From 57f0f512b273f60d52568b8c6b77e17f5636edc0 Mon Sep 17 00:00:00 2001 From: André Fabian Silva Delgado Date: Wed, 5 Aug 2015 17:04:01 -0300 Subject: Initial import --- drivers/mtd/nftlmount.c | 790 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 790 insertions(+) create mode 100644 drivers/mtd/nftlmount.c (limited to 'drivers/mtd/nftlmount.c') diff --git a/drivers/mtd/nftlmount.c b/drivers/mtd/nftlmount.c new file mode 100644 index 000000000..a5dfbfbeb --- /dev/null +++ b/drivers/mtd/nftlmount.c @@ -0,0 +1,790 @@ +/* + * NFTL mount code with extensive checks + * + * Author: Fabrice Bellard (fabrice.bellard@netgem.com) + * Copyright © 2000 Netgem S.A. + * Copyright © 1999-2010 David Woodhouse + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#include +#include +#include +#include +#include +#include +#include + +#define SECTORSIZE 512 + +/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the + * various device information of the NFTL partition and Bad Unit Table. Update + * the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[] + * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c + */ +static int find_boot_record(struct NFTLrecord *nftl) +{ + struct nftl_uci1 h1; + unsigned int block, boot_record_count = 0; + size_t retlen; + u8 buf[SECTORSIZE]; + struct NFTLMediaHeader *mh = &nftl->MediaHdr; + struct mtd_info *mtd = nftl->mbd.mtd; + unsigned int i; + + /* Assume logical EraseSize == physical erasesize for starting the scan. + We'll sort it out later if we find a MediaHeader which says otherwise */ + /* Actually, we won't. The new DiskOnChip driver has already scanned + the MediaHeader and adjusted the virtual erasesize it presents in + the mtd device accordingly. We could even get rid of + nftl->EraseSize if there were any point in doing so. */ + nftl->EraseSize = nftl->mbd.mtd->erasesize; + nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize; + + nftl->MediaUnit = BLOCK_NIL; + nftl->SpareMediaUnit = BLOCK_NIL; + + /* search for a valid boot record */ + for (block = 0; block < nftl->nb_blocks; block++) { + int ret; + + /* Check for ANAND header first. Then can whinge if it's found but later + checks fail */ + ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE, + &retlen, buf); + /* We ignore ret in case the ECC of the MediaHeader is invalid + (which is apparently acceptable) */ + if (retlen != SECTORSIZE) { + static int warncount = 5; + + if (warncount) { + printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n", + block * nftl->EraseSize, nftl->mbd.mtd->index, ret); + if (!--warncount) + printk(KERN_WARNING "Further failures for this block will not be printed\n"); + } + continue; + } + + if (retlen < 6 || memcmp(buf, "ANAND", 6)) { + /* ANAND\0 not found. Continue */ +#if 0 + printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n", + block * nftl->EraseSize, nftl->mbd.mtd->index); +#endif + continue; + } + + /* To be safer with BIOS, also use erase mark as discriminant */ + ret = nftl_read_oob(mtd, block * nftl->EraseSize + + SECTORSIZE + 8, 8, &retlen, + (char *)&h1); + if (ret < 0) { + printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n", + block * nftl->EraseSize, nftl->mbd.mtd->index, ret); + continue; + } + +#if 0 /* Some people seem to have devices without ECC or erase marks + on the Media Header blocks. There are enough other sanity + checks in here that we can probably do without it. + */ + if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) { + printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n", + block * nftl->EraseSize, nftl->mbd.mtd->index, + le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1)); + continue; + } + + /* Finally reread to check ECC */ + ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE, + &retlen, buf); + if (ret < 0) { + printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n", + block * nftl->EraseSize, nftl->mbd.mtd->index, ret); + continue; + } + + /* Paranoia. Check the ANAND header is still there after the ECC read */ + if (memcmp(buf, "ANAND", 6)) { + printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n", + block * nftl->EraseSize, nftl->mbd.mtd->index); + printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n", + buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); + continue; + } +#endif + /* OK, we like it. */ + + if (boot_record_count) { + /* We've already processed one. So we just check if + this one is the same as the first one we found */ + if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { + printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n", + nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); + /* if (debug) Print both side by side */ + if (boot_record_count < 2) { + /* We haven't yet seen two real ones */ + return -1; + } + continue; + } + if (boot_record_count == 1) + nftl->SpareMediaUnit = block; + + /* Mark this boot record (NFTL MediaHeader) block as reserved */ + nftl->ReplUnitTable[block] = BLOCK_RESERVED; + + + boot_record_count++; + continue; + } + + /* This is the first we've seen. Copy the media header structure into place */ + memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); + + /* Do some sanity checks on it */ +#if 0 +The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual +erasesize based on UnitSizeFactor. So the erasesize we read from the mtd +device is already correct. + if (mh->UnitSizeFactor == 0) { + printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n"); + } else if (mh->UnitSizeFactor < 0xfc) { + printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n", + mh->UnitSizeFactor); + return -1; + } else if (mh->UnitSizeFactor != 0xff) { + printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n", + mh->UnitSizeFactor); + nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor); + nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize; + } +#endif + nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); + if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { + printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); + printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", + nftl->nb_boot_blocks, nftl->nb_blocks); + return -1; + } + + nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; + if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { + printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); + printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", + nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks); + return -1; + } + + nftl->mbd.size = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); + + /* If we're not using the last sectors in the device for some reason, + reduce nb_blocks accordingly so we forget they're there */ + nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); + + /* XXX: will be suppressed */ + nftl->lastEUN = nftl->nb_blocks - 1; + + /* memory alloc */ + nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL); + if (!nftl->EUNtable) { + printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n"); + return -ENOMEM; + } + + nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL); + if (!nftl->ReplUnitTable) { + kfree(nftl->EUNtable); + printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n"); + return -ENOMEM; + } + + /* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */ + for (i = 0; i < nftl->nb_boot_blocks; i++) + nftl->ReplUnitTable[i] = BLOCK_RESERVED; + /* mark all remaining blocks as potentially containing data */ + for (; i < nftl->nb_blocks; i++) { + nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED; + } + + /* Mark this boot record (NFTL MediaHeader) block as reserved */ + nftl->ReplUnitTable[block] = BLOCK_RESERVED; + + /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ + for (i = 0; i < nftl->nb_blocks; i++) { +#if 0 +The new DiskOnChip driver already scanned the bad block table. Just query it. + if ((i & (SECTORSIZE - 1)) == 0) { + /* read one sector for every SECTORSIZE of blocks */ + ret = mtd->read(nftl->mbd.mtd, + block * nftl->EraseSize + i + + SECTORSIZE, SECTORSIZE, + &retlen, buf); + if (ret < 0) { + printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n", + ret); + kfree(nftl->ReplUnitTable); + kfree(nftl->EUNtable); + return -1; + } + } + /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ + if (buf[i & (SECTORSIZE - 1)] != 0xff) + nftl->ReplUnitTable[i] = BLOCK_RESERVED; +#endif + if (mtd_block_isbad(nftl->mbd.mtd, + i * nftl->EraseSize)) + nftl->ReplUnitTable[i] = BLOCK_RESERVED; + } + + nftl->MediaUnit = block; + boot_record_count++; + + } /* foreach (block) */ + + return boot_record_count?0:-1; +} + +static int memcmpb(void *a, int c, int n) +{ + int i; + for (i = 0; i < n; i++) { + if (c != ((unsigned char *)a)[i]) + return 1; + } + return 0; +} + +/* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */ +static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len, + int check_oob) +{ + u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize]; + struct mtd_info *mtd = nftl->mbd.mtd; + size_t retlen; + int i; + + for (i = 0; i < len; i += SECTORSIZE) { + if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf)) + return -1; + if (memcmpb(buf, 0xff, SECTORSIZE) != 0) + return -1; + + if (check_oob) { + if(nftl_read_oob(mtd, address, mtd->oobsize, + &retlen, &buf[SECTORSIZE]) < 0) + return -1; + if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0) + return -1; + } + address += SECTORSIZE; + } + + return 0; +} + +/* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and + * Update NFTL metadata. Each erase operation is checked with check_free_sectors + * + * Return: 0 when succeed, -1 on error. + * + * ToDo: 1. Is it necessary to check_free_sector after erasing ?? + */ +int NFTL_formatblock(struct NFTLrecord *nftl, int block) +{ + size_t retlen; + unsigned int nb_erases, erase_mark; + struct nftl_uci1 uci; + struct erase_info *instr = &nftl->instr; + struct mtd_info *mtd = nftl->mbd.mtd; + + /* Read the Unit Control Information #1 for Wear-Leveling */ + if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, + 8, &retlen, (char *)&uci) < 0) + goto default_uci1; + + erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1)); + if (erase_mark != ERASE_MARK) { + default_uci1: + uci.EraseMark = cpu_to_le16(ERASE_MARK); + uci.EraseMark1 = cpu_to_le16(ERASE_MARK); + uci.WearInfo = cpu_to_le32(0); + } + + memset(instr, 0, sizeof(struct erase_info)); + + /* XXX: use async erase interface, XXX: test return code */ + instr->mtd = nftl->mbd.mtd; + instr->addr = block * nftl->EraseSize; + instr->len = nftl->EraseSize; + mtd_erase(mtd, instr); + + if (instr->state == MTD_ERASE_FAILED) { + printk("Error while formatting block %d\n", block); + goto fail; + } + + /* increase and write Wear-Leveling info */ + nb_erases = le32_to_cpu(uci.WearInfo); + nb_erases++; + + /* wrap (almost impossible with current flash) or free block */ + if (nb_erases == 0) + nb_erases = 1; + + /* check the "freeness" of Erase Unit before updating metadata + * FixMe: is this check really necessary ? since we have check the + * return code after the erase operation. */ + if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0) + goto fail; + + uci.WearInfo = le32_to_cpu(nb_erases); + if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE + + 8, 8, &retlen, (char *)&uci) < 0) + goto fail; + return 0; +fail: + /* could not format, update the bad block table (caller is responsible + for setting the ReplUnitTable to BLOCK_RESERVED on failure) */ + mtd_block_markbad(nftl->mbd.mtd, instr->addr); + return -1; +} + +/* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct. + * Mark as 'IGNORE' each incorrect sector. This check is only done if the chain + * was being folded when NFTL was interrupted. + * + * The check_free_sectors in this function is necessary. There is a possible + * situation that after writing the Data area, the Block Control Information is + * not updated according (due to power failure or something) which leaves the block + * in an inconsistent state. So we have to check if a block is really FREE in this + * case. */ +static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block) +{ + struct mtd_info *mtd = nftl->mbd.mtd; + unsigned int block, i, status; + struct nftl_bci bci; + int sectors_per_block; + size_t retlen; + + sectors_per_block = nftl->EraseSize / SECTORSIZE; + block = first_block; + for (;;) { + for (i = 0; i < sectors_per_block; i++) { + if (nftl_read_oob(mtd, + block * nftl->EraseSize + i * SECTORSIZE, + 8, &retlen, (char *)&bci) < 0) + status = SECTOR_IGNORE; + else + status = bci.Status | bci.Status1; + + switch(status) { + case SECTOR_FREE: + /* verify that the sector is really free. If not, mark + as ignore */ + if (memcmpb(&bci, 0xff, 8) != 0 || + check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE, + SECTORSIZE, 0) != 0) { + printk("Incorrect free sector %d in block %d: " + "marking it as ignored\n", + i, block); + + /* sector not free actually : mark it as SECTOR_IGNORE */ + bci.Status = SECTOR_IGNORE; + bci.Status1 = SECTOR_IGNORE; + nftl_write_oob(mtd, block * + nftl->EraseSize + + i * SECTORSIZE, 8, + &retlen, (char *)&bci); + } + break; + default: + break; + } + } + + /* proceed to next Erase Unit on the chain */ + block = nftl->ReplUnitTable[block]; + if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) + printk("incorrect ReplUnitTable[] : %d\n", block); + if (block == BLOCK_NIL || block >= nftl->nb_blocks) + break; + } +} + +/* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */ +static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block) +{ + unsigned int length = 0, block = first_block; + + for (;;) { + length++; + /* avoid infinite loops, although this is guaranteed not to + happen because of the previous checks */ + if (length >= nftl->nb_blocks) { + printk("nftl: length too long %d !\n", length); + break; + } + + block = nftl->ReplUnitTable[block]; + if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) + printk("incorrect ReplUnitTable[] : %d\n", block); + if (block == BLOCK_NIL || block >= nftl->nb_blocks) + break; + } + return length; +} + +/* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a + * Virtual Unit Chain, i.e. all the units are disconnected. + * + * It is not strictly correct to begin from the first block of the chain because + * if we stop the code, we may see again a valid chain if there was a first_block + * flag in a block inside it. But is it really a problem ? + * + * FixMe: Figure out what the last statement means. What if power failure when we are + * in the for (;;) loop formatting blocks ?? + */ +static void format_chain(struct NFTLrecord *nftl, unsigned int first_block) +{ + unsigned int block = first_block, block1; + + printk("Formatting chain at block %d\n", first_block); + + for (;;) { + block1 = nftl->ReplUnitTable[block]; + + printk("Formatting block %d\n", block); + if (NFTL_formatblock(nftl, block) < 0) { + /* cannot format !!!! Mark it as Bad Unit */ + nftl->ReplUnitTable[block] = BLOCK_RESERVED; + } else { + nftl->ReplUnitTable[block] = BLOCK_FREE; + } + + /* goto next block on the chain */ + block = block1; + + if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) + printk("incorrect ReplUnitTable[] : %d\n", block); + if (block == BLOCK_NIL || block >= nftl->nb_blocks) + break; + } +} + +/* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or + * totally free (only 0xff). + * + * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the + * following criteria: + * 1. */ +static int check_and_mark_free_block(struct NFTLrecord *nftl, int block) +{ + struct mtd_info *mtd = nftl->mbd.mtd; + struct nftl_uci1 h1; + unsigned int erase_mark; + size_t retlen; + + /* check erase mark. */ + if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, + &retlen, (char *)&h1) < 0) + return -1; + + erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); + if (erase_mark != ERASE_MARK) { + /* if no erase mark, the block must be totally free. This is + possible in two cases : empty filesystem or interrupted erase (very unlikely) */ + if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0) + return -1; + + /* free block : write erase mark */ + h1.EraseMark = cpu_to_le16(ERASE_MARK); + h1.EraseMark1 = cpu_to_le16(ERASE_MARK); + h1.WearInfo = cpu_to_le32(0); + if (nftl_write_oob(mtd, + block * nftl->EraseSize + SECTORSIZE + 8, 8, + &retlen, (char *)&h1) < 0) + return -1; + } else { +#if 0 + /* if erase mark present, need to skip it when doing check */ + for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) { + /* check free sector */ + if (check_free_sectors (nftl, block * nftl->EraseSize + i, + SECTORSIZE, 0) != 0) + return -1; + + if (nftl_read_oob(mtd, block * nftl->EraseSize + i, + 16, &retlen, buf) < 0) + return -1; + if (i == SECTORSIZE) { + /* skip erase mark */ + if (memcmpb(buf, 0xff, 8)) + return -1; + } else { + if (memcmpb(buf, 0xff, 16)) + return -1; + } + } +#endif + } + + return 0; +} + +/* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS + * to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2 + * is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted + * for some reason. A clean up/check of the VUC is necessary in this case. + * + * WARNING: return 0 if read error + */ +static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block) +{ + struct mtd_info *mtd = nftl->mbd.mtd; + struct nftl_uci2 uci; + size_t retlen; + + if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8, + 8, &retlen, (char *)&uci) < 0) + return 0; + + return le16_to_cpu((uci.FoldMark | uci.FoldMark1)); +} + +int NFTL_mount(struct NFTLrecord *s) +{ + int i; + unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark; + unsigned int block, first_block, is_first_block; + int chain_length, do_format_chain; + struct nftl_uci0 h0; + struct nftl_uci1 h1; + struct mtd_info *mtd = s->mbd.mtd; + size_t retlen; + + /* search for NFTL MediaHeader and Spare NFTL Media Header */ + if (find_boot_record(s) < 0) { + printk("Could not find valid boot record\n"); + return -1; + } + + /* init the logical to physical table */ + for (i = 0; i < s->nb_blocks; i++) { + s->EUNtable[i] = BLOCK_NIL; + } + + /* first pass : explore each block chain */ + first_logical_block = 0; + for (first_block = 0; first_block < s->nb_blocks; first_block++) { + /* if the block was not already explored, we can look at it */ + if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) { + block = first_block; + chain_length = 0; + do_format_chain = 0; + + for (;;) { + /* read the block header. If error, we format the chain */ + if (nftl_read_oob(mtd, + block * s->EraseSize + 8, 8, + &retlen, (char *)&h0) < 0 || + nftl_read_oob(mtd, + block * s->EraseSize + + SECTORSIZE + 8, 8, + &retlen, (char *)&h1) < 0) { + s->ReplUnitTable[block] = BLOCK_NIL; + do_format_chain = 1; + break; + } + + logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum)); + rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum)); + nb_erases = le32_to_cpu (h1.WearInfo); + erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); + + is_first_block = !(logical_block >> 15); + logical_block = logical_block & 0x7fff; + + /* invalid/free block test */ + if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) { + if (chain_length == 0) { + /* if not currently in a chain, we can handle it safely */ + if (check_and_mark_free_block(s, block) < 0) { + /* not really free: format it */ + printk("Formatting block %d\n", block); + if (NFTL_formatblock(s, block) < 0) { + /* could not format: reserve the block */ + s->ReplUnitTable[block] = BLOCK_RESERVED; + } else { + s->ReplUnitTable[block] = BLOCK_FREE; + } + } else { + /* free block: mark it */ + s->ReplUnitTable[block] = BLOCK_FREE; + } + /* directly examine the next block. */ + goto examine_ReplUnitTable; + } else { + /* the block was in a chain : this is bad. We + must format all the chain */ + printk("Block %d: free but referenced in chain %d\n", + block, first_block); + s->ReplUnitTable[block] = BLOCK_NIL; + do_format_chain = 1; + break; + } + } + + /* we accept only first blocks here */ + if (chain_length == 0) { + /* this block is not the first block in chain : + ignore it, it will be included in a chain + later, or marked as not explored */ + if (!is_first_block) + goto examine_ReplUnitTable; + first_logical_block = logical_block; + } else { + if (logical_block != first_logical_block) { + printk("Block %d: incorrect logical block: %d expected: %d\n", + block, logical_block, first_logical_block); + /* the chain is incorrect : we must format it, + but we need to read it completely */ + do_format_chain = 1; + } + if (is_first_block) { + /* we accept that a block is marked as first + block while being last block in a chain + only if the chain is being folded */ + if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS || + rep_block != 0xffff) { + printk("Block %d: incorrectly marked as first block in chain\n", + block); + /* the chain is incorrect : we must format it, + but we need to read it completely */ + do_format_chain = 1; + } else { + printk("Block %d: folding in progress - ignoring first block flag\n", + block); + } + } + } + chain_length++; + if (rep_block == 0xffff) { + /* no more blocks after */ + s->ReplUnitTable[block] = BLOCK_NIL; + break; + } else if (rep_block >= s->nb_blocks) { + printk("Block %d: referencing invalid block %d\n", + block, rep_block); + do_format_chain = 1; + s->ReplUnitTable[block] = BLOCK_NIL; + break; + } else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) { + /* same problem as previous 'is_first_block' test: + we accept that the last block of a chain has + the first_block flag set if folding is in + progress. We handle here the case where the + last block appeared first */ + if (s->ReplUnitTable[rep_block] == BLOCK_NIL && + s->EUNtable[first_logical_block] == rep_block && + get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) { + /* EUNtable[] will be set after */ + printk("Block %d: folding in progress - ignoring first block flag\n", + rep_block); + s->ReplUnitTable[block] = rep_block; + s->EUNtable[first_logical_block] = BLOCK_NIL; + } else { + printk("Block %d: referencing block %d already in another chain\n", + block, rep_block); + /* XXX: should handle correctly fold in progress chains */ + do_format_chain = 1; + s->ReplUnitTable[block] = BLOCK_NIL; + } + break; + } else { + /* this is OK */ + s->ReplUnitTable[block] = rep_block; + block = rep_block; + } + } + + /* the chain was completely explored. Now we can decide + what to do with it */ + if (do_format_chain) { + /* invalid chain : format it */ + format_chain(s, first_block); + } else { + unsigned int first_block1, chain_to_format, chain_length1; + int fold_mark; + + /* valid chain : get foldmark */ + fold_mark = get_fold_mark(s, first_block); + if (fold_mark == 0) { + /* cannot get foldmark : format the chain */ + printk("Could read foldmark at block %d\n", first_block); + format_chain(s, first_block); + } else { + if (fold_mark == FOLD_MARK_IN_PROGRESS) + check_sectors_in_chain(s, first_block); + + /* now handle the case where we find two chains at the + same virtual address : we select the longer one, + because the shorter one is the one which was being + folded if the folding was not done in place */ + first_block1 = s->EUNtable[first_logical_block]; + if (first_block1 != BLOCK_NIL) { + /* XXX: what to do if same length ? */ + chain_length1 = calc_chain_length(s, first_block1); + printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n", + first_block1, chain_length1, first_block, chain_length); + + if (chain_length >= chain_length1) { + chain_to_format = first_block1; + s->EUNtable[first_logical_block] = first_block; + } else { + chain_to_format = first_block; + } + format_chain(s, chain_to_format); + } else { + s->EUNtable[first_logical_block] = first_block; + } + } + } + } + examine_ReplUnitTable:; + } + + /* second pass to format unreferenced blocks and init free block count */ + s->numfreeEUNs = 0; + s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN); + + for (block = 0; block < s->nb_blocks; block++) { + if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) { + printk("Unreferenced block %d, formatting it\n", block); + if (NFTL_formatblock(s, block) < 0) + s->ReplUnitTable[block] = BLOCK_RESERVED; + else + s->ReplUnitTable[block] = BLOCK_FREE; + } + if (s->ReplUnitTable[block] == BLOCK_FREE) { + s->numfreeEUNs++; + s->LastFreeEUN = block; + } + } + + return 0; +} -- cgit v1.2.3-54-g00ecf