMA40_PSIZE_LOG_1, + .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, +}; + +/** + * enum 40_command - The different commands and/or statuses. + * + * @D40_DMA_STOP: DMA channel command STOP or status STOPPED, + * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN. + * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible. + * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED. + */ +enum d40_command { + D40_DMA_STOP = 0, + D40_DMA_RUN = 1, + D40_DMA_SUSPEND_REQ = 2, + D40_DMA_SUSPENDED = 3 +}; + +/* + * enum d40_events - The different Event Enables for the event lines. + * + * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan. + * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan. + * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line. + * @D40_ROUND_EVENTLINE: Status check for event line. + */ + +enum d40_events { + D40_DEACTIVATE_EVENTLINE = 0, + D40_ACTIVATE_EVENTLINE = 1, + D40_SUSPEND_REQ_EVENTLINE = 2, + D40_ROUND_EVENTLINE = 3 +}; + +/* + * These are the registers that has to be saved and later restored + * when the DMA hw is powered off. + * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works. + */ +static u32 d40_backup_regs[] = { + D40_DREG_LCPA, + D40_DREG_LCLA, + D40_DREG_PRMSE, + D40_DREG_PRMSO, + D40_DREG_PRMOE, + D40_DREG_PRMOO, +}; + +#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs) + +/* + * since 9540 and 8540 has the same HW revision + * use v4a for 9540 or ealier + * use v4b for 8540 or later + * HW revision: + * DB8500ed has revision 0 + * DB8500v1 has revision 2 + * DB8500v2 has revision 3 + * AP9540v1 has revision 4 + * DB8540v1 has revision 4 + * TODO: Check if all these registers have to be saved/restored on dma40 v4a + */ +static u32 d40_backup_regs_v4a[] = { + D40_DREG_PSEG1, + D40_DREG_PSEG2, + D40_DREG_PSEG3, + D40_DREG_PSEG4, + D40_DREG_PCEG1, + D40_DREG_PCEG2, + D40_DREG_PCEG3, + D40_DREG_PCEG4, + D40_DREG_RSEG1, + D40_DREG_RSEG2, + D40_DREG_RSEG3, + D40_DREG_RSEG4, + D40_DREG_RCEG1, + D40_DREG_RCEG2, + D40_DREG_RCEG3, + D40_DREG_RCEG4, +}; + +#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a) + +static u32 d40_backup_regs_v4b[] = { + D40_DREG_CPSEG1, + D40_DREG_CPSEG2, + D40_DREG_CPSEG3, + D40_DREG_CPSEG4, + D40_DREG_CPSEG5, + D40_DREG_CPCEG1, + D40_DREG_CPCEG2, + D40_DREG_CPCEG3, + D40_DREG_CPCEG4, + D40_DREG_CPCEG5, + D40_DREG_CRSEG1, + D40_DREG_CRSEG2, + D40_DREG_CRSEG3, + D40_DREG_CRSEG4, + D40_DREG_CRSEG5, + D40_DREG_CRCEG1, + D40_DREG_CRCEG2, + D40_DREG_CRCEG3, + D40_DREG_CRCEG4, + D40_DREG_CRCEG5, +}; + +#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b) + +static u32 d40_backup_regs_chan[] = { + D40_CHAN_REG_SSCFG, + D40_CHAN_REG_SSELT, + D40_CHAN_REG_SSPTR, + D40_CHAN_REG_SSLNK, + D40_CHAN_REG_SDCFG, + D40_CHAN_REG_SDELT, + D40_CHAN_REG_SDPTR, + D40_CHAN_REG_SDLNK, +}; + +#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \ + BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B) + +/** + * struct d40_interrupt_lookup - lookup table for interrupt handler + * + * @src: Interrupt mask register. + * @clr: Interrupt clear register. + * @is_error: true if this is an error interrupt. + * @offset: start delta in the lookup_log_chans in d40_base. If equals to + * D40_PHY_CHAN, the lookup_phy_chans shall be used instead. + */ +struct d40_interrupt_lookup { + u32 src; + u32 clr; + bool is_error; + int offset; +}; + + +static struct d40_interrupt_lookup il_v4a[] = { + {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0}, + {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32}, + {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64}, + {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96}, + {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0}, + {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32}, + {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64}, + {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96}, + {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN}, + {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN}, +}; + +static struct d40_interrupt_lookup il_v4b[] = { + {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0}, + {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32}, + {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64}, + {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96}, + {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128}, + {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0}, + {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32}, + {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64}, + {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96}, + {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128}, + {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN}, + {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN}, +}; + +/** + * struct d40_reg_val - simple lookup struct + * + * @reg: The register. + * @val: The value that belongs to the register in reg. + */ +struct d40_reg_val { + unsigned int reg; + unsigned int val; +}; + +static __initdata struct d40_reg_val dma_init_reg_v4a[] = { + /* Clock every part of the DMA block from start */ + { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL}, + + /* Interrupts on all logical channels */ + { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF} +}; +static __initdata struct d40_reg_val dma_init_reg_v4b[] = { + /* Clock every part of the DMA block from start */ + { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL}, + + /* Interrupts on all logical channels */ + { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF}, + { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF} +}; + +/** + * struct d40_lli_pool - Structure for keeping LLIs in memory + * + * @base: Pointer to memory area when the pre_alloc_lli's are not large + * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if + * pre_alloc_lli is used. + * @dma_addr: DMA address, if mapped + * @size: The size in bytes of the memory at base or the size of pre_alloc_lli. + * @pre_alloc_lli: Pre allocated area for the most common case of transfers, + * one buffer to one buffer. + */ +struct d40_lli_pool { + void *base; + int size; + dma_addr_t dma_addr; + /* Space for dst and src, plus an extra for padding */ + u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)]; +}; + +/** + * struct d40_desc - A descriptor is one DMA job. + * + * @lli_phy: LLI settings for physical channel. Both src and dst= + * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if + * lli_len equals one. + * @lli_log: Same as above but for logical channels. + * @lli_pool: The pool with two entries pre-allocated. + * @lli_len: Number of llis of current descriptor. + * @lli_current: Number of transferred llis. + * @lcla_alloc: Number of LCLA entries allocated. + * @txd: DMA engine struct. Used for among other things for communication + * during a transfer. + * @node: List entry. + * @is_in_client_list: true if the client owns this descriptor. + * @cyclic: true if this is a cyclic job + * + * This descriptor is used for both logical and physical transfers. + */ +struct d40_desc { + /* LLI physical */ + struct d40_phy_lli_bidir lli_phy; + /* LLI logical */ + struct d40_log_lli_bidir lli_log; + + struct d40_lli_pool lli_pool; + int lli_len; + int lli_current; + int lcla_alloc; + + struct dma_async_tx_descriptor txd; + struct list_head node; + + bool is_in_client_list; + bool cyclic; +}; + +/** + * struct d40_lcla_pool - LCLA pool settings and data. + * + * @base: The virtual address of LCLA. 18 bit aligned. + * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used. + * This pointer is only there for clean-up on error. + * @pages: The number of pages needed for all physical channels. + * Only used later for clean-up on error + * @lock: Lock to protect the content in this struct. + * @alloc_map: big map over which LCLA entry is own by which job. + */ +struct d40_lcla_pool { + void *base; + dma_addr_t dma_addr; + void *base_unaligned; + int pages; + spinlock_t lock; + struct d40_desc **alloc_map; +}; + +/** + * struct d40_phy_res - struct for handling eventlines mapped to physical + * channels. + * + * @lock: A lock protection this entity. + * @reserved: True if used by secure world or otherwise. + * @num: The physical channel number of this entity. + * @allocated_src: Bit mapped to show which src event line's are mapped to + * this physical channel. Can also be free or physically allocated. + * @allocated_dst: Same as for src but is dst. + * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as + * event line number. + * @use_soft_lli: To mark if the linked lists of channel are managed by SW. + */ +struct d40_phy_res { + spinlock_t lock; + bool reserved; + int num; + u32 allocated_src; + u32 allocated_dst; + bool use_soft_lli; +}; + +struct d40_base; + +/** + * struct d40_chan - Struct that describes a channel. + * + * @lock: A spinlock to protect this struct. + * @log_num: The logical number, if any of this channel. + * @pending_tx: The number of pending transfers. Used between interrupt handler + * and tasklet. + * @busy: Set to true when transfer is ongoing on this channel. + * @phy_chan: Pointer to physical channel which this instance runs on. If this + * point is NULL, then the channel is not allocated. + * @chan: DMA engine handle. + * @tasklet: Tasklet that gets scheduled from interrupt context to complete a + * transfer and call client callback. + * @client: Cliented owned descriptor list. + * @pending_queue: Submitted jobs, to be issued by issue_pending() + * @active: Active descriptor. + * @done: Completed jobs + * @queue: Queued jobs. + * @prepare_queue: Prepared jobs. + * @dma_cfg: The client configuration of this dma channel. + * @configured: whether the dma_cfg configuration is valid + * @base: Pointer to the device instance struct. + * @src_def_cfg: Default cfg register setting for src. + * @dst_def_cfg: Default cfg register setting for dst. + * @log_def: Default logical channel settings. + * @lcpa: Pointer to dst and src lcpa settings. + * @runtime_addr: runtime configured address. + * @runtime_direction: runtime configured direction. + * + * This struct can either "be" a logical or a physical channel. + */ +struct d40_chan { + spinlock_t lock; + int log_num; + int pending_tx; + bool busy; + struct d40_phy_res *phy_chan; + struct dma_chan chan; + struct tasklet_struct tasklet; + struct list_head client; + struct list_head pending_queue; + struct list_head active; + struct list_head done; + struct list_head queue; + struct list_head prepare_queue; + struct stedma40_chan_cfg dma_cfg; + bool configured; + struct d40_base *base; + /* Default register configurations */ + u32 src_def_cfg; + u32 dst_def_cfg; + struct d40_def_lcsp log_def; + struct d40_log_lli_full *lcpa; + /* Runtime reconfiguration */ + dma_addr_t runtime_addr; + enum dma_transfer_direction runtime_direction; +}; + +/** + * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA + * controller + * + * @backup: the pointer to the registers address array for backup + * @backup_size: the size of the registers address array for backup + * @realtime_en: the realtime enable register + * @realtime_clear: the realtime clear register + * @high_prio_en: the high priority enable register + * @high_prio_clear: the high priority clear register + * @interrupt_en: the interrupt enable register + * @interrupt_clear: the interrupt clear register + * @il: the pointer to struct d40_interrupt_lookup + * @il_size: the size of d40_interrupt_lookup array + * @init_reg: the pointer to the struct d40_reg_val + * @init_reg_size: the size of d40_reg_val array + */ +struct d40_gen_dmac { + u32 *backup; + u32 backup_size; + u32 realtime_en; + u32 realtime_clear; + u32 high_prio_en; + u32 high_prio_clear; + u32 interrupt_en; + u32 interrupt_clear; + struct d40_interrupt_lookup *il; + u32 il_size; + struct d40_reg_val *init_reg; + u32 init_reg_size; +}; + +/** + * struct d40_base - The big global struct, one for each probe'd instance. + * + * @interrupt_lock: Lock used to make sure one interrupt is handle a time. + * @execmd_lock: Lock for execute command usage since several channels share + * the same physical register. + * @dev: The device structure. + * @virtbase: The virtual base address of the DMA's register. + * @rev: silicon revision detected. + * @clk: Pointer to the DMA clock structure. + * @phy_start: Physical memory start of the DMA registers. + * @phy_size: Size of the DMA register map. + * @irq: The IRQ number. + * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem + * transfers). + * @num_phy_chans: The number of physical channels. Read from HW. This + * is the number of available channels for this driver, not counting "Secure + * mode" allocated physical channels. + * @num_log_chans: The number of logical channels. Calculated from + * num_phy_chans. + * @dma_both: dma_device channels that can do both memcpy and slave transfers. + * @dma_slave: dma_device channels that can do only do slave transfers. + * @dma_memcpy: dma_device channels that can do only do memcpy transfers. + * @phy_chans: Room for all possible physical channels in system. + * @log_chans: Room for all possible logical channels in system. + * @lookup_log_chans: Used to map interrupt number to logical channel. Points + * to log_chans entries. + * @lookup_phy_chans: Used to map interrupt number to physical channel. Points + * to phy_chans entries. + * @plat_data: Pointer to provided platform_data which is the driver + * configuration. + * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla. + * @phy_res: Vector containing all physical channels. + * @lcla_pool: lcla pool settings and data. + * @lcpa_base: The virtual mapped address of LCPA. + * @phy_lcpa: The physical address of the LCPA. + * @lcpa_size: The size of the LCPA area. + * @desc_slab: cache for descriptors. + * @reg_val_backup: Here the values of some hardware registers are stored + * before the DMA is powered off. They are restored when the power is back on. + * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and + * later + * @reg_val_backup_chan: Backup data for standard channel parameter registers. + * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off. + * @gen_dmac: the struct for generic registers values to represent u8500/8540 + * DMA controller + */ +struct d40_base { + spinlock_t interrupt_lock; + spinlock_t execmd_lock; + struct device *dev; + void __iomem *virtbase; + u8 rev:4; + struct clk *clk; + phys_addr_t phy_start; + resource_size_t phy_size; + int irq; + int num_memcpy_chans; + int num_phy_chans; + int num_log_chans; + struct device_dma_parameters dma_parms; + struct dma_device dma_both; + struct dma_device dma_slave; + struct dma_device dma_memcpy; + struct d40_chan *phy_chans; + struct d40_chan *log_chans; + struct d40_chan **lookup_log_chans; + struct d40_chan **lookup_phy_chans; + struct stedma40_platform_data *plat_data; + struct regulator *lcpa_regulator; + /* Physical half channels */ + struct d40_phy_res *phy_res; + struct d40_lcla_pool lcla_pool; + void *lcpa_base; + dma_addr_t phy_lcpa; + resource_size_t lcpa_size; + struct kmem_cache *desc_slab; + u32 reg_val_backup[BACKUP_REGS_SZ]; + u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX]; + u32 *reg_val_backup_chan; + u16 gcc_pwr_off_mask; + struct d40_gen_dmac gen_dmac; +}; + +static struct device *chan2dev(struct d40_chan *d40c) +{ + return &d40c->chan.dev->device; +} + +static bool chan_is_physical(struct d40_chan *chan) +{ + return chan->log_num == D40_PHY_CHAN; +} + +static bool chan_is_logical(struct d40_chan *chan) +{ + return !chan_is_physical(chan); +} + +static void __iomem *chan_base(struct d40_chan *chan) +{ + return chan->base->virtbase + D40_DREG_PCBASE + + chan->phy_chan->num * D40_DREG_PCDELTA; +} + +#define d40_err(dev, format, arg...) \ + dev_err(dev, "[%s] " format, __func__, ## arg) + +#define chan_err(d40c, format, arg...) \ + d40_err(chan2dev(d40c), format, ## arg) + +static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d, + int lli_len) +{ + bool is_log = chan_is_logical(d40c); + u32 align; + void *base; + + if (is_log) + align = sizeof(struct d40_log_lli); + else + align = sizeof(struct d40_phy_lli); + + if (lli_len == 1) { + base = d40d->lli_pool.pre_alloc_lli; + d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli); + d40d->lli_pool.base = NULL; + } else { + d40d->lli_pool.size = lli_len * 2 * align; + + base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT); + d40d->lli_pool.base = base; + + if (d40d->lli_pool.base == NULL) + return -ENOMEM; + } + + if (is_log) { + d40d->lli_log.src = PTR_ALIGN(base, align); + d40d->lli_log.dst = d40d->lli_log.src + lli_len; + + d40d->lli_pool.dma_addr = 0; + } else { + d40d->lli_phy.src = PTR_ALIGN(base, align); + d40d->lli_phy.dst = d40d->lli_phy.src + lli_len; + + d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev, + d40d->lli_phy.src, + d40d->lli_pool.size, + DMA_TO_DEVICE); + + if (dma_mapping_error(d40c->base->dev, + d40d->lli_pool.dma_addr)) { + kfree(d40d->lli_pool.base); + d40d->lli_pool.base = NULL; + d40d->lli_pool.dma_addr = 0; + return -ENOMEM; + } + } + + return 0; +} + +static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d) +{ + if (d40d->lli_pool.dma_addr) + dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr, + d40d->lli_pool.size, DMA_TO_DEVICE); + + kfree(d40d->lli_pool.base); + d40d->lli_pool.base = NULL; + d40d->lli_pool.size = 0; + d40d->lli_log.src = NULL; + d40d->lli_log.dst = NULL; + d40d->lli_phy.src = NULL; + d40d->lli_phy.dst = NULL; +} + +static int d40_lcla_alloc_one(struct d40_chan *d40c, + struct d40_desc *d40d) +{ + unsigned long flags; + int i; + int ret = -EINVAL; + + spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); + + /* + * Allocate both src and dst at the same time, therefore the half + * start on 1 since 0 can't be used since zero is used as end marker. + */ + for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { + int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i; + + if (!d40c->base->lcla_pool.alloc_map[idx]) { + d40c->base->lcla_pool.alloc_map[idx] = d40d; + d40d->lcla_alloc++; + ret = i; + break; + } + } + + spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); + + return ret; +} + +static int d40_lcla_free_all(struct d40_chan *d40c, + struct d40_desc *d40d) +{ + unsigned long flags; + int i; + int ret = -EINVAL; + + if (chan_is_physical(d40c)) + return 0; + + spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); + + for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { + int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i; + + if (d40c->base->lcla_pool.alloc_map[idx] == d40d) { + d40c->base->lcla_pool.alloc_map[idx] = NULL; + d40d->lcla_alloc--; + if (d40d->lcla_alloc == 0) { + ret = 0; + break; + } + } + } + + spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); + + return ret; + +} + +static void d40_desc_remove(struct d40_desc *d40d) +{ + list_del(&d40d->node); +} + +static struct d40_desc *d40_desc_get(struct d40_chan *d40c) +{ + struct d40_desc *desc = NULL; + + if (!list_empty(&d40c->client)) { + struct d40_desc *d; + struct d40_desc *_d; + + list_for_each_entry_safe(d, _d, &d40c->client, node) { + if (async_tx_test_ack(&d->txd)) { + d40_desc_remove(d); + desc = d; + memset(desc, 0, sizeof(*desc)); + break; + } + } + } + + if (!desc) + desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT); + + if (desc) + INIT_LIST_HEAD(&desc->node); + + return desc; +} + +static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) +{ + + d40_pool_lli_free(d40c, d40d); + d40_lcla_free_all(d40c, d40d); + kmem_cache_free(d40c->base->desc_slab, d40d); +} + +static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) +{ + list_add_tail(&desc->node, &d40c->active); +} + +static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc) +{ + struct d40_phy_lli *lli_dst = desc->lli_phy.dst; + struct d40_phy_lli *lli_src = desc->lli_phy.src; + void __iomem *base = chan_base(chan); + + writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG); + writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT); + writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR); + writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK); + + writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG); + writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT); + writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR); + writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK); +} + +static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc) +{ + list_add_tail(&desc->node, &d40c->done); +} + +static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc) +{ + struct d40_lcla_pool *pool = &chan->base->lcla_pool; + struct d40_log_lli_bidir *lli = &desc->lli_log; + int lli_current = desc->lli_current; + int lli_len = desc->lli_len; + bool cyclic = desc->cyclic; + int curr_lcla = -EINVAL; + int first_lcla = 0; + bool use_esram_lcla = chan->base->plat_data->use_esram_lcla; + bool linkback; + + /* + * We may have partially running cyclic transfers, in case we did't get + * enough LCLA entries. + */ + linkback = cyclic && lli_current == 0; + + /* + * For linkback, we need one LCLA even with only one link, because we + * can't link back to the one in LCPA space + */ + if (linkback || (lli_len - lli_current > 1)) { + /* + * If the channel is expected to use only soft_lli don't + * allocate a lcla. This is to avoid a HW issue that exists + * in some controller during a peripheral to memory transfer + * that uses linked lists. + */ + if (!(chan->phy_chan->use_soft_lli && + chan->dma_cfg.dir == DMA_DEV_TO_MEM)) + curr_lcla = d40_lcla_alloc_one(chan, desc); + + first_lcla = curr_lcla; + } + + /* + * For linkback, we normally load the LCPA in the loop since we need to + * link it to the second LCLA and not the first. However, if we + * couldn't even get a first LCLA, then we have to run in LCPA and + * reload manually. + */ + if (!linkback || curr_lcla == -EINVAL) { + unsigned int flags = 0; + + if (curr_lcla == -EINVAL) + flags |= LLI_TERM_INT; + + d40_log_lli_lcpa_write(chan->lcpa, + &lli->dst[lli_current], + &lli->src[lli_current], + curr_lcla, + flags); + lli_current++; + } + + if (curr_lcla < 0) + goto out; + + for (; lli_current < lli_len; lli_current++) { + unsigned int lcla_offset = chan->phy_chan->num * 1024 + + 8 * curr_lcla * 2; + struct d40_log_lli *lcla = pool->base + lcla_offset; + unsigned int flags = 0; + int next_lcla; + + if (lli_current + 1 < lli_len) + next_lcla = d40_lcla_alloc_one(chan, desc); + else + next_lcla = linkback ? first_lcla : -EINVAL; + + if (cyclic || next_lcla == -EINVAL) + flags |= LLI_TERM_INT; + + if (linkback && curr_lcla == first_lcla) { + /* First link goes in both LCPA and LCLA */ + d40_log_lli_lcpa_write(chan->lcpa, + &lli->dst[lli_current], + &lli->src[lli_current], + next_lcla, flags); + } + + /* + * One unused LCLA in the cyclic case if the very first + * next_lcla fails... + */ + d40_log_lli_lcla_write(lcla, + &lli->dst[lli_current], + &lli->src[lli_current], + next_lcla, flags); + + /* + * Cache maintenance is not needed if lcla is + * mapped in esram + */ + if (!use_esram_lcla) { + dma_sync_single_range_for_device(chan->base->dev, + pool->dma_addr, lcla_offset, + 2 * sizeof(struct d40_log_lli), + DMA_TO_DEVICE); + } + curr_lcla = next_lcla; + + if (curr_lcla == -EINVAL || curr_lcla == first_lcla) { + lli_current++; + break; + } + } + +out: + desc->lli_current = lli_current; +} + +static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) +{ + if (chan_is_physical(d40c)) { + d40_phy_lli_load(d40c, d40d); + d40d->lli_current = d40d->lli_len; + } else + d40_log_lli_to_lcxa(d40c, d40d); +} + +static struct d40_desc *d40_first_active_get(struct d40_chan *d40c) +{ + struct d40_desc *d; + + if (list_empty(&d40c->active)) + return NULL; + + d = list_first_entry(&d40c->active, + struct d40_desc, + node); + return d; +} + +/* remove desc from current queue and add it to the pending_queue */ +static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc) +{ + d40_desc_remove(desc); + desc->is_in_client_list = false; + list_add_tail(&desc->node, &d40c->pending_queue); +} + +static struct d40_desc *d40_first_pending(struct d40_chan *d40c) +{ + struct d40_desc *d; + + if (list_empty(&d40c->pending_queue)) + return NULL; + + d = list_first_entry(&d40c->pending_queue, + struct d40_desc, + node); + return d; +} + +static struct d40_desc *d40_first_queued(struct d40_chan *d40c) +{ + struct d40_desc *d; + + if (list_empty(&d40c->queue)) + return NULL; + + d = list_first_entry(&d40c->queue, + struct d40_desc, + node); + return d; +} + +static struct d40_desc *d40_first_done(struct d40_chan *d40c) +{ + if (list_empty(&d40c->done)) + return NULL; + + return list_first_entry(&d40c->done, struct d40_desc, node); +} + +static int d40_psize_2_burst_size(bool is_log, int psize) +{ + if (is_log) { + if (psize == STEDMA40_PSIZE_LOG_1) + return 1; + } else { + if (psize == STEDMA40_PSIZE_PHY_1) + return 1; + } + + return 2 << psize; +} + +/* + * The dma only supports transmitting packages up to + * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes. + * + * Calculate the total number of dma elements required to send the entire sg list. + */ +static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2) +{ + int dmalen; + u32 max_w = max(data_width1, data_width2); + u32 min_w = min(data_width1, data_width2); + u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w); + + if (seg_max > STEDMA40_MAX_SEG_SIZE) + seg_max -= max_w; + + if (!IS_ALIGNED(size, max_w)) + return -EINVAL; + + if (size <= seg_max) + dmalen = 1; + else { + dmalen = size / seg_max; + if (dmalen * seg_max < size) + dmalen++; + } + return dmalen; +} + +static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len, + u32 data_width1, u32 data_width2) +{ + struct scatterlist *sg; + int i; + int len = 0; + int ret; + + for_each_sg(sgl, sg, sg_len, i) { + ret = d40_size_2_dmalen(sg_dma_len(sg), + data_width1, data_width2); + if (ret < 0) + return ret; + len += ret; + } + return len; +} + +static int __d40_execute_command_phy(struct d40_chan *d40c, + enum d40_command command) +{ + u32 status; + int i; + void __iomem *active_reg; + int ret = 0; + unsigned long flags; + u32 wmask; + + if (command == D40_DMA_STOP) { + ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ); + if (ret) + return ret; + } + + spin_lock_irqsave(&d40c->base->execmd_lock, flags); + + if (d40c->phy_chan->num % 2 == 0) + active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; + else + active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; + + if (command == D40_DMA_SUSPEND_REQ) { + status = (readl(active_reg) & + D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> + D40_CHAN_POS(d40c->phy_chan->num); + + if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) + goto done; + } + + wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num)); + writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)), + active_reg); + + if (command == D40_DMA_SUSPEND_REQ) { + + for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) { + status = (readl(active_reg) & + D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> + D40_CHAN_POS(d40c->phy_chan->num); + + cpu_relax(); + /* + * Reduce the number of bus accesses while + * waiting for the DMA to suspend. + */ + udelay(3); + + if (status == D40_DMA_STOP || + status == D40_DMA_SUSPENDED) + break; + } + + if (i == D40_SUSPEND_MAX_IT) { + chan_err(d40c, + "unable to suspend the chl %d (log: %d) status %x\n", + d40c->phy_chan->num, d40c->log_num, + status); + dump_stack(); + ret = -EBUSY; + } + + } +done: + spin_unlock_irqrestore(&d40c->base->execmd_lock, flags); + return ret; +} + +static void d40_term_all(struct d40_chan *d40c) +{ + struct d40_desc *d40d; + struct d40_desc *_d; + + /* Release completed descriptors */ + while ((d40d = d40_first_done(d40c))) { + d40_desc_remove(d40d); + d40_desc_free(d40c, d40d); + } + + /* Release active descriptors */ + while ((d40d = d40_first_active_get(d40c))) { + d40_desc_remove(d40d); + d40_desc_free(d40c, d40d); + } + + /* Release queued descriptors waiting for transfer */ + while ((d40d = d40_first_queued(d40c))) { + d40_desc_remove(d40d); + d40_desc_free(d40c, d40d); + } + + /* Release pending descriptors */ + while ((d40d = d40_first_pending(d40c))) { + d40_desc_remove(d40d); + d40_desc_free(d40c, d40d); + } + + /* Release client owned descriptors */ + if (!list_empty(&d40c->client)) + list_for_each_entry_safe(d40d, _d, &d40c->client, node) { + d40_desc_remove(d40d); + d40_desc_free(d40c, d40d); + } + + /* Release descriptors in prepare queue */ + if (!list_empty(&d40c->prepare_queue)) + list_for_each_entry_safe(d40d, _d, + &d40c->prepare_queue, node) { + d40_desc_remove(d40d); + d40_desc_free(d40c, d40d); + } + + d40c->pending_tx = 0; +} + +static void __d40_config_set_event(struct d40_chan *d40c, + enum d40_events event_type, u32 event, + int reg) +{ + void __iomem *addr = chan_base(d40c) + reg; + int tries; + u32 status; + + switch (event_type) { + + case D40_DEACTIVATE_EVENTLINE: + + writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) + | ~D40_EVENTLINE_MASK(event), addr); + break; + + case D40_SUSPEND_REQ_EVENTLINE: + status = (readl(addr) & D40_EVENTLINE_MASK(event)) >> + D40_EVENTLINE_POS(event); + + if (status == D40_DEACTIVATE_EVENTLINE || + status == D40_SUSPEND_REQ_EVENTLINE) + break; + + writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event)) + | ~D40_EVENTLINE_MASK(event), addr); + + for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) { + + status = (readl(addr) & D40_EVENTLINE_MASK(event)) >> + D40_EVENTLINE_POS(event); + + cpu_relax(); + /* + * Reduce the number of bus accesses while + * waiting for the DMA to suspend. + */ + udelay(3); + + if (status == D40_DEACTIVATE_EVENTLINE) + break; + } + + if (tries == D40_SUSPEND_MAX_IT) { + chan_err(d40c, + "unable to stop the event_line chl %d (log: %d)" + "status %x\n", d40c->phy_chan->num, + d40c->log_num, status); + } + break; + + case D40_ACTIVATE_EVENTLINE: + /* + * The hardware sometimes doesn't register the enable when src and dst + * event lines are active on the same logical channel. Retry to ensure + * it does. Usually only one retry is sufficient. + */ + tries = 100; + while (--tries) { + writel((D40_ACTIVATE_EVENTLINE << + D40_EVENTLINE_POS(event)) | + ~D40_EVENTLINE_MASK(event), addr); + + if (readl(addr) & D40_EVENTLINE_MASK(event)) + break; + } + + if (tries != 99) + dev_dbg(chan2dev(d40c), + "[%s] workaround enable S%cLNK (%d tries)\n", + __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D', + 100 - tries); + + WARN_ON(!tries); + break; + + case D40_ROUND_EVENTLINE: + BUG(); + break; + + } +} + +static void d40_config_set_event(struct d40_chan *d40c, + enum d40_events event_type) +{ + u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); + + /* Enable event line connected to device (or memcpy) */ + if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) || + (d40c->dma_cfg.dir == DMA_DEV_TO_DEV)) + __d40_config_set_event(d40c, event_type, event, + D40_CHAN_REG_SSLNK); + + if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM) + __d40_config_set_event(d40c, event_type, event, + D40_CHAN_REG_SDLNK); +} + +static u32 d40_chan_has_events(struct d40_chan *d40c) +{ + void __iomem *chanbase = chan_base(d40c); + u32 val; + + val = readl(chanbase + D40_CHAN_REG_SSLNK); + val |= readl(chanbase + D40_CHAN_REG_SDLNK); + + return val; +} + +static int +__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command) +{ + unsigned long flags; + int ret = 0; + u32 active_status; + void __iomem *active_reg; + + if (d40c->phy_chan->num % 2 == 0) + active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; + else + active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; + + + spin_lock_irqsave(&d40c->phy_chan->lock, flags); + + switch (command) { + case D40_DMA_STOP: + case D40_DMA_SUSPEND_REQ: + + active_status = (readl(active_reg) & + D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> + D40_CHAN_POS(d40c->phy_chan->num); + + if (active_status == D40_DMA_RUN) + d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE); + else + d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE); + + if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP)) + ret = __d40_execute_command_phy(d40c, command); + + break; + + case D40_DMA_RUN: + + d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE); + ret = __d40_execute_command_phy(d40c, command); + break; + + case D40_DMA_SUSPENDED: + BUG(); + break; + } + + spin_unlock_irqrestore(&d40c->phy_chan->lock, flags); + return ret; +} + +static int d40_channel_execute_command(struct d40_chan *d40c, + enum d40_command command) +{ + if (chan_is_logical(d40c)) + return __d40_execute_command_log(d40c, command); + else + return __d40_execute_command_phy(d40c, command); +} + +static u32 d40_get_prmo(struct d40_chan *d40c) +{ + static const unsigned int phy_map[] = { + [STEDMA40_PCHAN_BASIC_MODE] + = D40_DREG_PRMO_PCHAN_BASIC, + [STEDMA40_PCHAN_MODULO_MODE] + = D40_DREG_PRMO_PCHAN_MODULO, + [STEDMA40_PCHAN_DOUBLE_DST_MODE] + = D40_DREG_PRMO_PCHAN_DOUBLE_DST, + }; + static const unsigned int log_map[] = { + [STEDMA40_LCHAN_SRC_PHY_DST_LOG] + = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG, + [STEDMA40_LCHAN_SRC_LOG_DST_PHY] + = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY, + [STEDMA40_LCHAN_SRC_LOG_DST_LOG] + = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG, + }; + + if (chan_is_physical(d40c)) + return phy_map[d40c->dma_cfg.mode_opt]; + else + return log_map[d40c->dma_cfg.mode_opt]; +} + +static void d40_config_write(struct d40_chan *d40c) +{ + u32 addr_base; + u32 var; + + /* Odd addresses are even addresses + 4 */ + addr_base = (d40c->phy_chan->num % 2) * 4; + /* Setup channel mode to logical or physical */ + var = ((u32)(chan_is_logical(d40c)) + 1) << + D40_CHAN_POS(d40c->phy_chan->num); + writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base); + + /* Setup operational mode option register */ + var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num); + + writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base); + + if (chan_is_logical(d40c)) { + int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) + & D40_SREG_ELEM_LOG_LIDX_MASK; + void __iomem *chanbase = chan_base(d40c); + + /* Set default config for CFG reg */ + writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG); + writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG); + + /* Set LIDX for lcla */ + writel(lidx, chanbase + D40_CHAN_REG_SSELT); + writel(lidx, chanbase + D40_CHAN_REG_SDELT); + + /* Clear LNK which will be used by d40_chan_has_events() */ + writel(0, chanbase + D40_CHAN_REG_SSLNK); + writel(0, chanbase + D40_CHAN_REG_SDLNK); + } +} + +static u32 d40_residue(struct d40_chan *d40c) +{ + u32 num_elt; + + if (chan_is_logical(d40c)) + num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK) + >> D40_MEM_LCSP2_ECNT_POS; + else { + u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT); + num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK) + >> D40_SREG_ELEM_PHY_ECNT_POS; + } + + return num_elt * d40c->dma_cfg.dst_info.data_width; +} + +static bool d40_tx_is_linked(struct d40_chan *d40c) +{ + bool is_link; + + if (chan_is_logical(d40c)) + is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK; + else + is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK) + & D40_SREG_LNK_PHYS_LNK_MASK; + + return is_link; +} + +static int d40_pause(struct dma_chan *chan) +{ + struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); + int res = 0; + unsigned long flags; + + if (d40c->phy_chan == NULL) { + chan_err(d40c, "Channel is not allocated!\n"); + return -EINVAL; + } + + if (!d40c->busy) + return 0; + + spin_lock_irqsave(&d40c->lock, flags); + pm_runtime_get_sync(d40c->base->dev); + + res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); + + pm_runtime_mark_last_busy(d40c->base->dev); + pm_runtime_put_autosuspend(d40c->base->dev); + spin_unlock_irqrestore(&d40c->lock, flags); + return res; +} + +static int d40_resume(struct dma_chan *chan) +{ + struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); + int res = 0; + unsigned long flags; + + if (d40c->phy_chan == NULL) { + chan_err(d40c, "Channel is not allocated!\n"); + return -EINVAL; + } + + if (!d40c->busy) + return 0; + + spin_lock_irqsave(&d40c->lock, flags); + pm_runtime_get_sync(d40c->base->dev); + + /* If bytes left to transfer or linked tx resume job */ + if (d40_residue(d40c) || d40_tx_is_linked(d40c)) + res = d40_channel_execute_command(d40c, D40_DMA_RUN); + + pm_runtime_mark_last_busy(d40c->base->dev); + pm_runtime_put_autosuspend(d40c->base->dev); + spin_unlock_irqrestore(&d40c->lock, flags); + return res; +} + +static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) +{ + struct d40_chan *d40c = container_of(tx->chan, + struct d40_chan, + chan); + struct d40_desc *d40d = container_of(tx, struct d40_desc, txd); + unsigned long flags; + dma_cookie_t cookie; + + spin_lock_irqsave(&d40c->lock, flags); + cookie = dma_cookie_assign(tx); + d40_desc_queue(d40c, d40d); + spin_unlock_irqrestore(&d40c->lock, flags); + + return cookie; +} + +static int d40_start(struct d40_chan *d40c) +{ + return d40_channel_execute_command(d40c, D40_DMA_RUN); +} + +static struct d40_desc *d40_queue_start(struct d40_chan *d40c) +{ + struct d40_desc *d40d; + int err; + + /* Start queued jobs, if any */ + d40d = d40_first_queued(d40c); + + if (d40d != NULL) { + if (!d40c->busy) { + d40c->busy = true; + pm_runtime_get_sync(d40c->base->dev); + } + + /* Remove from queue */ + d40_desc_remove(d40d); + + /* Add to active queue */ + d40_desc_submit(d40c, d40d); + + /* Initiate DMA job */ + d40_desc_load(d40c, d40d); + + /* Start dma job */ + err = d40_start(d40c); + + if (err) + return NULL; + } + + return d40d; +} + +/* called from interrupt context */ +static void dma_tc_handle(struct d40_chan *d40c) +{ + struct d40_desc *d40d; + + /* Get first active entry from list */ + d40d = d40_first_active_get(d40c); + + if (d40d == NULL) + return; + + if (d40d->cyclic) { + /* + * If this was a paritially loaded list, we need to reloaded + * it, and only when the list is completed. We need to check + * for done because the interrupt will hit for every link, and + * not just the last one. + */ + if (d40d->lli_current < d40d->lli_len + && !d40_tx_is_linked(d40c) + && !d40_residue(d40c)) { + d40_lcla_free_all(d40c, d40d); + d40_desc_load(d40c, d40d); + (void) d40_start(d40c); + + if (d40d->lli_current == d40d->lli_len) + d40d->lli_current = 0; + } + } else { + d40_lcla_free_all(d40c, d40d); + + if (d40d->lli_current < d40d->lli_len) { + d40_desc_load(d40c, d40d); + /* Start dma job */ + (void) d40_start(d40c); + return; + } + + if (d40_queue_start(d40c) == NULL) { + d40c->busy = false; + + pm_runtime_mark_last_busy(d40c->base->dev); + pm_runtime_put_autosuspend(d40c->base->dev); + } + + d40_desc_remove(d40d); + d40_desc_done(d40c, d40d); + } + + d40c->pending_tx++; + tasklet_schedule(&d40c->tasklet); + +} + +static void dma_tasklet(unsigned long data) +{ + struct d40_chan *d40c = (struct d40_chan *) data; + struct d40_desc *d40d; + unsigned long flags; + bool callback_active; + dma_async_tx_callback callback; + void *callback_param; + + spin_lock_irqsave(&d40c->lock, flags); + + /* Get first entry from the done list */ + d40d = d40_first_done(d40c); + if (d40d == NULL) { + /* Check if we have reached here for cyclic job */ + d40d = d40_first_active_get(d40c); + if (d40d == NULL || !d40d->cyclic) + goto err; + } + + if (!d40d->cyclic) + dma_cookie_complete(&d40d->txd); + + /* + * If terminating a channel pending_tx is set to zero. + * This prevents any finished active jobs to return to the client. + */ + if (d40c->pending_tx == 0) { + spin_unlock_irqrestore(&d40c->lock, flags); + return; + } + + /* Callback to client */ + callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT); + callback = d40d->txd.callback; + callback_param = d40d->txd.callback_param; + + if (!d40d->cyclic) { + if (async_tx_test_ack(&d40d->txd)) { + d40_desc_remove(d40d); + d40_desc_free(d40c, d40d); + } else if (!d40d->is_in_client_list) { + d40_desc_remove(d40d); + d40_lcla_free_all(d40c, d40d); + list_add_tail(&d40d->node, &d40c->client); + d40d->is_in_client_list = true; + } + } + + d40c->pending_tx--; + + if (d40c->pending_tx) + tasklet_schedule(&d40c->tasklet); + + spin_unlock_irqrestore(&d40c->lock, flags); + + if (callback_active && callback) + callback(callback_param); + + return; + +err: + /* Rescue manouver if receiving double interrupts */ + if (d40c->pending_tx > 0) + d40c->pending_tx--; + spin_unlock_irqrestore(&d40c->lock, flags); +} + +static irqreturn_t d40_handle_interrupt(int irq, void *data) +{ + int i; + u32 idx; + u32 row; + long chan = -1; + struct d40_chan *d40c; + unsigned long flags; + struct d40_base *base = data; + u32 regs[base->gen_dmac.il_size]; + struct d40_interrupt_lookup *il = base->gen_dmac.il; + u32 il_size = base->gen_dmac.il_size; + + spin_lock_irqsave(&base->interrupt_lock, flags); + + /* Read interrupt status of both logical and physical channels */ + for (i = 0; i < il_size; i++) + regs[i] = readl(base->virtbase + il[i].src); + + for (;;) { + + chan = find_next_bit((unsigned long *)regs, + BITS_PER_LONG * il_size, chan + 1); + + /* No more set bits found? */ + if (chan == BITS_PER_LONG * il_size) + break; + + row = chan / BITS_PER_LONG; + idx = chan & (BITS_PER_LONG - 1); + + if (il[row].offset == D40_PHY_CHAN) + d40c = base->lookup_phy_chans[idx]; + else + d40c = base->lookup_log_chans[il[row].offset + idx]; + + if (!d40c) { + /* + * No error because this can happen if something else + * in the system is using the channel. + */ + continue; + } + + /* ACK interrupt */ + writel(BIT(idx), base->virtbase + il[row].clr); + + spin_lock(&d40c->lock); + + if (!il[row].is_error) + dma_tc_handle(d40c); + else + d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n", + chan, il[row].offset, idx); + + spin_unlock(&d40c->lock); + } + + spin_unlock_irqrestore(&base->interrupt_lock, flags); + + return IRQ_HANDLED; +} + +static int d40_validate_conf(struct d40_chan *d40c, + struct stedma40_chan_cfg *conf) +{ + int res = 0; + bool is_log = conf->mode == STEDMA40_MODE_LOGICAL; + + if (!conf->dir) { + chan_err(d40c, "Invalid direction.\n"); + res = -EINVAL; + } + + if ((is_log && conf->dev_type > d40c->base->num_log_chans) || + (!is_log && conf->dev_type > d40c->base->num_phy_chans) || + (conf->dev_type < 0)) { + chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type); + res = -EINVAL; + } + + if (conf->dir == DMA_DEV_TO_DEV) { + /* + * DMAC HW supports it. Will be added to this driver, + * in case any dma client requires it. + */ + chan_err(d40c, "periph to periph not supported\n"); + res = -EINVAL; + } + + if (d40_psize_2_burst_size(is_log, conf->src_info.psize) * + conf->src_info.data_width != + d40_psize_2_burst_size(is_log, conf->dst_info.psize) * + conf->dst_info.data_width) { + /* + * The DMAC hardware only supports + * src (burst x width) == dst (burst x width) + */ + + chan_err(d40c, "src (burst x width) != dst (burst x width)\n"); + res = -EINVAL; + } + + return res; +} + +static bool d40_alloc_mask_set(struct d40_phy_res *phy, + bool is_src, int log_event_line, bool is_log, + bool *first_user) +{ + unsigned long flags; + spin_lock_irqsave(&phy->lock, flags); + + *first_user = ((phy->allocated_src | phy->allocated_dst) + == D40_ALLOC_FREE); + + if (!is_log) { + /* Physical interrupts are masked per physical full channel */ + if (phy->allocated_src == D40_ALLOC_FREE && + phy->allocated_dst == D40_ALLOC_FREE) { + phy->allocated_dst = D40_ALLOC_PHY; + phy->allocated_src = D40_ALLOC_PHY; + goto found; + } else + goto not_found; + } + + /* Logical channel */ + if (is_src) { + if (phy->allocated_src == D40_ALLOC_PHY) + goto not_found; + + if (phy->allocated_src == D40_ALLOC_FREE) + phy->allocated_src = D40_ALLOC_LOG_FREE; + + if (!(phy->allocated_src & BIT(log_event_line))) { + phy->allocated_src |= BIT(log_event_line); + goto found; + } else + goto not_found; + } else { + if (phy->allocated_dst == D40_ALLOC_PHY) + goto not_found; + + if (phy->allocated_dst == D40_ALLOC_FREE) + phy->allocated_dst = D40_ALLOC_LOG_FREE; + + if (!(phy->allocated_dst & BIT(log_event_line))) { + phy->allocated_dst |= BIT(log_event_line); + goto found; + } else + goto not_found; + } + +not_found: + spin_unlock_irqrestore(&phy->lock, flags); + return false; +found: + spin_unlock_irqrestore(&phy->lock, flags); + return true; +} + +static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src, + int log_event_line) +{ + unsigned long flags; + bool is_free = false; + + spin_lock_irqsave(&phy->lock, flags); + if (!log_event_line) { + phy->allocated_dst = D40_ALLOC_FREE; + phy->allocated_src = D40_ALLOC_FREE; + is_free = true; + goto out; + } + + /* Logical channel */ + if (is_src) { + phy->allocated_src &= ~BIT(log_event_line); + if (phy->allocated_src == D40_ALLOC_LOG_FREE) + phy->allocated_src = D40_ALLOC_FREE; + } else { + phy->allocated_dst &= ~BIT(log_event_line); + if (phy->allocated_dst == D40_ALLOC_LOG_FREE) + phy->allocated_dst = D40_ALLOC_FREE; + } + + is_free = ((phy->allocated_src | phy->allocated_dst) == + D40_ALLOC_FREE); + +out: + spin_unlock_irqrestore(&phy->lock, flags); + + return is_free; +} + +static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user) +{ + int dev_type = d40c->dma_cfg.dev_type; + int event_group; + int event_line; + struct d40_phy_res *phys; + int i; + int j; + int log_num; + int num_phy_chans; + bool is_src; + bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL; + + phys = d40c->base->phy_res; + num_phy_chans = d40c->base->num_phy_chans; + + if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) { + log_num = 2 * dev_type; + is_src = true; + } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV || + d40c->dma_cfg.dir == DMA_MEM_TO_MEM) { + /* dst event lines are used for logical memcpy */ + log_num = 2 * dev_type + 1; + is_src = false; + } else + return -EINVAL; + + event_group = D40_TYPE_TO_GROUP(dev_type); + event_line = D40_TYPE_TO_EVENT(dev_type); + + if (!is_log) { + if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) { + /* Find physical half channel */ + if (d40c->dma_cfg.use_fixed_channel) { + i = d40c->dma_cfg.phy_channel; + if (d40_alloc_mask_set(&phys[i], is_src, + 0, is_log, + first_phy_user)) + goto found_phy; + } else { + for (i = 0; i < num_phy_chans; i++) { + if (d40_alloc_mask_set(&phys[i], is_src, + 0, is_log, + first_phy_user)) + goto found_phy; + } + } + } else + for (j = 0; j < d40c->base->num_phy_chans; j += 8) { + int phy_num = j + event_group * 2; + for (i = phy_num; i < phy_num + 2; i++) { + if (d40_alloc_mask_set(&phys[i], + is_src, + 0, + is_log, + first_phy_user)) + goto found_phy; + } + } + return -EINVAL; +found_phy: + d40c->phy_chan = &phys[i]; + d40c->log_num = D40_PHY_CHAN; + goto out; + } + if (dev_type == -1) + return -EINVAL; + + /* Find logical channel */ + for (j = 0; j < d40c->base->num_phy_chans; j += 8) { + int phy_num = j + event_group * 2; + + if (d40c->dma_cfg.use_fixed_channel) { + i = d40c->dma_cfg.phy_channel; + + if ((i != phy_num) && (i != phy_num + 1)) { + dev_err(chan2dev(d40c), + "invalid fixed phy channel %d\n", i); + return -EINVAL; + } + + if (d40_alloc_mask_set(&phys[i], is_src, event_line, + is_log, first_phy_user)) + goto found_log; + + dev_err(chan2dev(d40c), + "could not allocate fixed phy channel %d\n", i); + return -EINVAL; + } + + /* + * Spread logical channels across all available physical rather + * than pack every logical channel at the first available phy + * channels. + */ + if (is_src) { + for (i = phy_num; i < phy_num + 2; i++) { + if (d40_alloc_mask_set(&phys[i], is_src, + event_line, is_log, + first_phy_user)) + goto found_log; + } + } else { + for (i = phy_num + 1; i >= phy_num; i--) { + if (d40_alloc_mask_set(&phys[i], is_src, + event_line, is_log, + first_phy_user)) + goto found_log; + } + } + } + return -EINVAL; + +found_log: + d40c->phy_chan = &phys[i]; + d40c->log_num = log_num; +out: + + if (is_log) + d40c->base->lookup_log_chans[d40c->log_num] = d40c; + else + d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c; + + return 0; + +} + +static int d40_config_memcpy(struct d40_chan *d40c) +{ + dma_cap_mask_t cap = d40c->chan.device->cap_mask; + + if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) { + d40c->dma_cfg = dma40_memcpy_conf_log; + d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id]; + + d40_log_cfg(&d40c->dma_cfg, + &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); + + } else if (dma_has_cap(DMA_MEMCPY, cap) && + dma_has_cap(DMA_SLAVE, cap)) { + d40c->dma_cfg = dma40_memcpy_conf_phy; + + /* Generate interrrupt at end of transfer or relink. */ + d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS); + + /* Generate interrupt on error. */ + d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS); + d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS); + + } else { + chan_err(d40c, "No memcpy\n"); + return -EINVAL; + } + + return 0; +} + +static int d40_free_dma(struct d40_chan *d40c) +{ + + int res = 0; + u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); + struct d40_phy_res *phy = d40c->phy_chan; + bool is_src; + + /* Terminate all queued and active transfers */ + d40_term_all(d40c); + + if (phy == NULL) { + chan_err(d40c, "phy == null\n"); + return -EINVAL; + } + + if (phy->allocated_src == D40_ALLOC_FREE && + phy->allocated_dst == D40_ALLOC_FREE) { + chan_err(d40c, "channel already free\n"); + return -EINVAL; + } + + if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV || + d40c->dma_cfg.dir == DMA_MEM_TO_MEM) + is_src = false; + else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) + is_src = true; + else { + chan_err(d40c, "Unknown direction\n"); + return -EINVAL; + } + + pm_runtime_get_sync(d40c->base->dev); + res = d40_channel_execute_command(d40c, D40_DMA_STOP); + if (res) { + chan_err(d40c, "stop failed\n"); + goto out; + } + + d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0); + + if (chan_is_logical(d40c)) + d40c->base->lookup_log_chans[d40c->log_num] = NULL; + else + d40c->base->lookup_phy_chans[phy->num] = NULL; + + if (d40c->busy) { + pm_runtime_mark_last_busy(d40c->base->dev); + pm_runtime_put_autosuspend(d40c->base->dev); + } + + d40c->busy = false; + d40c->phy_chan = NULL; + d40c->configured = false; +out: + + pm_runtime_mark_last_busy(d40c->base->dev); + pm_runtime_put_autosuspend(d40c->base->dev); + return res; +} + +static bool d40_is_paused(struct d40_chan *d40c) +{ + void __iomem *chanbase = chan_base(d40c); + bool is_paused = false; + unsigned long flags; + void __iomem *active_reg; + u32 status; + u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); + + spin_lock_irqsave(&d40c->lock, flags); + + if (chan_is_physical(d40c)) { + if (d40c->phy_chan->num % 2 == 0) + active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; + else + active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; + + status = (readl(active_reg) & + D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> + D40_CHAN_POS(d40c->phy_chan->num); + if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) + is_paused = true; + + goto _exit; + } + + if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV || + d40c->dma_cfg.dir == DMA_MEM_TO_MEM) { + status = readl(chanbase + D40_CHAN_REG_SDLNK); + } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) { + status = readl(chanbase + D40_CHAN_REG_SSLNK); + } else { + chan_err(d40c, "Unknown direction\n"); + goto _exit; + } + + status = (status & D40_EVENTLINE_MASK(event)) >> + D40_EVENTLINE_POS(event); + + if (status != D40_DMA_RUN) + is_paused = true; +_exit: + spin_unlock_irqrestore(&d40c->lock, flags); + return is_paused; + +} + +static u32 stedma40_residue(struct dma_chan *chan) +{ + struct d40_chan *d40c = + container_of(chan, struct d40_chan, chan); + u32 bytes_left; + unsigned long flags; + + spin_lock_irqsave(&d40c->lock, flags); + bytes_left = d40_residue(d40c); + spin_unlock_irqrestore(&d40c->lock, flags); + + return bytes_left; +} + +static int +d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc, + struct scatterlist *sg_src, struct scatterlist *sg_dst, + unsigned int sg_len, dma_addr_t src_dev_addr, + dma_addr_t dst_dev_addr) +{ + struct stedma40_chan_cfg *cfg = &chan->dma_cfg; + struct stedma40_half_channel_info *src_info = &cfg->src_info; + struct stedma40_half_channel_info *dst_info = &cfg->dst_info; + int ret; + + ret = d40_log_sg_to_lli(sg_src, sg_len, + src_dev_addr, + desc->lli_log.src, + chan->log_def.lcsp1, + src_info->data_width, + dst_info->data_width); + + ret = d40_log_sg_to_lli(sg_dst, sg_len, + dst_dev_addr, + desc->lli_log.dst, + chan->log_def.lcsp3, + dst_info->data_width, + src_info->data_width); + + return ret < 0 ? ret : 0; +} + +static int +d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc, + struct scatterlist *sg_src, struct scatterlist *sg_dst, + unsigned int sg_len, dma_addr_t src_dev_addr, + dma_addr_t dst_dev_addr) +{ + struct stedma40_chan_cfg *cfg = &chan->dma_cfg; + struct stedma40_half_channel_info *src_info = &cfg->src_info; + struct stedma40_half_channel_info *dst_info = &cfg->dst_info; + unsigned long flags = 0; + int ret; + + if (desc->cyclic) + flags |= LLI_CYCLIC | LLI_TERM_INT; + + ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr, + desc->lli_phy.src, + virt_to_phys(desc->lli_phy.src), + chan->src_def_cfg, + src_info, dst_info, flags); + + ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr, + desc->lli_phy.dst, + virt_to_phys(desc->lli_phy.dst), + chan->dst_def_cfg, + dst_info, src_info, flags); + + dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr, + desc->lli_pool.size, DMA_TO_DEVICE); + + return ret < 0 ? ret : 0; +} + +static struct d40_desc * +d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg, + unsigned int sg_len, unsigned long dma_flags) +{ + struct stedma40_chan_cfg *cfg = &chan->dma_cfg; + struct d40_desc *desc; + int ret; + + desc = d40_desc_get(chan); + if (!desc) + return NULL; + + desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width, + cfg->dst_info.data_width); + if (desc->lli_len < 0) { + chan_err(chan, "Unaligned size\n"); + goto err; + } + + ret = d40_pool_lli_alloc(chan, desc, desc->lli_len); + if (ret < 0) { + chan_err(chan, "Could not allocate lli\n"); + goto err; + } + + desc->lli_current = 0; + desc->txd.flags = dma_flags; + desc->txd.tx_submit = d40_tx_submit; + + dma_async_tx_descriptor_init(&desc->txd, &chan->chan); + + return desc; + +err: + d40_desc_free(chan, desc); + return NULL; +} + +static struct dma_async_tx_descriptor * +d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src, + struct scatterlist *sg_dst, unsigned int sg_len, + enum dma_transfer_direction direction, unsigned long dma_flags) +{ + struct d40_chan *chan = container_of(dchan, struct d40_chan, chan); + dma_addr_t src_dev_addr = 0; + dma_addr_t dst_dev_addr = 0; + struct d40_desc *desc; + unsigned long flags; + int ret; + + if (!chan->phy_chan) { + chan_err(chan, "Cannot prepare unallocated channel\n"); + return NULL; + } + + spin_lock_irqsave(&chan->lock, flags); + + desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags); + if (desc == NULL) + goto err; + + if (sg_next(&sg_src[sg_len - 1]) == sg_src) + desc->cyclic = true; + + if (direction == DMA_DEV_TO_MEM) + src_dev_addr = chan->runtime_addr; + else if (direction == DMA_MEM_TO_DEV) + dst_dev_addr = chan->runtime_addr; + + if (chan_is_logical(chan)) + ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst, + sg_len, src_dev_addr, dst_dev_addr); + else + ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst, + sg_len, src_dev_addr, dst_dev_addr); + + if (ret) { + chan_err(chan, "Failed to prepare %s sg job: %d\n", + chan_is_logical(chan) ? "log" : "phy", ret); + goto err; + } + + /* + * add descriptor to the prepare queue in order to be able + * to free them later in terminate_all + */ + list_add_tail(&desc->node, &chan->prepare_queue); + + spin_unlock_irqrestore(&chan->lock, flags); + + return &desc->txd; + +err: + if (desc) + d40_desc_free(chan, desc); + spin_unlock_irqrestore(&chan->lock, flags); + return NULL; +} + +bool stedma40_filter(struct dma_chan *chan, void *data) +{ + struct stedma40_chan_cfg *info = data; + struct d40_chan *d40c = + container_of(chan, struct d40_chan, chan); + int err; + + if (data) { + err = d40_validate_conf(d40c, info); + if (!err) + d40c->dma_cfg = *info; + } else + err = d40_config_memcpy(d40c); + + if (!err) + d40c->configured = true; + + return err == 0; +} +EXPORT_SYMBOL(stedma40_filter); + +static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src) +{ + bool realtime = d40c->dma_cfg.realtime; + bool highprio = d40c->dma_cfg.high_priority; + u32 rtreg; + u32 event = D40_TYPE_TO_EVENT(dev_type); + u32 group = D40_TYPE_TO_GROUP(dev_type); + u32 bit = BIT(event); + u32 prioreg; + struct d40_gen_dmac *dmac = &d40c->base->gen_dmac; + + rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear; + /* + * Due to a hardware bug, in some cases a logical channel triggered by + * a high priority destination event line can generate extra packet + * transactions. + * + * The workaround is to not set the high priority level for the + * destination event lines that trigger logical channels. + */ + if (!src && chan_is_logical(d40c)) + highprio = false; + + prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear; + + /* Destination event lines are stored in the upper halfword */ + if (!src) + bit <<= 16; + + writel(bit, d40c->base->virtbase + prioreg + group * 4); + writel(bit, d40c->base->virtbase + rtreg + group * 4); +} + +static void d40_set_prio_realtime(struct d40_chan *d40c) +{ + if (d40c->base->rev < 3) + return; + + if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) || + (d40c->dma_cfg.dir == DMA_DEV_TO_DEV)) + __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true); + + if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) || + (d40c->dma_cfg.dir == DMA_DEV_TO_DEV)) + __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false); +} + +#define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1) +#define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1) +#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1) +#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1) +#define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1) + +static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec, + struct of_dma *ofdma) +{ + struct stedma40_chan_cfg cfg; + dma_cap_mask_t cap; + u32 flags; + + memset(&cfg, 0, sizeof(struct stedma40_chan_cfg)); + + dma_cap_zero(cap); + dma_cap_set(DMA_SLAVE, cap); + + cfg.dev_type = dma_spec->args[0]; + flags = dma_spec->args[2]; + + switch (D40_DT_FLAGS_MODE(flags)) { + case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break; + case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break; + } + + switch (D40_DT_FLAGS_DIR(flags)) { + case 0: + cfg.dir = DMA_MEM_TO_DEV; + cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags); + break; + case 1: + cfg.dir = DMA_DEV_TO_MEM; + cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags); + break; + } + + if (D40_DT_FLAGS_FIXED_CHAN(flags)) { + cfg.phy_channel = dma_spec->args[1]; + cfg.use_fixed_channel = true; + } + + if (D40_DT_FLAGS_HIGH_PRIO(flags)) + cfg.high_priority = true; + + return dma_request_channel(cap, stedma40_filter, &cfg); +} + +/* DMA ENGINE functions */ +static int d40_alloc_chan_resources(struct dma_chan *chan) +{ + int err; + unsigned long flags; + struct d40_chan *d40c = + container_of(chan, struct d40_chan, chan); + bool is_free_phy; + spin_lock_irqsave(&d40c->lock, flags); + + dma_cookie_init(chan); + + /* If no dma configuration is set use default configuration (memcpy) */ + if (!d40c->configured) { + err = d40_config_memcpy(d40c); + if (err) { + chan_err(d40c, "Failed to configure memcpy channel\n"); + goto fail; + } + } + + err = d40_allocate_channel(d40c, &is_free_phy); + if (err) { + chan_err(d40c, "Failed to allocate channel\n"); + d40c->configured = false; + goto fail; + } + + pm_runtime_get_sync(d40c->base->dev); + + d40_set_prio_realtime(d40c); + + if (chan_is_logical(d40c)) { + if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) + d40c->lcpa = d40c->base->lcpa_base + + d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE; + else + d40c->lcpa = d40c->base->lcpa_base + + d40c->dma_cfg.dev_type * + D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA; + + /* Unmask the Global Interrupt Mask. */ + d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS); + d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS); + } + + dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n", + chan_is_logical(d40c) ? "logical" : "physical", + d40c->phy_chan->num, + d40c->dma_cfg.use_fixed_channel ? ", fixed" : ""); + + + /* + * Only write channel configuration to the DMA if the physical + * resource is free. In case of multiple logical channels + * on the same physical resource, only the first write is necessary. + */ + if (is_free_phy) + d40_config_write(d40c); +fail: + pm_runtime_mark_last_busy(d40c->base->dev); + pm_runtime_put_autosuspend(d40c->base->dev); + spin_unlock_irqrestore(&d40c->lock, flags); + return err; +} + +static void d40_free_chan_resources(struct dma_chan *chan) +{ + struct d40_chan *d40c = + container_of(chan, struct d40_chan, chan); + int err; + unsigned long flags; + + if (d40c->phy_chan == NULL) { + chan_err(d40c, "Cannot free unallocated channel\n"); + return; + } + + spin_lock_irqsave(&d40c->lock, flags); + + err = d40_free_dma(d40c); + + if (err) + chan_err(d40c, "Failed to free channel\n"); + spin_unlock_irqrestore(&d40c->lock, flags); +} + +static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, + dma_addr_t dst, + dma_addr_t src, + size_t size, + unsigned long dma_flags) +{ + struct scatterlist dst_sg; + struct scatterlist src_sg; + + sg_init_table(&dst_sg, 1); + sg_init_table(&src_sg, 1); + + sg_dma_address(&dst_sg) = dst; + sg_dma_address(&src_sg) = src; + + sg_dma_len(&dst_sg) = size; + sg_dma_len(&src_sg) = size; + + return d40_prep_sg(chan, &src_sg, &dst_sg, 1, + DMA_MEM_TO_MEM, dma_flags); +} + +static struct dma_async_tx_descriptor * +d40_prep_memcpy_sg(struct dma_chan *chan, + struct scatterlist *dst_sg, unsigned int dst_nents, + struct scatterlist *src_sg, unsigned int src_nents, + unsigned long dma_flags) +{ + if (dst_nents != src_nents) + return NULL; + + return d40_prep_sg(chan, src_sg, dst_sg, src_nents, + DMA_MEM_TO_MEM, dma_flags); +} + +static struct dma_async_tx_descriptor * +d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, + unsigned int sg_len, enum dma_transfer_direction direction, + unsigned long dma_flags, void *context) +{ + if (!is_slave_direction(direction)) + return NULL; + + return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags); +} + +static struct dma_async_tx_descriptor * +dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr, + size_t buf_len, size_t period_len, + enum dma_transfer_direction direction, unsigned long flags) +{ + unsigned int periods = buf_len / period_len; + struct dma_async_tx_descriptor *txd; + struct scatterlist *sg; + int i; + + sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT); + if (!sg) + return NULL; + + for (i = 0; i < periods; i++) { + sg_dma_address(&sg[i]) = dma_addr; + sg_dma_len(&sg[i]) = period_len; + dma_addr += period_len; + } + + sg[periods].offset = 0; + sg_dma_len(&sg[periods]) = 0; + sg[periods].page_link = + ((unsigned long)sg | 0x01) & ~0x02; + + txd = d40_prep_sg(chan, sg, sg, periods, direction, + DMA_PREP_INTERRUPT); + + kfree(sg); + + return txd; +} + +static enum dma_status d40_tx_status(struct dma_chan *chan, + dma_cookie_t cookie, + struct dma_tx_state *txstate) +{ + struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); + enum dma_status ret; + + if (d40c->phy_chan == NULL) { + chan_err(d40c, "Cannot read status of unallocated channel\n"); + return -EINVAL; + } + + ret = dma_cookie_status(chan, cookie, txstate); + if (ret != DMA_COMPLETE) + dma_set_residue(txstate, stedma40_residue(chan)); + + if (d40_is_paused(d40c)) + ret = DMA_PAUSED; + + return ret; +} + +static void d40_issue_pending(struct dma_chan *chan) +{ + struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); + unsigned long flags; + + if (d40c->phy_chan == NULL) { + chan_err(d40c, "Channel is not allocated!\n"); + return; + } + + spin_lock_irqsave(&d40c->lock, flags); + + list_splice_tail_init(&d40c->pending_queue, &d40c->queue); + + /* Busy means that queued jobs are already being processed */ + if (!d40c->busy) + (void) d40_queue_start(d40c); + + spin_unlock_irqrestore(&d40c->lock, flags); +} + +static int d40_terminate_all(struct dma_chan *chan) +{ + unsigned long flags; + struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); + int ret; + + if (d40c->phy_chan == NULL) { + chan_err(d40c, "Channel is not allocated!\n"); + return -EINVAL; + } + + spin_lock_irqsave(&d40c->lock, flags); + + pm_runtime_get_sync(d40c->base->dev); + ret = d40_channel_execute_command(d40c, D40_DMA_STOP); + if (ret) + chan_err(d40c, "Failed to stop channel\n"); + + d40_term_all(d40c); + pm_runtime_mark_last_busy(d40c->base->dev); + pm_runtime_put_autosuspend(d40c->base->dev); + if (d40c->busy) { + pm_runtime_mark_last_busy(d40c->base->dev); + pm_runtime_put_autosuspend(d40c->base->dev); + } + d40c->busy = false; + + spin_unlock_irqrestore(&d40c->lock, flags); + return 0; +} + +static int +dma40_config_to_halfchannel(struct d40_chan *d40c, + struct stedma40_half_channel_info *info, + u32 maxburst) +{ + int psize; + + if (chan_is_logical(d40c)) { + if (maxburst >= 16) + psize = STEDMA40_PSIZE_LOG_16; + else if (maxburst >= 8) + psize = STEDMA40_PSIZE_LOG_8; + else if (maxburst >= 4) + psize = STEDMA40_PSIZE_LOG_4; + else + psize = STEDMA40_PSIZE_LOG_1; + } else { + if (maxburst >= 16) + psize = STEDMA40_PSIZE_PHY_16; + else if (maxburst >= 8) + psize = STEDMA40_PSIZE_PHY_8; + else if (maxburst >= 4) + psize = STEDMA40_PSIZE_PHY_4; + else + psize = STEDMA40_PSIZE_PHY_1; + } + + info->psize = psize; + info->flow_ctrl = STEDMA40_NO_FLOW_CTRL; + + return 0; +} + +/* Runtime reconfiguration extension */ +static int d40_set_runtime_config(struct dma_chan *chan, + struct dma_slave_config *config) +{ + struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); + struct stedma40_chan_cfg *cfg = &d40c->dma_cfg; + enum dma_slave_buswidth src_addr_width, dst_addr_width; + dma_addr_t config_addr; + u32 src_maxburst, dst_maxburst; + int ret; + + if (d40c->phy_chan == NULL) { + chan_err(d40c, "Channel is not allocated!\n"); + return -EINVAL; + } + + src_addr_width = config->src_addr_width; + src_maxburst = config->src_maxburst; + dst_addr_width = config->dst_addr_width; + dst_maxburst = config->dst_maxburst; + + if (config->direction == DMA_DEV_TO_MEM) { + config_addr = config->src_addr; + + if (cfg->dir != DMA_DEV_TO_MEM) + dev_dbg(d40c->base->dev, + "channel was not configured for peripheral " + "to memory transfer (%d) overriding\n", + cfg->dir); + cfg->dir = DMA_DEV_TO_MEM; + + /* Configure the memory side */ + if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) + dst_addr_width = src_addr_width; + if (dst_maxburst == 0) + dst_maxburst = src_maxburst; + + } else if (config->direction == DMA_MEM_TO_DEV) { + config_addr = config->dst_addr; + + if (cfg->dir != DMA_MEM_TO_DEV) + dev_dbg(d40c->base->dev, + "channel was not configured for memory " + "to peripheral transfer (%d) overriding\n", + cfg->dir); + cfg->dir = DMA_MEM_TO_DEV; + + /* Configure the memory side */ + if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) + src_addr_width = dst_addr_width; + if (src_maxburst == 0) + src_maxburst = dst_maxburst; + } else { + dev_err(d40c->base->dev, + "unrecognized channel direction %d\n", + config->direction); + return -EINVAL; + } + + if (config_addr <= 0) { + dev_err(d40c->base->dev, "no address supplied\n"); + return -EINVAL; + } + + if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) { + dev_err(d40c->base->dev, + "src/dst width/maxburst mismatch: %d*%d != %d*%d\n", + src_maxburst, + src_addr_width, + dst_maxburst, + dst_addr_width); + return -EINVAL; + } + + if (src_maxburst > 16) { + src_maxburst = 16; + dst_maxburst = src_maxburst * src_addr_width / dst_addr_width; + } else if (dst_maxburst > 16) { + dst_maxburst = 16; + src_maxburst = dst_maxburst * dst_addr_width / src_addr_width; + } + + /* Only valid widths are; 1, 2, 4 and 8. */ + if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED || + src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES || + dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED || + dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES || + !is_power_of_2(src_addr_width) || + !is_power_of_2(dst_addr_width)) + return -EINVAL; + + cfg->src_info.data_width = src_addr_width; + cfg->dst_info.data_width = dst_addr_width; + + ret = dma40_config_to_halfchannel(d40c, &cfg->src_info, + src_maxburst); + if (ret) + return ret; + + ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info, + dst_maxburst); + if (ret) + return ret; + + /* Fill in register values */ + if (chan_is_logical(d40c)) + d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); + else + d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg); + + /* These settings will take precedence later */ + d40c->runtime_addr = config_addr; + d40c->runtime_direction = config->direction; + dev_dbg(d40c->base->dev, + "configured channel %s for %s, data width %d/%d, " + "maxburst %d/%d elements, LE, no flow control\n", + dma_chan_name(chan), + (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX", + src_addr_width, dst_addr_width, + src_maxburst, dst_maxburst); + + return 0; +} + +/* Initialization functions */ + +static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, + struct d40_chan *chans, int offset, + int num_chans) +{ + int i = 0; + struct d40_chan *d40c; + + INIT_LIST_HEAD(&dma->channels); + + for (i = offset; i < offset + num_chans; i++) { + d40c = &chans[i]; + d40c->base = base; + d40c->chan.device = dma; + + spin_lock_init(&d40c->lock); + + d40c->log_num = D40_PHY_CHAN; + + INIT_LIST_HEAD(&d40c->done); + INIT_LIST_HEAD(&d40c->active); + INIT_LIST_HEAD(&d40c->queue); + INIT_LIST_HEAD(&d40c->pending_queue); + INIT_LIST_HEAD(&d40c->client); + INIT_LIST_HEAD(&d40c->prepare_queue); + + tasklet_init(&d40c->tasklet, dma_tasklet, + (unsigned long) d40c); + + list_add_tail(&d40c->chan.device_node, + &dma->channels); + } +} + +static void d40_ops_init(struct d40_base *base, struct dma_device *dev) +{ + if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) + dev->device_prep_slave_sg = d40_prep_slave_sg; + + if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) { + dev->device_prep_dma_memcpy = d40_prep_memcpy; + + /* + * This controller can only access address at even + * 32bit boundaries, i.e. 2^2 + */ + dev->copy_align = 2; + } + + if (dma_has_cap(DMA_SG, dev->cap_mask)) + dev->device_prep_dma_sg = d40_prep_memcpy_sg; + + if (dma_has_cap(DMA_CYCLIC, dev->cap_mask)) + dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic; + + dev->device_alloc_chan_resources = d40_alloc_chan_resources; + dev->device_free_chan_resources = d40_free_chan_resources; + dev->device_issue_pending = d40_issue_pending; + dev->device_tx_status = d40_tx_status; + dev->device_config = d40_set_runtime_config; + dev->device_pause = d40_pause; + dev->device_resume = d40_resume; + dev->device_terminate_all = d40_terminate_all; + dev->dev = base->dev; +} + +static int __init d40_dmaengine_init(struct d40_base *base, + int num_reserved_chans) +{ + int err ; + + d40_chan_init(base, &base->dma_slave, base->log_chans, + 0, base->num_log_chans); + + dma_cap_zero(base->dma_slave.cap_mask); + dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); + dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); + + d40_ops_init(base, &base->dma_slave); + + err = dma_async_device_register(&base->dma_slave); + + if (err) { + d40_err(base->dev, "Failed to register slave channels\n"); + goto failure1; + } + + d40_chan_init(base, &base->dma_memcpy, base->log_chans, + base->num_log_chans, base->num_memcpy_chans); + + dma_cap_zero(base->dma_memcpy.cap_mask); + dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); + dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask); + + d40_ops_init(base, &base->dma_memcpy); + + err = dma_async_device_register(&base->dma_memcpy); + + if (err) { + d40_err(base->dev, + "Failed to regsiter memcpy only channels\n"); + goto failure2; + } + + d40_chan_init(base, &base->dma_both, base->phy_chans, + 0, num_reserved_chans); + + dma_cap_zero(base->dma_both.cap_mask); + dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); + dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); + dma_cap_set(DMA_SG, base->dma_both.cap_mask); + dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); + + d40_ops_init(base, &base->dma_both); + err = dma_async_device_register(&base->dma_both); + + if (err) { + d40_err(base->dev, + "Failed to register logical and physical capable channels\n"); + goto failure3; + } + return 0; +failure3: + dma_async_device_unregister(&base->dma_memcpy); +failure2: + dma_async_device_unregister(&base->dma_slave); +failure1: + return err; +} + +/* Suspend resume functionality */ +#ifdef CONFIG_PM_SLEEP +static int dma40_suspend(struct device *dev) +{ + struct platform_device *pdev = to_platform_device(dev); + struct d40_base *base = platform_get_drvdata(pdev); + int ret; + + ret = pm_runtime_force_suspend(dev); + if (ret) + return ret; + + if (base->lcpa_regulator) + ret = regulator_disable(base->lcpa_regulator); + return ret; +} + +static int dma40_resume(struct device *dev) +{ + struct platform_device *pdev = to_platform_device(dev); + struct d40_base *base = platform_get_drvdata(pdev); + int ret = 0; + + if (base->lcpa_regulator) { + ret = regulator_enable(base->lcpa_regulator); + if (ret) + return ret; + } + + return pm_runtime_force_resume(dev); +} +#endif + +#ifdef CONFIG_PM +static void dma40_backup(void __iomem *baseaddr, u32 *backup, + u32 *regaddr, int num, bool save) +{ + int i; + + for (i = 0; i < num; i++) { + void __iomem *addr = baseaddr + regaddr[i]; + + if (save) + backup[i] = readl_relaxed(addr); + else + writel_relaxed(backup[i], addr); + } +} + +static void d40_save_restore_registers(struct d40_base *base, bool save) +{ + int i; + + /* Save/Restore channel specific registers */ + for (i = 0; i < base->num_phy_chans; i++) { + void __iomem *addr; + int idx; + + if (base->phy_res[i].reserved) + continue; + + addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA; + idx = i * ARRAY_SIZE(d40_backup_regs_chan); + + dma40_backup(addr, &base->reg_val_backup_chan[idx], + d40_backup_regs_chan, + ARRAY_SIZE(d40_backup_regs_chan), + save); + } + + /* Save/Restore global registers */ + dma40_backup(base->virtbase, base->reg_val_backup, + d40_backup_regs, ARRAY_SIZE(d40_backup_regs), + save); + + /* Save/Restore registers only existing on dma40 v3 and later */ + if (base->gen_dmac.backup) + dma40_backup(base->virtbase, base->reg_val_backup_v4, + base->gen_dmac.backup, + base->gen_dmac.backup_size, + save); +} + +static int dma40_runtime_suspend(struct device *dev) +{ + struct platform_device *pdev = to_platform_device(dev); + struct d40_base *base = platform_get_drvdata(pdev); + + d40_save_restore_registers(base, true); + + /* Don't disable/enable clocks for v1 due to HW bugs */ + if (base->rev != 1) + writel_relaxed(base->gcc_pwr_off_mask, + base->virtbase + D40_DREG_GCC); + + return 0; +} + +static int dma40_runtime_resume(struct device *dev) +{ + struct platform_device *pdev = to_platform_device(dev); + struct d40_base *base = platform_get_drvdata(pdev); + + d40_save_restore_registers(base, false); + + writel_relaxed(D40_DREG_GCC_ENABLE_ALL, + base->virtbase + D40_DREG_GCC); + return 0; +} +#endif + +static const struct dev_pm_ops dma40_pm_ops = { + SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume) + SET_RUNTIME_PM_OPS(dma40_runtime_suspend, + dma40_runtime_resume, + NULL) +}; + +/* Initialization functions. */ + +static int __init d40_phy_res_init(struct d40_base *base) +{ + int i; + int num_phy_chans_avail = 0; + u32 val[2]; + int odd_even_bit = -2; + int gcc = D40_DREG_GCC_ENA; + + val[0] = readl(base->virtbase + D40_DREG_PRSME); + val[1] = readl(base->virtbase + D40_DREG_PRSMO); + + for (i = 0; i < base->num_phy_chans; i++) { + base->phy_res[i].num = i; + odd_even_bit += 2 * ((i % 2) == 0); + if (((val[i % 2] >> odd_even_bit) & 3) == 1) { + /* Mark security only channels as occupied */ + base->phy_res[i].allocated_src = D40_ALLOC_PHY; + base->phy_res[i].allocated_dst = D40_ALLOC_PHY; + base->phy_res[i].reserved = true; + gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), + D40_DREG_GCC_SRC); + gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), + D40_DREG_GCC_DST); + + + } else { + base->phy_res[i].allocated_src = D40_ALLOC_FREE; + base->phy_res[i].allocated_dst = D40_ALLOC_FREE; + base->phy_res[i].reserved = false; + num_phy_chans_avail++; + } + spin_lock_init(&base->phy_res[i].lock); + } + + /* Mark disabled channels as occupied */ + for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) { + int chan = base->plat_data->disabled_channels[i]; + + base->phy_res[chan].allocated_src = D40_ALLOC_PHY; + base->phy_res[chan].allocated_dst = D40_ALLOC_PHY; + base->phy_res[chan].reserved = true; + gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), + D40_DREG_GCC_SRC); + gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), + D40_DREG_GCC_DST); + num_phy_chans_avail--; + } + + /* Mark soft_lli channels */ + for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) { + int chan = base->plat_data->soft_lli_chans[i]; + + base->phy_res[chan].use_soft_lli = true; + } + + dev_info(base->dev, "%d of %d physical DMA channels available\n", + num_phy_chans_avail, base->num_phy_chans); + + /* Verify settings extended vs standard */ + val[0] = readl(base->virtbase + D40_DREG_PRTYP); + + for (i = 0; i < base->num_phy_chans; i++) { + + if (base->phy_res[i].allocated_src == D40_ALLOC_FREE && + (val[0] & 0x3) != 1) + dev_info(base->dev, + "[%s] INFO: channel %d is misconfigured (%d)\n", + __func__, i, val[0] & 0x3); + + val[0] = val[0] >> 2; + } + + /* + * To keep things simple, Enable all clocks initially. + * The clocks will get managed later post channel allocation. + * The clocks for the event lines on which reserved channels exists + * are not managed here. + */ + writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC); + base->gcc_pwr_off_mask = gcc; + + return num_phy_chans_avail; +} + +static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) +{ + struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev); + struct clk *clk = NULL; + void __iomem *virtbase = NULL; + struct resource *res = NULL; + struct d40_base *base = NULL; + int num_log_chans = 0; + int num_phy_chans; + int num_memcpy_chans; + int clk_ret = -EINVAL; + int i; + u32 pid; + u32 cid; + u8 rev; + + clk = clk_get(&pdev->dev, NULL); + if (IS_ERR(clk)) { + d40_err(&pdev->dev, "No matching clock found\n"); + goto failure; + } + + clk_ret = clk_prepare_enable(clk); + if (clk_ret) { + d40_err(&pdev->dev, "Failed to prepare/enable clock\n"); + goto failure; + } + + /* Get IO for DMAC base address */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); + if (!res) + goto failure; + + if (request_mem_region(res->start, resource_size(res), + D40_NAME " I/O base") == NULL) + goto failure; + + virtbase = ioremap(res->start, resource_size(res)); + if (!virtbase) + goto failure; + + /* This is just a regular AMBA PrimeCell ID actually */ + for (pid = 0, i = 0; i < 4; i++) + pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i) + & 255) << (i * 8); + for (cid = 0, i = 0; i < 4; i++) + cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i) + & 255) << (i * 8); + + if (cid != AMBA_CID) { + d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n"); + goto failure; + } + if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) { + d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n", + AMBA_MANF_BITS(pid), + AMBA_VENDOR_ST); + goto failure; + } + /* + * HW revision: + * DB8500ed has revision 0 + * ? has revision 1 + * DB8500v1 has revision 2 + * DB8500v2 has revision 3 + * AP9540v1 has revision 4 + * DB8540v1 has revision 4 + */ + rev = AMBA_REV_BITS(pid); + if (rev < 2) { + d40_err(&pdev->dev, "hardware revision: %d is not supported", rev); + goto failure; + } + + /* The number of physical channels on this HW */ + if (plat_data->num_of_phy_chans) + num_phy_chans = plat_data->num_of_phy_chans; + else + num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; + + /* The number of channels used for memcpy */ + if (plat_data->num_of_memcpy_chans) + num_memcpy_chans = plat_data->num_of_memcpy_chans; + else + num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels); + + num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY; + + dev_info(&pdev->dev, + "hardware rev: %d @ %pa with %d physical and %d logical channels\n", + rev, &res->start, num_phy_chans, num_log_chans); + + base = kzalloc(ALIGN(sizeof(struct d40_base), 4) + + (num_phy_chans + num_log_chans + num_memcpy_chans) * + sizeof(struct d40_chan), GFP_KERNEL); + + if (base == NULL) { + d40_err(&pdev->dev, "Out of memory\n"); + goto failure; + } + + base->rev = rev; + base->clk = clk; + base->num_memcpy_chans = num_memcpy_chans; + base->num_phy_chans = num_phy_chans; + base->num_log_chans = num_log_chans; + base->phy_start = res->start; + base->phy_size = resource_size(res); + base->virtbase = virtbase; + base->plat_data = plat_data; + base->dev = &pdev->dev; + base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4); + base->log_chans = &base->phy_chans[num_phy_chans]; + + if (base->plat_data->num_of_phy_chans == 14) { + base->gen_dmac.backup = d40_backup_regs_v4b; + base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B; + base->gen_dmac.interrupt_en = D40_DREG_CPCMIS; + base->gen_dmac.interrupt_clear = D40_DREG_CPCICR; + base->gen_dmac.realtime_en = D40_DREG_CRSEG1; + base->gen_dmac.realtime_clear = D40_DREG_CRCEG1; + base->gen_dmac.high_prio_en = D40_DREG_CPSEG1; + base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1; + base->gen_dmac.il = il_v4b; + base->gen_dmac.il_size = ARRAY_SIZE(il_v4b); + base->gen_dmac.init_reg = dma_init_reg_v4b; + base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b); + } else { + if (base->rev >= 3) { + base->gen_dmac.backup = d40_backup_regs_v4a; + base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A; + } + base->gen_dmac.interrupt_en = D40_DREG_PCMIS; + base->gen_dmac.interrupt_clear = D40_DREG_PCICR; + base->gen_dmac.realtime_en = D40_DREG_RSEG1; + base->gen_dmac.realtime_clear = D40_DREG_RCEG1; + base->gen_dmac.high_prio_en = D40_DREG_PSEG1; + base->gen_dmac.high_prio_clear = D40_DREG_PCEG1; + base->gen_dmac.il = il_v4a; + base->gen_dmac.il_size = ARRAY_SIZE(il_v4a); + base->gen_dmac.init_reg = dma_init_reg_v4a; + base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a); + } + + base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res), + GFP_KERNEL); + if (!base->phy_res) + goto failure; + + base->lookup_phy_chans = kzalloc(num_phy_chans * + sizeof(struct d40_chan *), + GFP_KERNEL); + if (!base->lookup_phy_chans) + goto failure; + + base->lookup_log_chans = kzalloc(num_log_chans * + sizeof(struct d40_chan *), + GFP_KERNEL); + if (!base->lookup_log_chans) + goto failure; + + base->reg_val_backup_chan = kmalloc(base->num_phy_chans * + sizeof(d40_backup_regs_chan), + GFP_KERNEL); + if (!base->reg_val_backup_chan) + goto failure; + + base->lcla_pool.alloc_map = + kzalloc(num_phy_chans * sizeof(struct d40_desc *) + * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL); + if (!base->lcla_pool.alloc_map) + goto failure; + + base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc), + 0, SLAB_HWCACHE_ALIGN, + NULL); + if (base->desc_slab == NULL) + goto failure; + + return base; + +failure: + if (!clk_ret) + clk_disable_unprepare(clk); + if (!IS_ERR(clk)) + clk_put(clk); + if (virtbase) + iounmap(virtbase); + if (res) + release_mem_region(res->start, + resource_size(res)); + if (virtbase) + iounmap(virtbase); + + if (base) { + kfree(base->lcla_pool.alloc_map); + kfree(base->reg_val_backup_chan); + kfree(base->lookup_log_chans); + kfree(base->lookup_phy_chans); + kfree(base->phy_res); + kfree(base); + } + + return NULL; +} + +static void __init d40_hw_init(struct d40_base *base) +{ + + int i; + u32 prmseo[2] = {0, 0}; + u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF}; + u32 pcmis = 0; + u32 pcicr = 0; + struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg; + u32 reg_size = base->gen_dmac.init_reg_size; + + for (i = 0; i < reg_size; i++) + writel(dma_init_reg[i].val, + base->virtbase + dma_init_reg[i].reg); + + /* Configure all our dma channels to default settings */ + for (i = 0; i < base->num_phy_chans; i++) { + + activeo[i % 2] = activeo[i % 2] << 2; + + if (base->phy_res[base->num_phy_chans - i - 1].allocated_src + == D40_ALLOC_PHY) { + activeo[i % 2] |= 3; + continue; + } + + /* Enable interrupt # */ + pcmis = (pcmis << 1) | 1; + + /* Clear interrupt # */ + pcicr = (pcicr << 1) | 1; + + /* Set channel to physical mode */ + prmseo[i % 2] = prmseo[i % 2] << 2; + prmseo[i % 2] |= 1; + + } + + writel(prmseo[1], base->virtbase + D40_DREG_PRMSE); + writel(prmseo[0], base->virtbase + D40_DREG_PRMSO); + writel(activeo[1], base->virtbase + D40_DREG_ACTIVE); + writel(activeo[0], base->virtbase + D40_DREG_ACTIVO); + + /* Write which interrupt to enable */ + writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en); + + /* Write which interrupt to clear */ + writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear); + + /* These are __initdata and cannot be accessed after init */ + base->gen_dmac.init_reg = NULL; + base->gen_dmac.init_reg_size = 0; +} + +static int __init d40_lcla_allocate(struct d40_base *base) +{ + struct d40_lcla_pool *pool = &base->lcla_pool; + unsigned long *page_list; + int i, j; + int ret = 0; + + /* + * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned, + * To full fill this hardware requirement without wasting 256 kb + * we allocate pages until we get an aligned one. + */ + page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS, + GFP_KERNEL); + + if (!page_list) { + ret = -ENOMEM; + goto failure; + } + + /* Calculating how many pages that are required */ + base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE; + + for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) { + page_list[i] = __get_free_pages(GFP_KERNEL, + base->lcla_pool.pages); + if (!page_list[i]) { + + d40_err(base->dev, "Failed to allocate %d pages.\n", + base->lcla_pool.pages); + ret = -ENOMEM; + + for (j = 0; j < i; j++) + free_pages(page_list[j], base->lcla_pool.pages); + goto failure; + } + + if ((virt_to_phys((void *)page_list[i]) & + (LCLA_ALIGNMENT - 1)) == 0) + break; + } + + for (j = 0; j < i; j++) + free_pages(page_list[j], base->lcla_pool.pages); + + if (i < MAX_LCLA_ALLOC_ATTEMPTS) { + base->lcla_pool.base = (void *)page_list[i]; + } else { + /* + * After many attempts and no succees with finding the correct + * alignment, try with allocating a big buffer. + */ + dev_warn(base->dev, + "[%s] Failed to get %d pages @ 18 bit align.\n", + __func__, base->lcla_pool.pages); + base->lcla_pool.base_unaligned = kmalloc(SZ_1K * + base->num_phy_chans + + LCLA_ALIGNMENT, + GFP_KERNEL); + if (!base->lcla_pool.base_unaligned) { + ret = -ENOMEM; + goto failure; + } + + base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned, + LCLA_ALIGNMENT); + } + + pool->dma_addr = dma_map_single(base->dev, pool->base, + SZ_1K * base->num_phy_chans, + DMA_TO_DEVICE); + if (dma_mapping_error(base->dev, pool->dma_addr)) { + pool->dma_addr = 0; + ret = -ENOMEM; + goto failure; + } + + writel(virt_to_phys(base->lcla_pool.base), + base->virtbase + D40_DREG_LCLA); +failure: + kfree(page_list); + return ret; +} + +static int __init d40_of_probe(struct platform_device *pdev, + struct device_node *np) +{ + struct stedma40_platform_data *pdata; + int num_phy = 0, num_memcpy = 0, num_disabled = 0; + const __be32 *list; + + pdata = devm_kzalloc(&pdev->dev, + sizeof(struct stedma40_platform_data), + GFP_KERNEL); + if (!pdata) + return -ENOMEM; + + /* If absent this value will be obtained from h/w. */ + of_property_read_u32(np, "dma-channels", &num_phy); + if (num_phy > 0) + pdata->num_of_phy_chans = num_phy; + + list = of_get_property(np, "memcpy-channels", &num_memcpy); + num_memcpy /= sizeof(*list); + + if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) { + d40_err(&pdev->dev, + "Invalid number of memcpy channels specified (%d)\n", + num_memcpy); + return -EINVAL; + } + pdata->num_of_memcpy_chans = num_memcpy; + + of_property_read_u32_array(np, "memcpy-channels", + dma40_memcpy_channels, + num_memcpy); + + list = of_get_property(np, "disabled-channels", &num_disabled); + num_disabled /= sizeof(*list); + + if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) { + d40_err(&pdev->dev, + "Invalid number of disabled channels specified (%d)\n", + num_disabled); + return -EINVAL; + } + + of_property_read_u32_array(np, "disabled-channels", + pdata->disabled_channels, + num_disabled); + pdata->disabled_channels[num_disabled] = -1; + + pdev->dev.platform_data = pdata; + + return 0; +} + +static int __init d40_probe(struct platform_device *pdev) +{ + struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev); + struct device_node *np = pdev->dev.of_node; + int ret = -ENOENT; + struct d40_base *base = NULL; + struct resource *res = NULL; + int num_reserved_chans; + u32 val; + + if (!plat_data) { + if (np) { + if (d40_of_probe(pdev, np)) { + ret = -ENOMEM; + goto failure; + } + } else { + d40_err(&pdev->dev, "No pdata or Device Tree provided\n"); + goto failure; + } + } + + base = d40_hw_detect_init(pdev); + if (!base) + goto failure; + + num_reserved_chans = d40_phy_res_init(base); + + platform_set_drvdata(pdev, base); + + spin_lock_init(&base->interrupt_lock); + spin_lock_init(&base->execmd_lock); + + /* Get IO for logical channel parameter address */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa"); + if (!res) { + ret = -ENOENT; + d40_err(&pdev->dev, "No \"lcpa\" memory resource\n"); + goto failure; + } + base->lcpa_size = resource_size(res); + base->phy_lcpa = res->start; + + if (request_mem_region(res->start, resource_size(res), + D40_NAME " I/O lcpa") == NULL) { + ret = -EBUSY; + d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res); + goto failure; + } + + /* We make use of ESRAM memory for this. */ + val = readl(base->virtbase + D40_DREG_LCPA); + if (res->start != val && val != 0) { + dev_warn(&pdev->dev, + "[%s] Mismatch LCPA dma 0x%x, def %pa\n", + __func__, val, &res->start); + } else + writel(res->start, base->virtbase + D40_DREG_LCPA); + + base->lcpa_base = ioremap(res->start, resource_size(res)); + if (!base->lcpa_base) { + ret = -ENOMEM; + d40_err(&pdev->dev, "Failed to ioremap LCPA region\n"); + goto failure; + } + /* If lcla has to be located in ESRAM we don't need to allocate */ + if (base->plat_data->use_esram_lcla) { + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, + "lcla_esram"); + if (!res) { + ret = -ENOENT; + d40_err(&pdev->dev, + "No \"lcla_esram\" memory resource\n"); + goto failure; + } + base->lcla_pool.base = ioremap(res->start, + resource_size(res)); + if (!base->lcla_pool.base) { + ret = -ENOMEM; + d40_err(&pdev->dev, "Failed to ioremap LCLA region\n"); + goto failure; + } + writel(res->start, base->virtbase + D40_DREG_LCLA); + + } else { + ret = d40_lcla_allocate(base); + if (ret) { + d40_err(&pdev->dev, "Failed to allocate LCLA area\n"); + goto failure; + } + } + + spin_lock_init(&base->lcla_pool.lock); + + base->irq = platform_get_irq(pdev, 0); + + ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base); + if (ret) { + d40_err(&pdev->dev, "No IRQ defined\n"); + goto failure; + } + + if (base->plat_data->use_esram_lcla) { + + base->lcpa_regulator = regulator_get(base->dev, "lcla_esram"); + if (IS_ERR(base->lcpa_regulator)) { + d40_err(&pdev->dev, "Failed to get lcpa_regulator\n"); + ret = PTR_ERR(base->lcpa_regulator); + base->lcpa_regulator = NULL; + goto failure; + } + + ret = regulator_enable(base->lcpa_regulator); + if (ret) { + d40_err(&pdev->dev, + "Failed to enable lcpa_regulator\n"); + regulator_put(base->lcpa_regulator); + base->lcpa_regulator = NULL; + goto failure; + } + } + + writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC); + + pm_runtime_irq_safe(base->dev); + pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY); + pm_runtime_use_autosuspend(base->dev); + pm_runtime_mark_last_busy(base->dev); + pm_runtime_set_active(base->dev); + pm_runtime_enable(base->dev); + + ret = d40_dmaengine_init(base, num_reserved_chans); + if (ret) + goto failure; + + base->dev->dma_parms = &base->dma_parms; + ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE); + if (ret) { + d40_err(&pdev->dev, "Failed to set dma max seg size\n"); + goto failure; + } + + d40_hw_init(base); + + if (np) { + ret = of_dma_controller_register(np, d40_xlate, NULL); + if (ret) + dev_err(&pdev->dev, + "could not register of_dma_controller\n"); + } + + dev_info(base->dev, "initialized\n"); + return 0; + +failure: + if (base) { + if (base->desc_slab) + kmem_cache_destroy(base->desc_slab); + if (base->virtbase) + iounmap(base->virtbase); + + if (base->lcla_pool.base && base->plat_data->use_esram_lcla) { + iounmap(base->lcla_pool.base); + base->lcla_pool.base = NULL; + } + + if (base->lcla_pool.dma_addr) + dma_unmap_single(base->dev, base->lcla_pool.dma_addr, + SZ_1K * base->num_phy_chans, + DMA_TO_DEVICE); + + if (!base->lcla_pool.base_unaligned && base->lcla_pool.base) + free_pages((unsigned long)base->lcla_pool.base, + base->lcla_pool.pages); + + kfree(base->lcla_pool.base_unaligned); + + if (base->phy_lcpa) + release_mem_region(base->phy_lcpa, + base->lcpa_size); + if (base->phy_start) + release_mem_region(base->phy_start, + base->phy_size); + if (base->clk) { + clk_disable_unprepare(base->clk); + clk_put(base->clk); + } + + if (base->lcpa_regulator) { + regulator_disable(base->lcpa_regulator); + regulator_put(base->lcpa_regulator); + } + + kfree(base->lcla_pool.alloc_map); + kfree(base->lookup_log_chans); + kfree(base->lookup_phy_chans); + kfree(base->phy_res); + kfree(base); + } + + d40_err(&pdev->dev, "probe failed\n"); + return ret; +} + +static const struct of_device_id d40_match[] = { + { .compatible = "stericsson,dma40", }, + {} +}; + +static struct platform_driver d40_driver = { + .driver = { + .name = D40_NAME, + .pm = &dma40_pm_ops, + .of_match_table = d40_match, + }, +}; + +static int __init stedma40_init(void) +{ + return platform_driver_probe(&d40_driver, d40_probe); +} +subsys_initcall(stedma40_init); -- cgit v1.2.3