From 57f0f512b273f60d52568b8c6b77e17f5636edc0 Mon Sep 17 00:00:00 2001 From: AndrĂ© Fabian Silva Delgado Date: Wed, 5 Aug 2015 17:04:01 -0300 Subject: Initial import --- drivers/regulator/core.c | 4178 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 4178 insertions(+) create mode 100644 drivers/regulator/core.c (limited to 'drivers/regulator/core.c') diff --git a/drivers/regulator/core.c b/drivers/regulator/core.c new file mode 100644 index 000000000..8a28116b5 --- /dev/null +++ b/drivers/regulator/core.c @@ -0,0 +1,4178 @@ +/* + * core.c -- Voltage/Current Regulator framework. + * + * Copyright 2007, 2008 Wolfson Microelectronics PLC. + * Copyright 2008 SlimLogic Ltd. + * + * Author: Liam Girdwood + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define CREATE_TRACE_POINTS +#include + +#include "dummy.h" +#include "internal.h" + +#define rdev_crit(rdev, fmt, ...) \ + pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) +#define rdev_err(rdev, fmt, ...) \ + pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) +#define rdev_warn(rdev, fmt, ...) \ + pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) +#define rdev_info(rdev, fmt, ...) \ + pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) +#define rdev_dbg(rdev, fmt, ...) \ + pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__) + +static DEFINE_MUTEX(regulator_list_mutex); +static LIST_HEAD(regulator_list); +static LIST_HEAD(regulator_map_list); +static LIST_HEAD(regulator_ena_gpio_list); +static LIST_HEAD(regulator_supply_alias_list); +static bool has_full_constraints; + +static struct dentry *debugfs_root; + +/* + * struct regulator_map + * + * Used to provide symbolic supply names to devices. + */ +struct regulator_map { + struct list_head list; + const char *dev_name; /* The dev_name() for the consumer */ + const char *supply; + struct regulator_dev *regulator; +}; + +/* + * struct regulator_enable_gpio + * + * Management for shared enable GPIO pin + */ +struct regulator_enable_gpio { + struct list_head list; + struct gpio_desc *gpiod; + u32 enable_count; /* a number of enabled shared GPIO */ + u32 request_count; /* a number of requested shared GPIO */ + unsigned int ena_gpio_invert:1; +}; + +/* + * struct regulator_supply_alias + * + * Used to map lookups for a supply onto an alternative device. + */ +struct regulator_supply_alias { + struct list_head list; + struct device *src_dev; + const char *src_supply; + struct device *alias_dev; + const char *alias_supply; +}; + +static int _regulator_is_enabled(struct regulator_dev *rdev); +static int _regulator_disable(struct regulator_dev *rdev); +static int _regulator_get_voltage(struct regulator_dev *rdev); +static int _regulator_get_current_limit(struct regulator_dev *rdev); +static unsigned int _regulator_get_mode(struct regulator_dev *rdev); +static int _notifier_call_chain(struct regulator_dev *rdev, + unsigned long event, void *data); +static int _regulator_do_set_voltage(struct regulator_dev *rdev, + int min_uV, int max_uV); +static struct regulator *create_regulator(struct regulator_dev *rdev, + struct device *dev, + const char *supply_name); + +static const char *rdev_get_name(struct regulator_dev *rdev) +{ + if (rdev->constraints && rdev->constraints->name) + return rdev->constraints->name; + else if (rdev->desc->name) + return rdev->desc->name; + else + return ""; +} + +static bool have_full_constraints(void) +{ + return has_full_constraints || of_have_populated_dt(); +} + +/** + * of_get_regulator - get a regulator device node based on supply name + * @dev: Device pointer for the consumer (of regulator) device + * @supply: regulator supply name + * + * Extract the regulator device node corresponding to the supply name. + * returns the device node corresponding to the regulator if found, else + * returns NULL. + */ +static struct device_node *of_get_regulator(struct device *dev, const char *supply) +{ + struct device_node *regnode = NULL; + char prop_name[32]; /* 32 is max size of property name */ + + dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); + + snprintf(prop_name, 32, "%s-supply", supply); + regnode = of_parse_phandle(dev->of_node, prop_name, 0); + + if (!regnode) { + dev_dbg(dev, "Looking up %s property in node %s failed", + prop_name, dev->of_node->full_name); + return NULL; + } + return regnode; +} + +static int _regulator_can_change_status(struct regulator_dev *rdev) +{ + if (!rdev->constraints) + return 0; + + if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS) + return 1; + else + return 0; +} + +/* Platform voltage constraint check */ +static int regulator_check_voltage(struct regulator_dev *rdev, + int *min_uV, int *max_uV) +{ + BUG_ON(*min_uV > *max_uV); + + if (!rdev->constraints) { + rdev_err(rdev, "no constraints\n"); + return -ENODEV; + } + if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { + rdev_err(rdev, "operation not allowed\n"); + return -EPERM; + } + + if (*max_uV > rdev->constraints->max_uV) + *max_uV = rdev->constraints->max_uV; + if (*min_uV < rdev->constraints->min_uV) + *min_uV = rdev->constraints->min_uV; + + if (*min_uV > *max_uV) { + rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", + *min_uV, *max_uV); + return -EINVAL; + } + + return 0; +} + +/* Make sure we select a voltage that suits the needs of all + * regulator consumers + */ +static int regulator_check_consumers(struct regulator_dev *rdev, + int *min_uV, int *max_uV) +{ + struct regulator *regulator; + + list_for_each_entry(regulator, &rdev->consumer_list, list) { + /* + * Assume consumers that didn't say anything are OK + * with anything in the constraint range. + */ + if (!regulator->min_uV && !regulator->max_uV) + continue; + + if (*max_uV > regulator->max_uV) + *max_uV = regulator->max_uV; + if (*min_uV < regulator->min_uV) + *min_uV = regulator->min_uV; + } + + if (*min_uV > *max_uV) { + rdev_err(rdev, "Restricting voltage, %u-%uuV\n", + *min_uV, *max_uV); + return -EINVAL; + } + + return 0; +} + +/* current constraint check */ +static int regulator_check_current_limit(struct regulator_dev *rdev, + int *min_uA, int *max_uA) +{ + BUG_ON(*min_uA > *max_uA); + + if (!rdev->constraints) { + rdev_err(rdev, "no constraints\n"); + return -ENODEV; + } + if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) { + rdev_err(rdev, "operation not allowed\n"); + return -EPERM; + } + + if (*max_uA > rdev->constraints->max_uA) + *max_uA = rdev->constraints->max_uA; + if (*min_uA < rdev->constraints->min_uA) + *min_uA = rdev->constraints->min_uA; + + if (*min_uA > *max_uA) { + rdev_err(rdev, "unsupportable current range: %d-%duA\n", + *min_uA, *max_uA); + return -EINVAL; + } + + return 0; +} + +/* operating mode constraint check */ +static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode) +{ + switch (*mode) { + case REGULATOR_MODE_FAST: + case REGULATOR_MODE_NORMAL: + case REGULATOR_MODE_IDLE: + case REGULATOR_MODE_STANDBY: + break; + default: + rdev_err(rdev, "invalid mode %x specified\n", *mode); + return -EINVAL; + } + + if (!rdev->constraints) { + rdev_err(rdev, "no constraints\n"); + return -ENODEV; + } + if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) { + rdev_err(rdev, "operation not allowed\n"); + return -EPERM; + } + + /* The modes are bitmasks, the most power hungry modes having + * the lowest values. If the requested mode isn't supported + * try higher modes. */ + while (*mode) { + if (rdev->constraints->valid_modes_mask & *mode) + return 0; + *mode /= 2; + } + + return -EINVAL; +} + +/* dynamic regulator mode switching constraint check */ +static int regulator_check_drms(struct regulator_dev *rdev) +{ + if (!rdev->constraints) { + rdev_err(rdev, "no constraints\n"); + return -ENODEV; + } + if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) { + rdev_err(rdev, "operation not allowed\n"); + return -EPERM; + } + return 0; +} + +static ssize_t regulator_uV_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + ssize_t ret; + + mutex_lock(&rdev->mutex); + ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev)); + mutex_unlock(&rdev->mutex); + + return ret; +} +static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL); + +static ssize_t regulator_uA_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); +} +static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL); + +static ssize_t name_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return sprintf(buf, "%s\n", rdev_get_name(rdev)); +} +static DEVICE_ATTR_RO(name); + +static ssize_t regulator_print_opmode(char *buf, int mode) +{ + switch (mode) { + case REGULATOR_MODE_FAST: + return sprintf(buf, "fast\n"); + case REGULATOR_MODE_NORMAL: + return sprintf(buf, "normal\n"); + case REGULATOR_MODE_IDLE: + return sprintf(buf, "idle\n"); + case REGULATOR_MODE_STANDBY: + return sprintf(buf, "standby\n"); + } + return sprintf(buf, "unknown\n"); +} + +static ssize_t regulator_opmode_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return regulator_print_opmode(buf, _regulator_get_mode(rdev)); +} +static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL); + +static ssize_t regulator_print_state(char *buf, int state) +{ + if (state > 0) + return sprintf(buf, "enabled\n"); + else if (state == 0) + return sprintf(buf, "disabled\n"); + else + return sprintf(buf, "unknown\n"); +} + +static ssize_t regulator_state_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + ssize_t ret; + + mutex_lock(&rdev->mutex); + ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); + mutex_unlock(&rdev->mutex); + + return ret; +} +static DEVICE_ATTR(state, 0444, regulator_state_show, NULL); + +static ssize_t regulator_status_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + int status; + char *label; + + status = rdev->desc->ops->get_status(rdev); + if (status < 0) + return status; + + switch (status) { + case REGULATOR_STATUS_OFF: + label = "off"; + break; + case REGULATOR_STATUS_ON: + label = "on"; + break; + case REGULATOR_STATUS_ERROR: + label = "error"; + break; + case REGULATOR_STATUS_FAST: + label = "fast"; + break; + case REGULATOR_STATUS_NORMAL: + label = "normal"; + break; + case REGULATOR_STATUS_IDLE: + label = "idle"; + break; + case REGULATOR_STATUS_STANDBY: + label = "standby"; + break; + case REGULATOR_STATUS_BYPASS: + label = "bypass"; + break; + case REGULATOR_STATUS_UNDEFINED: + label = "undefined"; + break; + default: + return -ERANGE; + } + + return sprintf(buf, "%s\n", label); +} +static DEVICE_ATTR(status, 0444, regulator_status_show, NULL); + +static ssize_t regulator_min_uA_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + if (!rdev->constraints) + return sprintf(buf, "constraint not defined\n"); + + return sprintf(buf, "%d\n", rdev->constraints->min_uA); +} +static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL); + +static ssize_t regulator_max_uA_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + if (!rdev->constraints) + return sprintf(buf, "constraint not defined\n"); + + return sprintf(buf, "%d\n", rdev->constraints->max_uA); +} +static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL); + +static ssize_t regulator_min_uV_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + if (!rdev->constraints) + return sprintf(buf, "constraint not defined\n"); + + return sprintf(buf, "%d\n", rdev->constraints->min_uV); +} +static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL); + +static ssize_t regulator_max_uV_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + if (!rdev->constraints) + return sprintf(buf, "constraint not defined\n"); + + return sprintf(buf, "%d\n", rdev->constraints->max_uV); +} +static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL); + +static ssize_t regulator_total_uA_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + struct regulator *regulator; + int uA = 0; + + mutex_lock(&rdev->mutex); + list_for_each_entry(regulator, &rdev->consumer_list, list) + uA += regulator->uA_load; + mutex_unlock(&rdev->mutex); + return sprintf(buf, "%d\n", uA); +} +static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL); + +static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + return sprintf(buf, "%d\n", rdev->use_count); +} +static DEVICE_ATTR_RO(num_users); + +static ssize_t type_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + switch (rdev->desc->type) { + case REGULATOR_VOLTAGE: + return sprintf(buf, "voltage\n"); + case REGULATOR_CURRENT: + return sprintf(buf, "current\n"); + } + return sprintf(buf, "unknown\n"); +} +static DEVICE_ATTR_RO(type); + +static ssize_t regulator_suspend_mem_uV_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); +} +static DEVICE_ATTR(suspend_mem_microvolts, 0444, + regulator_suspend_mem_uV_show, NULL); + +static ssize_t regulator_suspend_disk_uV_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); +} +static DEVICE_ATTR(suspend_disk_microvolts, 0444, + regulator_suspend_disk_uV_show, NULL); + +static ssize_t regulator_suspend_standby_uV_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); +} +static DEVICE_ATTR(suspend_standby_microvolts, 0444, + regulator_suspend_standby_uV_show, NULL); + +static ssize_t regulator_suspend_mem_mode_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return regulator_print_opmode(buf, + rdev->constraints->state_mem.mode); +} +static DEVICE_ATTR(suspend_mem_mode, 0444, + regulator_suspend_mem_mode_show, NULL); + +static ssize_t regulator_suspend_disk_mode_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return regulator_print_opmode(buf, + rdev->constraints->state_disk.mode); +} +static DEVICE_ATTR(suspend_disk_mode, 0444, + regulator_suspend_disk_mode_show, NULL); + +static ssize_t regulator_suspend_standby_mode_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return regulator_print_opmode(buf, + rdev->constraints->state_standby.mode); +} +static DEVICE_ATTR(suspend_standby_mode, 0444, + regulator_suspend_standby_mode_show, NULL); + +static ssize_t regulator_suspend_mem_state_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return regulator_print_state(buf, + rdev->constraints->state_mem.enabled); +} +static DEVICE_ATTR(suspend_mem_state, 0444, + regulator_suspend_mem_state_show, NULL); + +static ssize_t regulator_suspend_disk_state_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return regulator_print_state(buf, + rdev->constraints->state_disk.enabled); +} +static DEVICE_ATTR(suspend_disk_state, 0444, + regulator_suspend_disk_state_show, NULL); + +static ssize_t regulator_suspend_standby_state_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + + return regulator_print_state(buf, + rdev->constraints->state_standby.enabled); +} +static DEVICE_ATTR(suspend_standby_state, 0444, + regulator_suspend_standby_state_show, NULL); + +static ssize_t regulator_bypass_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + const char *report; + bool bypass; + int ret; + + ret = rdev->desc->ops->get_bypass(rdev, &bypass); + + if (ret != 0) + report = "unknown"; + else if (bypass) + report = "enabled"; + else + report = "disabled"; + + return sprintf(buf, "%s\n", report); +} +static DEVICE_ATTR(bypass, 0444, + regulator_bypass_show, NULL); + +/* Calculate the new optimum regulator operating mode based on the new total + * consumer load. All locks held by caller */ +static int drms_uA_update(struct regulator_dev *rdev) +{ + struct regulator *sibling; + int current_uA = 0, output_uV, input_uV, err; + unsigned int mode; + + /* + * first check to see if we can set modes at all, otherwise just + * tell the consumer everything is OK. + */ + err = regulator_check_drms(rdev); + if (err < 0) + return 0; + + if (!rdev->desc->ops->get_optimum_mode && + !rdev->desc->ops->set_load) + return 0; + + if (!rdev->desc->ops->set_mode && + !rdev->desc->ops->set_load) + return -EINVAL; + + /* get output voltage */ + output_uV = _regulator_get_voltage(rdev); + if (output_uV <= 0) { + rdev_err(rdev, "invalid output voltage found\n"); + return -EINVAL; + } + + /* get input voltage */ + input_uV = 0; + if (rdev->supply) + input_uV = regulator_get_voltage(rdev->supply); + if (input_uV <= 0) + input_uV = rdev->constraints->input_uV; + if (input_uV <= 0) { + rdev_err(rdev, "invalid input voltage found\n"); + return -EINVAL; + } + + /* calc total requested load */ + list_for_each_entry(sibling, &rdev->consumer_list, list) + current_uA += sibling->uA_load; + + if (rdev->desc->ops->set_load) { + /* set the optimum mode for our new total regulator load */ + err = rdev->desc->ops->set_load(rdev, current_uA); + if (err < 0) + rdev_err(rdev, "failed to set load %d\n", current_uA); + } else { + /* now get the optimum mode for our new total regulator load */ + mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, + output_uV, current_uA); + + /* check the new mode is allowed */ + err = regulator_mode_constrain(rdev, &mode); + if (err < 0) { + rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n", + current_uA, input_uV, output_uV); + return err; + } + + err = rdev->desc->ops->set_mode(rdev, mode); + if (err < 0) + rdev_err(rdev, "failed to set optimum mode %x\n", mode); + } + + return err; +} + +static int suspend_set_state(struct regulator_dev *rdev, + struct regulator_state *rstate) +{ + int ret = 0; + + /* If we have no suspend mode configration don't set anything; + * only warn if the driver implements set_suspend_voltage or + * set_suspend_mode callback. + */ + if (!rstate->enabled && !rstate->disabled) { + if (rdev->desc->ops->set_suspend_voltage || + rdev->desc->ops->set_suspend_mode) + rdev_warn(rdev, "No configuration\n"); + return 0; + } + + if (rstate->enabled && rstate->disabled) { + rdev_err(rdev, "invalid configuration\n"); + return -EINVAL; + } + + if (rstate->enabled && rdev->desc->ops->set_suspend_enable) + ret = rdev->desc->ops->set_suspend_enable(rdev); + else if (rstate->disabled && rdev->desc->ops->set_suspend_disable) + ret = rdev->desc->ops->set_suspend_disable(rdev); + else /* OK if set_suspend_enable or set_suspend_disable is NULL */ + ret = 0; + + if (ret < 0) { + rdev_err(rdev, "failed to enabled/disable\n"); + return ret; + } + + if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { + ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); + if (ret < 0) { + rdev_err(rdev, "failed to set voltage\n"); + return ret; + } + } + + if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { + ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); + if (ret < 0) { + rdev_err(rdev, "failed to set mode\n"); + return ret; + } + } + return ret; +} + +/* locks held by caller */ +static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state) +{ + if (!rdev->constraints) + return -EINVAL; + + switch (state) { + case PM_SUSPEND_STANDBY: + return suspend_set_state(rdev, + &rdev->constraints->state_standby); + case PM_SUSPEND_MEM: + return suspend_set_state(rdev, + &rdev->constraints->state_mem); + case PM_SUSPEND_MAX: + return suspend_set_state(rdev, + &rdev->constraints->state_disk); + default: + return -EINVAL; + } +} + +static void print_constraints(struct regulator_dev *rdev) +{ + struct regulation_constraints *constraints = rdev->constraints; + char buf[160] = ""; + int count = 0; + int ret; + + if (constraints->min_uV && constraints->max_uV) { + if (constraints->min_uV == constraints->max_uV) + count += sprintf(buf + count, "%d mV ", + constraints->min_uV / 1000); + else + count += sprintf(buf + count, "%d <--> %d mV ", + constraints->min_uV / 1000, + constraints->max_uV / 1000); + } + + if (!constraints->min_uV || + constraints->min_uV != constraints->max_uV) { + ret = _regulator_get_voltage(rdev); + if (ret > 0) + count += sprintf(buf + count, "at %d mV ", ret / 1000); + } + + if (constraints->uV_offset) + count += sprintf(buf, "%dmV offset ", + constraints->uV_offset / 1000); + + if (constraints->min_uA && constraints->max_uA) { + if (constraints->min_uA == constraints->max_uA) + count += sprintf(buf + count, "%d mA ", + constraints->min_uA / 1000); + else + count += sprintf(buf + count, "%d <--> %d mA ", + constraints->min_uA / 1000, + constraints->max_uA / 1000); + } + + if (!constraints->min_uA || + constraints->min_uA != constraints->max_uA) { + ret = _regulator_get_current_limit(rdev); + if (ret > 0) + count += sprintf(buf + count, "at %d mA ", ret / 1000); + } + + if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) + count += sprintf(buf + count, "fast "); + if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) + count += sprintf(buf + count, "normal "); + if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) + count += sprintf(buf + count, "idle "); + if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) + count += sprintf(buf + count, "standby"); + + if (!count) + sprintf(buf, "no parameters"); + + rdev_dbg(rdev, "%s\n", buf); + + if ((constraints->min_uV != constraints->max_uV) && + !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) + rdev_warn(rdev, + "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); +} + +static int machine_constraints_voltage(struct regulator_dev *rdev, + struct regulation_constraints *constraints) +{ + const struct regulator_ops *ops = rdev->desc->ops; + int ret; + + /* do we need to apply the constraint voltage */ + if (rdev->constraints->apply_uV && + rdev->constraints->min_uV == rdev->constraints->max_uV) { + int current_uV = _regulator_get_voltage(rdev); + if (current_uV < 0) { + rdev_err(rdev, + "failed to get the current voltage(%d)\n", + current_uV); + return current_uV; + } + if (current_uV < rdev->constraints->min_uV || + current_uV > rdev->constraints->max_uV) { + ret = _regulator_do_set_voltage( + rdev, rdev->constraints->min_uV, + rdev->constraints->max_uV); + if (ret < 0) { + rdev_err(rdev, + "failed to apply %duV constraint(%d)\n", + rdev->constraints->min_uV, ret); + return ret; + } + } + } + + /* constrain machine-level voltage specs to fit + * the actual range supported by this regulator. + */ + if (ops->list_voltage && rdev->desc->n_voltages) { + int count = rdev->desc->n_voltages; + int i; + int min_uV = INT_MAX; + int max_uV = INT_MIN; + int cmin = constraints->min_uV; + int cmax = constraints->max_uV; + + /* it's safe to autoconfigure fixed-voltage supplies + and the constraints are used by list_voltage. */ + if (count == 1 && !cmin) { + cmin = 1; + cmax = INT_MAX; + constraints->min_uV = cmin; + constraints->max_uV = cmax; + } + + /* voltage constraints are optional */ + if ((cmin == 0) && (cmax == 0)) + return 0; + + /* else require explicit machine-level constraints */ + if (cmin <= 0 || cmax <= 0 || cmax < cmin) { + rdev_err(rdev, "invalid voltage constraints\n"); + return -EINVAL; + } + + /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ + for (i = 0; i < count; i++) { + int value; + + value = ops->list_voltage(rdev, i); + if (value <= 0) + continue; + + /* maybe adjust [min_uV..max_uV] */ + if (value >= cmin && value < min_uV) + min_uV = value; + if (value <= cmax && value > max_uV) + max_uV = value; + } + + /* final: [min_uV..max_uV] valid iff constraints valid */ + if (max_uV < min_uV) { + rdev_err(rdev, + "unsupportable voltage constraints %u-%uuV\n", + min_uV, max_uV); + return -EINVAL; + } + + /* use regulator's subset of machine constraints */ + if (constraints->min_uV < min_uV) { + rdev_dbg(rdev, "override min_uV, %d -> %d\n", + constraints->min_uV, min_uV); + constraints->min_uV = min_uV; + } + if (constraints->max_uV > max_uV) { + rdev_dbg(rdev, "override max_uV, %d -> %d\n", + constraints->max_uV, max_uV); + constraints->max_uV = max_uV; + } + } + + return 0; +} + +static int machine_constraints_current(struct regulator_dev *rdev, + struct regulation_constraints *constraints) +{ + const struct regulator_ops *ops = rdev->desc->ops; + int ret; + + if (!constraints->min_uA && !constraints->max_uA) + return 0; + + if (constraints->min_uA > constraints->max_uA) { + rdev_err(rdev, "Invalid current constraints\n"); + return -EINVAL; + } + + if (!ops->set_current_limit || !ops->get_current_limit) { + rdev_warn(rdev, "Operation of current configuration missing\n"); + return 0; + } + + /* Set regulator current in constraints range */ + ret = ops->set_current_limit(rdev, constraints->min_uA, + constraints->max_uA); + if (ret < 0) { + rdev_err(rdev, "Failed to set current constraint, %d\n", ret); + return ret; + } + + return 0; +} + +static int _regulator_do_enable(struct regulator_dev *rdev); + +/** + * set_machine_constraints - sets regulator constraints + * @rdev: regulator source + * @constraints: constraints to apply + * + * Allows platform initialisation code to define and constrain + * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: + * Constraints *must* be set by platform code in order for some + * regulator operations to proceed i.e. set_voltage, set_current_limit, + * set_mode. + */ +static int set_machine_constraints(struct regulator_dev *rdev, + const struct regulation_constraints *constraints) +{ + int ret = 0; + const struct regulator_ops *ops = rdev->desc->ops; + + if (constraints) + rdev->constraints = kmemdup(constraints, sizeof(*constraints), + GFP_KERNEL); + else + rdev->constraints = kzalloc(sizeof(*constraints), + GFP_KERNEL); + if (!rdev->constraints) + return -ENOMEM; + + ret = machine_constraints_voltage(rdev, rdev->constraints); + if (ret != 0) + goto out; + + ret = machine_constraints_current(rdev, rdev->constraints); + if (ret != 0) + goto out; + + /* do we need to setup our suspend state */ + if (rdev->constraints->initial_state) { + ret = suspend_prepare(rdev, rdev->constraints->initial_state); + if (ret < 0) { + rdev_err(rdev, "failed to set suspend state\n"); + goto out; + } + } + + if (rdev->constraints->initial_mode) { + if (!ops->set_mode) { + rdev_err(rdev, "no set_mode operation\n"); + ret = -EINVAL; + goto out; + } + + ret = ops->set_mode(rdev, rdev->constraints->initial_mode); + if (ret < 0) { + rdev_err(rdev, "failed to set initial mode: %d\n", ret); + goto out; + } + } + + /* If the constraints say the regulator should be on at this point + * and we have control then make sure it is enabled. + */ + if (rdev->constraints->always_on || rdev->constraints->boot_on) { + ret = _regulator_do_enable(rdev); + if (ret < 0 && ret != -EINVAL) { + rdev_err(rdev, "failed to enable\n"); + goto out; + } + } + + if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) + && ops->set_ramp_delay) { + ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); + if (ret < 0) { + rdev_err(rdev, "failed to set ramp_delay\n"); + goto out; + } + } + + print_constraints(rdev); + return 0; +out: + kfree(rdev->constraints); + rdev->constraints = NULL; + return ret; +} + +/** + * set_supply - set regulator supply regulator + * @rdev: regulator name + * @supply_rdev: supply regulator name + * + * Called by platform initialisation code to set the supply regulator for this + * regulator. This ensures that a regulators supply will also be enabled by the + * core if it's child is enabled. + */ +static int set_supply(struct regulator_dev *rdev, + struct regulator_dev *supply_rdev) +{ + int err; + + rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); + + rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); + if (rdev->supply == NULL) { + err = -ENOMEM; + return err; + } + supply_rdev->open_count++; + + return 0; +} + +/** + * set_consumer_device_supply - Bind a regulator to a symbolic supply + * @rdev: regulator source + * @consumer_dev_name: dev_name() string for device supply applies to + * @supply: symbolic name for supply + * + * Allows platform initialisation code to map physical regulator + * sources to symbolic names for supplies for use by devices. Devices + * should use these symbolic names to request regulators, avoiding the + * need to provide board-specific regulator names as platform data. + */ +static int set_consumer_device_supply(struct regulator_dev *rdev, + const char *consumer_dev_name, + const char *supply) +{ + struct regulator_map *node; + int has_dev; + + if (supply == NULL) + return -EINVAL; + + if (consumer_dev_name != NULL) + has_dev = 1; + else + has_dev = 0; + + list_for_each_entry(node, ®ulator_map_list, list) { + if (node->dev_name && consumer_dev_name) { + if (strcmp(node->dev_name, consumer_dev_name) != 0) + continue; + } else if (node->dev_name || consumer_dev_name) { + continue; + } + + if (strcmp(node->supply, supply) != 0) + continue; + + pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", + consumer_dev_name, + dev_name(&node->regulator->dev), + node->regulator->desc->name, + supply, + dev_name(&rdev->dev), rdev_get_name(rdev)); + return -EBUSY; + } + + node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); + if (node == NULL) + return -ENOMEM; + + node->regulator = rdev; + node->supply = supply; + + if (has_dev) { + node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); + if (node->dev_name == NULL) { + kfree(node); + return -ENOMEM; + } + } + + list_add(&node->list, ®ulator_map_list); + return 0; +} + +static void unset_regulator_supplies(struct regulator_dev *rdev) +{ + struct regulator_map *node, *n; + + list_for_each_entry_safe(node, n, ®ulator_map_list, list) { + if (rdev == node->regulator) { + list_del(&node->list); + kfree(node->dev_name); + kfree(node); + } + } +} + +#define REG_STR_SIZE 64 + +static struct regulator *create_regulator(struct regulator_dev *rdev, + struct device *dev, + const char *supply_name) +{ + struct regulator *regulator; + char buf[REG_STR_SIZE]; + int err, size; + + regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); + if (regulator == NULL) + return NULL; + + mutex_lock(&rdev->mutex); + regulator->rdev = rdev; + list_add(®ulator->list, &rdev->consumer_list); + + if (dev) { + regulator->dev = dev; + + /* Add a link to the device sysfs entry */ + size = scnprintf(buf, REG_STR_SIZE, "%s-%s", + dev->kobj.name, supply_name); + if (size >= REG_STR_SIZE) + goto overflow_err; + + regulator->supply_name = kstrdup(buf, GFP_KERNEL); + if (regulator->supply_name == NULL) + goto overflow_err; + + err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj, + buf); + if (err) { + rdev_warn(rdev, "could not add device link %s err %d\n", + dev->kobj.name, err); + /* non-fatal */ + } + } else { + regulator->supply_name = kstrdup(supply_name, GFP_KERNEL); + if (regulator->supply_name == NULL) + goto overflow_err; + } + + regulator->debugfs = debugfs_create_dir(regulator->supply_name, + rdev->debugfs); + if (!regulator->debugfs) { + rdev_warn(rdev, "Failed to create debugfs directory\n"); + } else { + debugfs_create_u32("uA_load", 0444, regulator->debugfs, + ®ulator->uA_load); + debugfs_create_u32("min_uV", 0444, regulator->debugfs, + ®ulator->min_uV); + debugfs_create_u32("max_uV", 0444, regulator->debugfs, + ®ulator->max_uV); + } + + /* + * Check now if the regulator is an always on regulator - if + * it is then we don't need to do nearly so much work for + * enable/disable calls. + */ + if (!_regulator_can_change_status(rdev) && + _regulator_is_enabled(rdev)) + regulator->always_on = true; + + mutex_unlock(&rdev->mutex); + return regulator; +overflow_err: + list_del(®ulator->list); + kfree(regulator); + mutex_unlock(&rdev->mutex); + return NULL; +} + +static int _regulator_get_enable_time(struct regulator_dev *rdev) +{ + if (rdev->constraints && rdev->constraints->enable_time) + return rdev->constraints->enable_time; + if (!rdev->desc->ops->enable_time) + return rdev->desc->enable_time; + return rdev->desc->ops->enable_time(rdev); +} + +static struct regulator_supply_alias *regulator_find_supply_alias( + struct device *dev, const char *supply) +{ + struct regulator_supply_alias *map; + + list_for_each_entry(map, ®ulator_supply_alias_list, list) + if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) + return map; + + return NULL; +} + +static void regulator_supply_alias(struct device **dev, const char **supply) +{ + struct regulator_supply_alias *map; + + map = regulator_find_supply_alias(*dev, *supply); + if (map) { + dev_dbg(*dev, "Mapping supply %s to %s,%s\n", + *supply, map->alias_supply, + dev_name(map->alias_dev)); + *dev = map->alias_dev; + *supply = map->alias_supply; + } +} + +static struct regulator_dev *regulator_dev_lookup(struct device *dev, + const char *supply, + int *ret) +{ + struct regulator_dev *r; + struct device_node *node; + struct regulator_map *map; + const char *devname = NULL; + + regulator_supply_alias(&dev, &supply); + + /* first do a dt based lookup */ + if (dev && dev->of_node) { + node = of_get_regulator(dev, supply); + if (node) { + list_for_each_entry(r, ®ulator_list, list) + if (r->dev.parent && + node == r->dev.of_node) + return r; + *ret = -EPROBE_DEFER; + return NULL; + } else { + /* + * If we couldn't even get the node then it's + * not just that the device didn't register + * yet, there's no node and we'll never + * succeed. + */ + *ret = -ENODEV; + } + } + + /* if not found, try doing it non-dt way */ + if (dev) + devname = dev_name(dev); + + list_for_each_entry(r, ®ulator_list, list) + if (strcmp(rdev_get_name(r), supply) == 0) + return r; + + list_for_each_entry(map, ®ulator_map_list, list) { + /* If the mapping has a device set up it must match */ + if (map->dev_name && + (!devname || strcmp(map->dev_name, devname))) + continue; + + if (strcmp(map->supply, supply) == 0) + return map->regulator; + } + + + return NULL; +} + +static int regulator_resolve_supply(struct regulator_dev *rdev) +{ + struct regulator_dev *r; + struct device *dev = rdev->dev.parent; + int ret; + + /* No supply to resovle? */ + if (!rdev->supply_name) + return 0; + + /* Supply already resolved? */ + if (rdev->supply) + return 0; + + r = regulator_dev_lookup(dev, rdev->supply_name, &ret); + if (ret == -ENODEV) { + /* + * No supply was specified for this regulator and + * there will never be one. + */ + return 0; + } + + if (!r) { + dev_err(dev, "Failed to resolve %s-supply for %s\n", + rdev->supply_name, rdev->desc->name); + return -EPROBE_DEFER; + } + + /* Recursively resolve the supply of the supply */ + ret = regulator_resolve_supply(r); + if (ret < 0) + return ret; + + ret = set_supply(rdev, r); + if (ret < 0) + return ret; + + /* Cascade always-on state to supply */ + if (_regulator_is_enabled(rdev)) { + ret = regulator_enable(rdev->supply); + if (ret < 0) + return ret; + } + + return 0; +} + +/* Internal regulator request function */ +static struct regulator *_regulator_get(struct device *dev, const char *id, + bool exclusive, bool allow_dummy) +{ + struct regulator_dev *rdev; + struct regulator *regulator = ERR_PTR(-EPROBE_DEFER); + const char *devname = NULL; + int ret; + + if (id == NULL) { + pr_err("get() with no identifier\n"); + return ERR_PTR(-EINVAL); + } + + if (dev) + devname = dev_name(dev); + + if (have_full_constraints()) + ret = -ENODEV; + else + ret = -EPROBE_DEFER; + + mutex_lock(®ulator_list_mutex); + + rdev = regulator_dev_lookup(dev, id, &ret); + if (rdev) + goto found; + + regulator = ERR_PTR(ret); + + /* + * If we have return value from dev_lookup fail, we do not expect to + * succeed, so, quit with appropriate error value + */ + if (ret && ret != -ENODEV) + goto out; + + if (!devname) + devname = "deviceless"; + + /* + * Assume that a regulator is physically present and enabled + * even if it isn't hooked up and just provide a dummy. + */ + if (have_full_constraints() && allow_dummy) { + pr_warn("%s supply %s not found, using dummy regulator\n", + devname, id); + + rdev = dummy_regulator_rdev; + goto found; + /* Don't log an error when called from regulator_get_optional() */ + } else if (!have_full_constraints() || exclusive) { + dev_warn(dev, "dummy supplies not allowed\n"); + } + + mutex_unlock(®ulator_list_mutex); + return regulator; + +found: + if (rdev->exclusive) { + regulator = ERR_PTR(-EPERM); + goto out; + } + + if (exclusive && rdev->open_count) { + regulator = ERR_PTR(-EBUSY); + goto out; + } + + ret = regulator_resolve_supply(rdev); + if (ret < 0) { + regulator = ERR_PTR(ret); + goto out; + } + + if (!try_module_get(rdev->owner)) + goto out; + + regulator = create_regulator(rdev, dev, id); + if (regulator == NULL) { + regulator = ERR_PTR(-ENOMEM); + module_put(rdev->owner); + goto out; + } + + rdev->open_count++; + if (exclusive) { + rdev->exclusive = 1; + + ret = _regulator_is_enabled(rdev); + if (ret > 0) + rdev->use_count = 1; + else + rdev->use_count = 0; + } + +out: + mutex_unlock(®ulator_list_mutex); + + return regulator; +} + +/** + * regulator_get - lookup and obtain a reference to a regulator. + * @dev: device for regulator "consumer" + * @id: Supply name or regulator ID. + * + * Returns a struct regulator corresponding to the regulator producer, + * or IS_ERR() condition containing errno. + * + * Use of supply names configured via regulator_set_device_supply() is + * strongly encouraged. It is recommended that the supply name used + * should match the name used for the supply and/or the relevant + * device pins in the datasheet. + */ +struct regulator *regulator_get(struct device *dev, const char *id) +{ + return _regulator_get(dev, id, false, true); +} +EXPORT_SYMBOL_GPL(regulator_get); + +/** + * regulator_get_exclusive - obtain exclusive access to a regulator. + * @dev: device for regulator "consumer" + * @id: Supply name or regulator ID. + * + * Returns a struct regulator corresponding to the regulator producer, + * or IS_ERR() condition containing errno. Other consumers will be + * unable to obtain this regulator while this reference is held and the + * use count for the regulator will be initialised to reflect the current + * state of the regulator. + * + * This is intended for use by consumers which cannot tolerate shared + * use of the regulator such as those which need to force the + * regulator off for correct operation of the hardware they are + * controlling. + * + * Use of supply names configured via regulator_set_device_supply() is + * strongly encouraged. It is recommended that the supply name used + * should match the name used for the supply and/or the relevant + * device pins in the datasheet. + */ +struct regulator *regulator_get_exclusive(struct device *dev, const char *id) +{ + return _regulator_get(dev, id, true, false); +} +EXPORT_SYMBOL_GPL(regulator_get_exclusive); + +/** + * regulator_get_optional - obtain optional access to a regulator. + * @dev: device for regulator "consumer" + * @id: Supply name or regulator ID. + * + * Returns a struct regulator corresponding to the regulator producer, + * or IS_ERR() condition containing errno. + * + * This is intended for use by consumers for devices which can have + * some supplies unconnected in normal use, such as some MMC devices. + * It can allow the regulator core to provide stub supplies for other + * supplies requested using normal regulator_get() calls without + * disrupting the operation of drivers that can handle absent + * supplies. + * + * Use of supply names configured via regulator_set_device_supply() is + * strongly encouraged. It is recommended that the supply name used + * should match the name used for the supply and/or the relevant + * device pins in the datasheet. + */ +struct regulator *regulator_get_optional(struct device *dev, const char *id) +{ + return _regulator_get(dev, id, false, false); +} +EXPORT_SYMBOL_GPL(regulator_get_optional); + +/* regulator_list_mutex lock held by regulator_put() */ +static void _regulator_put(struct regulator *regulator) +{ + struct regulator_dev *rdev; + + if (regulator == NULL || IS_ERR(regulator)) + return; + + rdev = regulator->rdev; + + debugfs_remove_recursive(regulator->debugfs); + + /* remove any sysfs entries */ + if (regulator->dev) + sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); + mutex_lock(&rdev->mutex); + kfree(regulator->supply_name); + list_del(®ulator->list); + kfree(regulator); + + rdev->open_count--; + rdev->exclusive = 0; + mutex_unlock(&rdev->mutex); + + module_put(rdev->owner); +} + +/** + * regulator_put - "free" the regulator source + * @regulator: regulator source + * + * Note: drivers must ensure that all regulator_enable calls made on this + * regulator source are balanced by regulator_disable calls prior to calling + * this function. + */ +void regulator_put(struct regulator *regulator) +{ + mutex_lock(®ulator_list_mutex); + _regulator_put(regulator); + mutex_unlock(®ulator_list_mutex); +} +EXPORT_SYMBOL_GPL(regulator_put); + +/** + * regulator_register_supply_alias - Provide device alias for supply lookup + * + * @dev: device that will be given as the regulator "consumer" + * @id: Supply name or regulator ID + * @alias_dev: device that should be used to lookup the supply + * @alias_id: Supply name or regulator ID that should be used to lookup the + * supply + * + * All lookups for id on dev will instead be conducted for alias_id on + * alias_dev. + */ +int regulator_register_supply_alias(struct device *dev, const char *id, + struct device *alias_dev, + const char *alias_id) +{ + struct regulator_supply_alias *map; + + map = regulator_find_supply_alias(dev, id); + if (map) + return -EEXIST; + + map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); + if (!map) + return -ENOMEM; + + map->src_dev = dev; + map->src_supply = id; + map->alias_dev = alias_dev; + map->alias_supply = alias_id; + + list_add(&map->list, ®ulator_supply_alias_list); + + pr_info("Adding alias for supply %s,%s -> %s,%s\n", + id, dev_name(dev), alias_id, dev_name(alias_dev)); + + return 0; +} +EXPORT_SYMBOL_GPL(regulator_register_supply_alias); + +/** + * regulator_unregister_supply_alias - Remove device alias + * + * @dev: device that will be given as the regulator "consumer" + * @id: Supply name or regulator ID + * + * Remove a lookup alias if one exists for id on dev. + */ +void regulator_unregister_supply_alias(struct device *dev, const char *id) +{ + struct regulator_supply_alias *map; + + map = regulator_find_supply_alias(dev, id); + if (map) { + list_del(&map->list); + kfree(map); + } +} +EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); + +/** + * regulator_bulk_register_supply_alias - register multiple aliases + * + * @dev: device that will be given as the regulator "consumer" + * @id: List of supply names or regulator IDs + * @alias_dev: device that should be used to lookup the supply + * @alias_id: List of supply names or regulator IDs that should be used to + * lookup the supply + * @num_id: Number of aliases to register + * + * @return 0 on success, an errno on failure. + * + * This helper function allows drivers to register several supply + * aliases in one operation. If any of the aliases cannot be + * registered any aliases that were registered will be removed + * before returning to the caller. + */ +int regulator_bulk_register_supply_alias(struct device *dev, + const char *const *id, + struct device *alias_dev, + const char *const *alias_id, + int num_id) +{ + int i; + int ret; + + for (i = 0; i < num_id; ++i) { + ret = regulator_register_supply_alias(dev, id[i], alias_dev, + alias_id[i]); + if (ret < 0) + goto err; + } + + return 0; + +err: + dev_err(dev, + "Failed to create supply alias %s,%s -> %s,%s\n", + id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); + + while (--i >= 0) + regulator_unregister_supply_alias(dev, id[i]); + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); + +/** + * regulator_bulk_unregister_supply_alias - unregister multiple aliases + * + * @dev: device that will be given as the regulator "consumer" + * @id: List of supply names or regulator IDs + * @num_id: Number of aliases to unregister + * + * This helper function allows drivers to unregister several supply + * aliases in one operation. + */ +void regulator_bulk_unregister_supply_alias(struct device *dev, + const char *const *id, + int num_id) +{ + int i; + + for (i = 0; i < num_id; ++i) + regulator_unregister_supply_alias(dev, id[i]); +} +EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); + + +/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ +static int regulator_ena_gpio_request(struct regulator_dev *rdev, + const struct regulator_config *config) +{ + struct regulator_enable_gpio *pin; + struct gpio_desc *gpiod; + int ret; + + gpiod = gpio_to_desc(config->ena_gpio); + + list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { + if (pin->gpiod == gpiod) { + rdev_dbg(rdev, "GPIO %d is already used\n", + config->ena_gpio); + goto update_ena_gpio_to_rdev; + } + } + + ret = gpio_request_one(config->ena_gpio, + GPIOF_DIR_OUT | config->ena_gpio_flags, + rdev_get_name(rdev)); + if (ret) + return ret; + + pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL); + if (pin == NULL) { + gpio_free(config->ena_gpio); + return -ENOMEM; + } + + pin->gpiod = gpiod; + pin->ena_gpio_invert = config->ena_gpio_invert; + list_add(&pin->list, ®ulator_ena_gpio_list); + +update_ena_gpio_to_rdev: + pin->request_count++; + rdev->ena_pin = pin; + return 0; +} + +static void regulator_ena_gpio_free(struct regulator_dev *rdev) +{ + struct regulator_enable_gpio *pin, *n; + + if (!rdev->ena_pin) + return; + + /* Free the GPIO only in case of no use */ + list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { + if (pin->gpiod == rdev->ena_pin->gpiod) { + if (pin->request_count <= 1) { + pin->request_count = 0; + gpiod_put(pin->gpiod); + list_del(&pin->list); + kfree(pin); + rdev->ena_pin = NULL; + return; + } else { + pin->request_count--; + } + } + } +} + +/** + * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control + * @rdev: regulator_dev structure + * @enable: enable GPIO at initial use? + * + * GPIO is enabled in case of initial use. (enable_count is 0) + * GPIO is disabled when it is not shared any more. (enable_count <= 1) + */ +static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) +{ + struct regulator_enable_gpio *pin = rdev->ena_pin; + + if (!pin) + return -EINVAL; + + if (enable) { + /* Enable GPIO at initial use */ + if (pin->enable_count == 0) + gpiod_set_value_cansleep(pin->gpiod, + !pin->ena_gpio_invert); + + pin->enable_count++; + } else { + if (pin->enable_count > 1) { + pin->enable_count--; + return 0; + } + + /* Disable GPIO if not used */ + if (pin->enable_count <= 1) { + gpiod_set_value_cansleep(pin->gpiod, + pin->ena_gpio_invert); + pin->enable_count = 0; + } + } + + return 0; +} + +/** + * _regulator_enable_delay - a delay helper function + * @delay: time to delay in microseconds + * + * Delay for the requested amount of time as per the guidelines in: + * + * Documentation/timers/timers-howto.txt + * + * The assumption here is that regulators will never be enabled in + * atomic context and therefore sleeping functions can be used. + */ +static void _regulator_enable_delay(unsigned int delay) +{ + unsigned int ms = delay / 1000; + unsigned int us = delay % 1000; + + if (ms > 0) { + /* + * For small enough values, handle super-millisecond + * delays in the usleep_range() call below. + */ + if (ms < 20) + us += ms * 1000; + else + msleep(ms); + } + + /* + * Give the scheduler some room to coalesce with any other + * wakeup sources. For delays shorter than 10 us, don't even + * bother setting up high-resolution timers and just busy- + * loop. + */ + if (us >= 10) + usleep_range(us, us + 100); + else + udelay(us); +} + +static int _regulator_do_enable(struct regulator_dev *rdev) +{ + int ret, delay; + + /* Query before enabling in case configuration dependent. */ + ret = _regulator_get_enable_time(rdev); + if (ret >= 0) { + delay = ret; + } else { + rdev_warn(rdev, "enable_time() failed: %d\n", ret); + delay = 0; + } + + trace_regulator_enable(rdev_get_name(rdev)); + + if (rdev->desc->off_on_delay) { + /* if needed, keep a distance of off_on_delay from last time + * this regulator was disabled. + */ + unsigned long start_jiffy = jiffies; + unsigned long intended, max_delay, remaining; + + max_delay = usecs_to_jiffies(rdev->desc->off_on_delay); + intended = rdev->last_off_jiffy + max_delay; + + if (time_before(start_jiffy, intended)) { + /* calc remaining jiffies to deal with one-time + * timer wrapping. + * in case of multiple timer wrapping, either it can be + * detected by out-of-range remaining, or it cannot be + * detected and we gets a panelty of + * _regulator_enable_delay(). + */ + remaining = intended - start_jiffy; + if (remaining <= max_delay) + _regulator_enable_delay( + jiffies_to_usecs(remaining)); + } + } + + if (rdev->ena_pin) { + if (!rdev->ena_gpio_state) { + ret = regulator_ena_gpio_ctrl(rdev, true); + if (ret < 0) + return ret; + rdev->ena_gpio_state = 1; + } + } else if (rdev->desc->ops->enable) { + ret = rdev->desc->ops->enable(rdev); + if (ret < 0) + return ret; + } else { + return -EINVAL; + } + + /* Allow the regulator to ramp; it would be useful to extend + * this for bulk operations so that the regulators can ramp + * together. */ + trace_regulator_enable_delay(rdev_get_name(rdev)); + + _regulator_enable_delay(delay); + + trace_regulator_enable_complete(rdev_get_name(rdev)); + + return 0; +} + +/* locks held by regulator_enable() */ +static int _regulator_enable(struct regulator_dev *rdev) +{ + int ret; + + /* check voltage and requested load before enabling */ + if (rdev->constraints && + (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) + drms_uA_update(rdev); + + if (rdev->use_count == 0) { + /* The regulator may on if it's not switchable or left on */ + ret = _regulator_is_enabled(rdev); + if (ret == -EINVAL || ret == 0) { + if (!_regulator_can_change_status(rdev)) + return -EPERM; + + ret = _regulator_do_enable(rdev); + if (ret < 0) + return ret; + + } else if (ret < 0) { + rdev_err(rdev, "is_enabled() failed: %d\n", ret); + return ret; + } + /* Fallthrough on positive return values - already enabled */ + } + + rdev->use_count++; + + return 0; +} + +/** + * regulator_enable - enable regulator output + * @regulator: regulator source + * + * Request that the regulator be enabled with the regulator output at + * the predefined voltage or current value. Calls to regulator_enable() + * must be balanced with calls to regulator_disable(). + * + * NOTE: the output value can be set by other drivers, boot loader or may be + * hardwired in the regulator. + */ +int regulator_enable(struct regulator *regulator) +{ + struct regulator_dev *rdev = regulator->rdev; + int ret = 0; + + if (regulator->always_on) + return 0; + + if (rdev->supply) { + ret = regulator_enable(rdev->supply); + if (ret != 0) + return ret; + } + + mutex_lock(&rdev->mutex); + ret = _regulator_enable(rdev); + mutex_unlock(&rdev->mutex); + + if (ret != 0 && rdev->supply) + regulator_disable(rdev->supply); + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_enable); + +static int _regulator_do_disable(struct regulator_dev *rdev) +{ + int ret; + + trace_regulator_disable(rdev_get_name(rdev)); + + if (rdev->ena_pin) { + if (rdev->ena_gpio_state) { + ret = regulator_ena_gpio_ctrl(rdev, false); + if (ret < 0) + return ret; + rdev->ena_gpio_state = 0; + } + + } else if (rdev->desc->ops->disable) { + ret = rdev->desc->ops->disable(rdev); + if (ret != 0) + return ret; + } + + /* cares about last_off_jiffy only if off_on_delay is required by + * device. + */ + if (rdev->desc->off_on_delay) + rdev->last_off_jiffy = jiffies; + + trace_regulator_disable_complete(rdev_get_name(rdev)); + + return 0; +} + +/* locks held by regulator_disable() */ +static int _regulator_disable(struct regulator_dev *rdev) +{ + int ret = 0; + + if (WARN(rdev->use_count <= 0, + "unbalanced disables for %s\n", rdev_get_name(rdev))) + return -EIO; + + /* are we the last user and permitted to disable ? */ + if (rdev->use_count == 1 && + (rdev->constraints && !rdev->constraints->always_on)) { + + /* we are last user */ + if (_regulator_can_change_status(rdev)) { + ret = _notifier_call_chain(rdev, + REGULATOR_EVENT_PRE_DISABLE, + NULL); + if (ret & NOTIFY_STOP_MASK) + return -EINVAL; + + ret = _regulator_do_disable(rdev); + if (ret < 0) { + rdev_err(rdev, "failed to disable\n"); + _notifier_call_chain(rdev, + REGULATOR_EVENT_ABORT_DISABLE, + NULL); + return ret; + } + _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, + NULL); + } + + rdev->use_count = 0; + } else if (rdev->use_count > 1) { + + if (rdev->constraints && + (rdev->constraints->valid_ops_mask & + REGULATOR_CHANGE_DRMS)) + drms_uA_update(rdev); + + rdev->use_count--; + } + + return ret; +} + +/** + * regulator_disable - disable regulator output + * @regulator: regulator source + * + * Disable the regulator output voltage or current. Calls to + * regulator_enable() must be balanced with calls to + * regulator_disable(). + * + * NOTE: this will only disable the regulator output if no other consumer + * devices have it enabled, the regulator device supports disabling and + * machine constraints permit this operation. + */ +int regulator_disable(struct regulator *regulator) +{ + struct regulator_dev *rdev = regulator->rdev; + int ret = 0; + + if (regulator->always_on) + return 0; + + mutex_lock(&rdev->mutex); + ret = _regulator_disable(rdev); + mutex_unlock(&rdev->mutex); + + if (ret == 0 && rdev->supply) + regulator_disable(rdev->supply); + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_disable); + +/* locks held by regulator_force_disable() */ +static int _regulator_force_disable(struct regulator_dev *rdev) +{ + int ret = 0; + + ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | + REGULATOR_EVENT_PRE_DISABLE, NULL); + if (ret & NOTIFY_STOP_MASK) + return -EINVAL; + + ret = _regulator_do_disable(rdev); + if (ret < 0) { + rdev_err(rdev, "failed to force disable\n"); + _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | + REGULATOR_EVENT_ABORT_DISABLE, NULL); + return ret; + } + + _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | + REGULATOR_EVENT_DISABLE, NULL); + + return 0; +} + +/** + * regulator_force_disable - force disable regulator output + * @regulator: regulator source + * + * Forcibly disable the regulator output voltage or current. + * NOTE: this *will* disable the regulator output even if other consumer + * devices have it enabled. This should be used for situations when device + * damage will likely occur if the regulator is not disabled (e.g. over temp). + */ +int regulator_force_disable(struct regulator *regulator) +{ + struct regulator_dev *rdev = regulator->rdev; + int ret; + + mutex_lock(&rdev->mutex); + regulator->uA_load = 0; + ret = _regulator_force_disable(regulator->rdev); + mutex_unlock(&rdev->mutex); + + if (rdev->supply) + while (rdev->open_count--) + regulator_disable(rdev->supply); + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_force_disable); + +static void regulator_disable_work(struct work_struct *work) +{ + struct regulator_dev *rdev = container_of(work, struct regulator_dev, + disable_work.work); + int count, i, ret; + + mutex_lock(&rdev->mutex); + + BUG_ON(!rdev->deferred_disables); + + count = rdev->deferred_disables; + rdev->deferred_disables = 0; + + for (i = 0; i < count; i++) { + ret = _regulator_disable(rdev); + if (ret != 0) + rdev_err(rdev, "Deferred disable failed: %d\n", ret); + } + + mutex_unlock(&rdev->mutex); + + if (rdev->supply) { + for (i = 0; i < count; i++) { + ret = regulator_disable(rdev->supply); + if (ret != 0) { + rdev_err(rdev, + "Supply disable failed: %d\n", ret); + } + } + } +} + +/** + * regulator_disable_deferred - disable regulator output with delay + * @regulator: regulator source + * @ms: miliseconds until the regulator is disabled + * + * Execute regulator_disable() on the regulator after a delay. This + * is intended for use with devices that require some time to quiesce. + * + * NOTE: this will only disable the regulator output if no other consumer + * devices have it enabled, the regulator device supports disabling and + * machine constraints permit this operation. + */ +int regulator_disable_deferred(struct regulator *regulator, int ms) +{ + struct regulator_dev *rdev = regulator->rdev; + int ret; + + if (regulator->always_on) + return 0; + + if (!ms) + return regulator_disable(regulator); + + mutex_lock(&rdev->mutex); + rdev->deferred_disables++; + mutex_unlock(&rdev->mutex); + + ret = queue_delayed_work(system_power_efficient_wq, + &rdev->disable_work, + msecs_to_jiffies(ms)); + if (ret < 0) + return ret; + else + return 0; +} +EXPORT_SYMBOL_GPL(regulator_disable_deferred); + +static int _regulator_is_enabled(struct regulator_dev *rdev) +{ + /* A GPIO control always takes precedence */ + if (rdev->ena_pin) + return rdev->ena_gpio_state; + + /* If we don't know then assume that the regulator is always on */ + if (!rdev->desc->ops->is_enabled) + return 1; + + return rdev->desc->ops->is_enabled(rdev); +} + +/** + * regulator_is_enabled - is the regulator output enabled + * @regulator: regulator source + * + * Returns positive if the regulator driver backing the source/client + * has requested that the device be enabled, zero if it hasn't, else a + * negative errno code. + * + * Note that the device backing this regulator handle can have multiple + * users, so it might be enabled even if regulator_enable() was never + * called for this particular source. + */ +int regulator_is_enabled(struct regulator *regulator) +{ + int ret; + + if (regulator->always_on) + return 1; + + mutex_lock(®ulator->rdev->mutex); + ret = _regulator_is_enabled(regulator->rdev); + mutex_unlock(®ulator->rdev->mutex); + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_is_enabled); + +/** + * regulator_can_change_voltage - check if regulator can change voltage + * @regulator: regulator source + * + * Returns positive if the regulator driver backing the source/client + * can change its voltage, false otherwise. Useful for detecting fixed + * or dummy regulators and disabling voltage change logic in the client + * driver. + */ +int regulator_can_change_voltage(struct regulator *regulator) +{ + struct regulator_dev *rdev = regulator->rdev; + + if (rdev->constraints && + (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { + if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1) + return 1; + + if (rdev->desc->continuous_voltage_range && + rdev->constraints->min_uV && rdev->constraints->max_uV && + rdev->constraints->min_uV != rdev->constraints->max_uV) + return 1; + } + + return 0; +} +EXPORT_SYMBOL_GPL(regulator_can_change_voltage); + +/** + * regulator_count_voltages - count regulator_list_voltage() selectors + * @regulator: regulator source + * + * Returns number of selectors, or negative errno. Selectors are + * numbered starting at zero, and typically correspond to bitfields + * in hardware registers. + */ +int regulator_count_voltages(struct regulator *regulator) +{ + struct regulator_dev *rdev = regulator->rdev; + + if (rdev->desc->n_voltages) + return rdev->desc->n_voltages; + + if (!rdev->supply) + return -EINVAL; + + return regulator_count_voltages(rdev->supply); +} +EXPORT_SYMBOL_GPL(regulator_count_voltages); + +/** + * regulator_list_voltage - enumerate supported voltages + * @regulator: regulator source + * @selector: identify voltage to list + * Context: can sleep + * + * Returns a voltage that can be passed to @regulator_set_voltage(), + * zero if this selector code can't be used on this system, or a + * negative errno. + */ +int regulator_list_voltage(struct regulator *regulator, unsigned selector) +{ + struct regulator_dev *rdev = regulator->rdev; + const struct regulator_ops *ops = rdev->desc->ops; + int ret; + + if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) + return rdev->desc->fixed_uV; + + if (ops->list_voltage) { + if (selector >= rdev->desc->n_voltages) + return -EINVAL; + mutex_lock(&rdev->mutex); + ret = ops->list_voltage(rdev, selector); + mutex_unlock(&rdev->mutex); + } else if (rdev->supply) { + ret = regulator_list_voltage(rdev->supply, selector); + } else { + return -EINVAL; + } + + if (ret > 0) { + if (ret < rdev->constraints->min_uV) + ret = 0; + else if (ret > rdev->constraints->max_uV) + ret = 0; + } + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_list_voltage); + +/** + * regulator_get_regmap - get the regulator's register map + * @regulator: regulator source + * + * Returns the register map for the given regulator, or an ERR_PTR value + * if the regulator doesn't use regmap. + */ +struct regmap *regulator_get_regmap(struct regulator *regulator) +{ + struct regmap *map = regulator->rdev->regmap; + + return map ? map : ERR_PTR(-EOPNOTSUPP); +} + +/** + * regulator_get_hardware_vsel_register - get the HW voltage selector register + * @regulator: regulator source + * @vsel_reg: voltage selector register, output parameter + * @vsel_mask: mask for voltage selector bitfield, output parameter + * + * Returns the hardware register offset and bitmask used for setting the + * regulator voltage. This might be useful when configuring voltage-scaling + * hardware or firmware that can make I2C requests behind the kernel's back, + * for example. + * + * On success, the output parameters @vsel_reg and @vsel_mask are filled in + * and 0 is returned, otherwise a negative errno is returned. + */ +int regulator_get_hardware_vsel_register(struct regulator *regulator, + unsigned *vsel_reg, + unsigned *vsel_mask) +{ + struct regulator_dev *rdev = regulator->rdev; + const struct regulator_ops *ops = rdev->desc->ops; + + if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) + return -EOPNOTSUPP; + + *vsel_reg = rdev->desc->vsel_reg; + *vsel_mask = rdev->desc->vsel_mask; + + return 0; +} +EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); + +/** + * regulator_list_hardware_vsel - get the HW-specific register value for a selector + * @regulator: regulator source + * @selector: identify voltage to list + * + * Converts the selector to a hardware-specific voltage selector that can be + * directly written to the regulator registers. The address of the voltage + * register can be determined by calling @regulator_get_hardware_vsel_register. + * + * On error a negative errno is returned. + */ +int regulator_list_hardware_vsel(struct regulator *regulator, + unsigned selector) +{ + struct regulator_dev *rdev = regulator->rdev; + const struct regulator_ops *ops = rdev->desc->ops; + + if (selector >= rdev->desc->n_voltages) + return -EINVAL; + if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) + return -EOPNOTSUPP; + + return selector; +} +EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); + +/** + * regulator_get_linear_step - return the voltage step size between VSEL values + * @regulator: regulator source + * + * Returns the voltage step size between VSEL values for linear + * regulators, or return 0 if the regulator isn't a linear regulator. + */ +unsigned int regulator_get_linear_step(struct regulator *regulator) +{ + struct regulator_dev *rdev = regulator->rdev; + + return rdev->desc->uV_step; +} +EXPORT_SYMBOL_GPL(regulator_get_linear_step); + +/** + * regulator_is_supported_voltage - check if a voltage range can be supported + * + * @regulator: Regulator to check. + * @min_uV: Minimum required voltage in uV. + * @max_uV: Maximum required voltage in uV. + * + * Returns a boolean or a negative error code. + */ +int regulator_is_supported_voltage(struct regulator *regulator, + int min_uV, int max_uV) +{ + struct regulator_dev *rdev = regulator->rdev; + int i, voltages, ret; + + /* If we can't change voltage check the current voltage */ + if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { + ret = regulator_get_voltage(regulator); + if (ret >= 0) + return min_uV <= ret && ret <= max_uV; + else + return ret; + } + + /* Any voltage within constrains range is fine? */ + if (rdev->desc->continuous_voltage_range) + return min_uV >= rdev->constraints->min_uV && + max_uV <= rdev->constraints->max_uV; + + ret = regulator_count_voltages(regulator); + if (ret < 0) + return ret; + voltages = ret; + + for (i = 0; i < voltages; i++) { + ret = regulator_list_voltage(regulator, i); + + if (ret >= min_uV && ret <= max_uV) + return 1; + } + + return 0; +} +EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); + +static int _regulator_call_set_voltage(struct regulator_dev *rdev, + int min_uV, int max_uV, + unsigned *selector) +{ + struct pre_voltage_change_data data; + int ret; + + data.old_uV = _regulator_get_voltage(rdev); + data.min_uV = min_uV; + data.max_uV = max_uV; + ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, + &data); + if (ret & NOTIFY_STOP_MASK) + return -EINVAL; + + ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); + if (ret >= 0) + return ret; + + _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, + (void *)data.old_uV); + + return ret; +} + +static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, + int uV, unsigned selector) +{ + struct pre_voltage_change_data data; + int ret; + + data.old_uV = _regulator_get_voltage(rdev); + data.min_uV = uV; + data.max_uV = uV; + ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, + &data); + if (ret & NOTIFY_STOP_MASK) + return -EINVAL; + + ret = rdev->desc->ops->set_voltage_sel(rdev, selector); + if (ret >= 0) + return ret; + + _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, + (void *)data.old_uV); + + return ret; +} + +static int _regulator_do_set_voltage(struct regulator_dev *rdev, + int min_uV, int max_uV) +{ + int ret; + int delay = 0; + int best_val = 0; + unsigned int selector; + int old_selector = -1; + + trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); + + min_uV += rdev->constraints->uV_offset; + max_uV += rdev->constraints->uV_offset; + + /* + * If we can't obtain the old selector there is not enough + * info to call set_voltage_time_sel(). + */ + if (_regulator_is_enabled(rdev) && + rdev->desc->ops->set_voltage_time_sel && + rdev->desc->ops->get_voltage_sel) { + old_selector = rdev->desc->ops->get_voltage_sel(rdev); + if (old_selector < 0) + return old_selector; + } + + if (rdev->desc->ops->set_voltage) { + ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, + &selector); + + if (ret >= 0) { + if (rdev->desc->ops->list_voltage) + best_val = rdev->desc->ops->list_voltage(rdev, + selector); + else + best_val = _regulator_get_voltage(rdev); + } + + } else if (rdev->desc->ops->set_voltage_sel) { + if (rdev->desc->ops->map_voltage) { + ret = rdev->desc->ops->map_voltage(rdev, min_uV, + max_uV); + } else { + if (rdev->desc->ops->list_voltage == + regulator_list_voltage_linear) + ret = regulator_map_voltage_linear(rdev, + min_uV, max_uV); + else if (rdev->desc->ops->list_voltage == + regulator_list_voltage_linear_range) + ret = regulator_map_voltage_linear_range(rdev, + min_uV, max_uV); + else + ret = regulator_map_voltage_iterate(rdev, + min_uV, max_uV); + } + + if (ret >= 0) { + best_val = rdev->desc->ops->list_voltage(rdev, ret); + if (min_uV <= best_val && max_uV >= best_val) { + selector = ret; + if (old_selector == selector) + ret = 0; + else + ret = _regulator_call_set_voltage_sel( + rdev, best_val, selector); + } else { + ret = -EINVAL; + } + } + } else { + ret = -EINVAL; + } + + /* Call set_voltage_time_sel if successfully obtained old_selector */ + if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0 + && old_selector != selector) { + + delay = rdev->desc->ops->set_voltage_time_sel(rdev, + old_selector, selector); + if (delay < 0) { + rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", + delay); + delay = 0; + } + + /* Insert any necessary delays */ + if (delay >= 1000) { + mdelay(delay / 1000); + udelay(delay % 1000); + } else if (delay) { + udelay(delay); + } + } + + if (ret == 0 && best_val >= 0) { + unsigned long data = best_val; + + _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, + (void *)data); + } + + trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); + + return ret; +} + +/** + * regulator_set_voltage - set regulator output voltage + * @regulator: regulator source + * @min_uV: Minimum required voltage in uV + * @max_uV: Maximum acceptable voltage in uV + * + * Sets a voltage regulator to the desired output voltage. This can be set + * during any regulator state. IOW, regulator can be disabled or enabled. + * + * If the regulator is enabled then the voltage will change to the new value + * immediately otherwise if the regulator is disabled the regulator will + * output at the new voltage when enabled. + * + * NOTE: If the regulator is shared between several devices then the lowest + * request voltage that meets the system constraints will be used. + * Regulator system constraints must be set for this regulator before + * calling this function otherwise this call will fail. + */ +int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) +{ + struct regulator_dev *rdev = regulator->rdev; + int ret = 0; + int old_min_uV, old_max_uV; + int current_uV; + + mutex_lock(&rdev->mutex); + + /* If we're setting the same range as last time the change + * should be a noop (some cpufreq implementations use the same + * voltage for multiple frequencies, for example). + */ + if (regulator->min_uV == min_uV && regulator->max_uV == max_uV) + goto out; + + /* If we're trying to set a range that overlaps the current voltage, + * return succesfully even though the regulator does not support + * changing the voltage. + */ + if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) { + current_uV = _regulator_get_voltage(rdev); + if (min_uV <= current_uV && current_uV <= max_uV) { + regulator->min_uV = min_uV; + regulator->max_uV = max_uV; + goto out; + } + } + + /* sanity check */ + if (!rdev->desc->ops->set_voltage && + !rdev->desc->ops->set_voltage_sel) { + ret = -EINVAL; + goto out; + } + + /* constraints check */ + ret = regulator_check_voltage(rdev, &min_uV, &max_uV); + if (ret < 0) + goto out; + + /* restore original values in case of error */ + old_min_uV = regulator->min_uV; + old_max_uV = regulator->max_uV; + regulator->min_uV = min_uV; + regulator->max_uV = max_uV; + + ret = regulator_check_consumers(rdev, &min_uV, &max_uV); + if (ret < 0) + goto out2; + + ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); + if (ret < 0) + goto out2; + +out: + mutex_unlock(&rdev->mutex); + return ret; +out2: + regulator->min_uV = old_min_uV; + regulator->max_uV = old_max_uV; + mutex_unlock(&rdev->mutex); + return ret; +} +EXPORT_SYMBOL_GPL(regulator_set_voltage); + +/** + * regulator_set_voltage_time - get raise/fall time + * @regulator: regulator source + * @old_uV: starting voltage in microvolts + * @new_uV: target voltage in microvolts + * + * Provided with the starting and ending voltage, this function attempts to + * calculate the time in microseconds required to rise or fall to this new + * voltage. + */ +int regulator_set_voltage_time(struct regulator *regulator, + int old_uV, int new_uV) +{ + struct regulator_dev *rdev = regulator->rdev; + const struct regulator_ops *ops = rdev->desc->ops; + int old_sel = -1; + int new_sel = -1; + int voltage; + int i; + + /* Currently requires operations to do this */ + if (!ops->list_voltage || !ops->set_voltage_time_sel + || !rdev->desc->n_voltages) + return -EINVAL; + + for (i = 0; i < rdev->desc->n_voltages; i++) { + /* We only look for exact voltage matches here */ + voltage = regulator_list_voltage(regulator, i); + if (voltage < 0) + return -EINVAL; + if (voltage == 0) + continue; + if (voltage == old_uV) + old_sel = i; + if (voltage == new_uV) + new_sel = i; + } + + if (old_sel < 0 || new_sel < 0) + return -EINVAL; + + return ops->set_voltage_time_sel(rdev, old_sel, new_sel); +} +EXPORT_SYMBOL_GPL(regulator_set_voltage_time); + +/** + * regulator_set_voltage_time_sel - get raise/fall time + * @rdev: regulator source device + * @old_selector: selector for starting voltage + * @new_selector: selector for target voltage + * + * Provided with the starting and target voltage selectors, this function + * returns time in microseconds required to rise or fall to this new voltage + * + * Drivers providing ramp_delay in regulation_constraints can use this as their + * set_voltage_time_sel() operation. + */ +int regulator_set_voltage_time_sel(struct regulator_dev *rdev, + unsigned int old_selector, + unsigned int new_selector) +{ + unsigned int ramp_delay = 0; + int old_volt, new_volt; + + if (rdev->constraints->ramp_delay) + ramp_delay = rdev->constraints->ramp_delay; + else if (rdev->desc->ramp_delay) + ramp_delay = rdev->desc->ramp_delay; + + if (ramp_delay == 0) { + rdev_warn(rdev, "ramp_delay not set\n"); + return 0; + } + + /* sanity check */ + if (!rdev->desc->ops->list_voltage) + return -EINVAL; + + old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); + new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); + + return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay); +} +EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); + +/** + * regulator_sync_voltage - re-apply last regulator output voltage + * @regulator: regulator source + * + * Re-apply the last configured voltage. This is intended to be used + * where some external control source the consumer is cooperating with + * has caused the configured voltage to change. + */ +int regulator_sync_voltage(struct regulator *regulator) +{ + struct regulator_dev *rdev = regulator->rdev; + int ret, min_uV, max_uV; + + mutex_lock(&rdev->mutex); + + if (!rdev->desc->ops->set_voltage && + !rdev->desc->ops->set_voltage_sel) { + ret = -EINVAL; + goto out; + } + + /* This is only going to work if we've had a voltage configured. */ + if (!regulator->min_uV && !regulator->max_uV) { + ret = -EINVAL; + goto out; + } + + min_uV = regulator->min_uV; + max_uV = regulator->max_uV; + + /* This should be a paranoia check... */ + ret = regulator_check_voltage(rdev, &min_uV, &max_uV); + if (ret < 0) + goto out; + + ret = regulator_check_consumers(rdev, &min_uV, &max_uV); + if (ret < 0) + goto out; + + ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); + +out: + mutex_unlock(&rdev->mutex); + return ret; +} +EXPORT_SYMBOL_GPL(regulator_sync_voltage); + +static int _regulator_get_voltage(struct regulator_dev *rdev) +{ + int sel, ret; + + if (rdev->desc->ops->get_voltage_sel) { + sel = rdev->desc->ops->get_voltage_sel(rdev); + if (sel < 0) + return sel; + ret = rdev->desc->ops->list_voltage(rdev, sel); + } else if (rdev->desc->ops->get_voltage) { + ret = rdev->desc->ops->get_voltage(rdev); + } else if (rdev->desc->ops->list_voltage) { + ret = rdev->desc->ops->list_voltage(rdev, 0); + } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { + ret = rdev->desc->fixed_uV; + } else if (rdev->supply) { + ret = regulator_get_voltage(rdev->supply); + } else { + return -EINVAL; + } + + if (ret < 0) + return ret; + return ret - rdev->constraints->uV_offset; +} + +/** + * regulator_get_voltage - get regulator output voltage + * @regulator: regulator source + * + * This returns the current regulator voltage in uV. + * + * NOTE: If the regulator is disabled it will return the voltage value. This + * function should not be used to determine regulator state. + */ +int regulator_get_voltage(struct regulator *regulator) +{ + int ret; + + mutex_lock(®ulator->rdev->mutex); + + ret = _regulator_get_voltage(regulator->rdev); + + mutex_unlock(®ulator->rdev->mutex); + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_get_voltage); + +/** + * regulator_set_current_limit - set regulator output current limit + * @regulator: regulator source + * @min_uA: Minimum supported current in uA + * @max_uA: Maximum supported current in uA + * + * Sets current sink to the desired output current. This can be set during + * any regulator state. IOW, regulator can be disabled or enabled. + * + * If the regulator is enabled then the current will change to the new value + * immediately otherwise if the regulator is disabled the regulator will + * output at the new current when enabled. + * + * NOTE: Regulator system constraints must be set for this regulator before + * calling this function otherwise this call will fail. + */ +int regulator_set_current_limit(struct regulator *regulator, + int min_uA, int max_uA) +{ + struct regulator_dev *rdev = regulator->rdev; + int ret; + + mutex_lock(&rdev->mutex); + + /* sanity check */ + if (!rdev->desc->ops->set_current_limit) { + ret = -EINVAL; + goto out; + } + + /* constraints check */ + ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); + if (ret < 0) + goto out; + + ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); +out: + mutex_unlock(&rdev->mutex); + return ret; +} +EXPORT_SYMBOL_GPL(regulator_set_current_limit); + +static int _regulator_get_current_limit(struct regulator_dev *rdev) +{ + int ret; + + mutex_lock(&rdev->mutex); + + /* sanity check */ + if (!rdev->desc->ops->get_current_limit) { + ret = -EINVAL; + goto out; + } + + ret = rdev->desc->ops->get_current_limit(rdev); +out: + mutex_unlock(&rdev->mutex); + return ret; +} + +/** + * regulator_get_current_limit - get regulator output current + * @regulator: regulator source + * + * This returns the current supplied by the specified current sink in uA. + * + * NOTE: If the regulator is disabled it will return the current value. This + * function should not be used to determine regulator state. + */ +int regulator_get_current_limit(struct regulator *regulator) +{ + return _regulator_get_current_limit(regulator->rdev); +} +EXPORT_SYMBOL_GPL(regulator_get_current_limit); + +/** + * regulator_set_mode - set regulator operating mode + * @regulator: regulator source + * @mode: operating mode - one of the REGULATOR_MODE constants + * + * Set regulator operating mode to increase regulator efficiency or improve + * regulation performance. + * + * NOTE: Regulator system constraints must be set for this regulator before + * calling this function otherwise this call will fail. + */ +int regulator_set_mode(struct regulator *regulator, unsigned int mode) +{ + struct regulator_dev *rdev = regulator->rdev; + int ret; + int regulator_curr_mode; + + mutex_lock(&rdev->mutex); + + /* sanity check */ + if (!rdev->desc->ops->set_mode) { + ret = -EINVAL; + goto out; + } + + /* return if the same mode is requested */ + if (rdev->desc->ops->get_mode) { + regulator_curr_mode = rdev->desc->ops->get_mode(rdev); + if (regulator_curr_mode == mode) { + ret = 0; + goto out; + } + } + + /* constraints check */ + ret = regulator_mode_constrain(rdev, &mode); + if (ret < 0) + goto out; + + ret = rdev->desc->ops->set_mode(rdev, mode); +out: + mutex_unlock(&rdev->mutex); + return ret; +} +EXPORT_SYMBOL_GPL(regulator_set_mode); + +static unsigned int _regulator_get_mode(struct regulator_dev *rdev) +{ + int ret; + + mutex_lock(&rdev->mutex); + + /* sanity check */ + if (!rdev->desc->ops->get_mode) { + ret = -EINVAL; + goto out; + } + + ret = rdev->desc->ops->get_mode(rdev); +out: + mutex_unlock(&rdev->mutex); + return ret; +} + +/** + * regulator_get_mode - get regulator operating mode + * @regulator: regulator source + * + * Get the current regulator operating mode. + */ +unsigned int regulator_get_mode(struct regulator *regulator) +{ + return _regulator_get_mode(regulator->rdev); +} +EXPORT_SYMBOL_GPL(regulator_get_mode); + +/** + * regulator_set_load - set regulator load + * @regulator: regulator source + * @uA_load: load current + * + * Notifies the regulator core of a new device load. This is then used by + * DRMS (if enabled by constraints) to set the most efficient regulator + * operating mode for the new regulator loading. + * + * Consumer devices notify their supply regulator of the maximum power + * they will require (can be taken from device datasheet in the power + * consumption tables) when they change operational status and hence power + * state. Examples of operational state changes that can affect power + * consumption are :- + * + * o Device is opened / closed. + * o Device I/O is about to begin or has just finished. + * o Device is idling in between work. + * + * This information is also exported via sysfs to userspace. + * + * DRMS will sum the total requested load on the regulator and change + * to the most efficient operating mode if platform constraints allow. + * + * On error a negative errno is returned. + */ +int regulator_set_load(struct regulator *regulator, int uA_load) +{ + struct regulator_dev *rdev = regulator->rdev; + int ret; + + mutex_lock(&rdev->mutex); + regulator->uA_load = uA_load; + ret = drms_uA_update(rdev); + mutex_unlock(&rdev->mutex); + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_set_load); + +/** + * regulator_allow_bypass - allow the regulator to go into bypass mode + * + * @regulator: Regulator to configure + * @enable: enable or disable bypass mode + * + * Allow the regulator to go into bypass mode if all other consumers + * for the regulator also enable bypass mode and the machine + * constraints allow this. Bypass mode means that the regulator is + * simply passing the input directly to the output with no regulation. + */ +int regulator_allow_bypass(struct regulator *regulator, bool enable) +{ + struct regulator_dev *rdev = regulator->rdev; + int ret = 0; + + if (!rdev->desc->ops->set_bypass) + return 0; + + if (rdev->constraints && + !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS)) + return 0; + + mutex_lock(&rdev->mutex); + + if (enable && !regulator->bypass) { + rdev->bypass_count++; + + if (rdev->bypass_count == rdev->open_count) { + ret = rdev->desc->ops->set_bypass(rdev, enable); + if (ret != 0) + rdev->bypass_count--; + } + + } else if (!enable && regulator->bypass) { + rdev->bypass_count--; + + if (rdev->bypass_count != rdev->open_count) { + ret = rdev->desc->ops->set_bypass(rdev, enable); + if (ret != 0) + rdev->bypass_count++; + } + } + + if (ret == 0) + regulator->bypass = enable; + + mutex_unlock(&rdev->mutex); + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_allow_bypass); + +/** + * regulator_register_notifier - register regulator event notifier + * @regulator: regulator source + * @nb: notifier block + * + * Register notifier block to receive regulator events. + */ +int regulator_register_notifier(struct regulator *regulator, + struct notifier_block *nb) +{ + return blocking_notifier_chain_register(®ulator->rdev->notifier, + nb); +} +EXPORT_SYMBOL_GPL(regulator_register_notifier); + +/** + * regulator_unregister_notifier - unregister regulator event notifier + * @regulator: regulator source + * @nb: notifier block + * + * Unregister regulator event notifier block. + */ +int regulator_unregister_notifier(struct regulator *regulator, + struct notifier_block *nb) +{ + return blocking_notifier_chain_unregister(®ulator->rdev->notifier, + nb); +} +EXPORT_SYMBOL_GPL(regulator_unregister_notifier); + +/* notify regulator consumers and downstream regulator consumers. + * Note mutex must be held by caller. + */ +static int _notifier_call_chain(struct regulator_dev *rdev, + unsigned long event, void *data) +{ + /* call rdev chain first */ + return blocking_notifier_call_chain(&rdev->notifier, event, data); +} + +/** + * regulator_bulk_get - get multiple regulator consumers + * + * @dev: Device to supply + * @num_consumers: Number of consumers to register + * @consumers: Configuration of consumers; clients are stored here. + * + * @return 0 on success, an errno on failure. + * + * This helper function allows drivers to get several regulator + * consumers in one operation. If any of the regulators cannot be + * acquired then any regulators that were allocated will be freed + * before returning to the caller. + */ +int regulator_bulk_get(struct device *dev, int num_consumers, + struct regulator_bulk_data *consumers) +{ + int i; + int ret; + + for (i = 0; i < num_consumers; i++) + consumers[i].consumer = NULL; + + for (i = 0; i < num_consumers; i++) { + consumers[i].consumer = regulator_get(dev, + consumers[i].supply); + if (IS_ERR(consumers[i].consumer)) { + ret = PTR_ERR(consumers[i].consumer); + dev_err(dev, "Failed to get supply '%s': %d\n", + consumers[i].supply, ret); + consumers[i].consumer = NULL; + goto err; + } + } + + return 0; + +err: + while (--i >= 0) + regulator_put(consumers[i].consumer); + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_bulk_get); + +static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) +{ + struct regulator_bulk_data *bulk = data; + + bulk->ret = regulator_enable(bulk->consumer); +} + +/** + * regulator_bulk_enable - enable multiple regulator consumers + * + * @num_consumers: Number of consumers + * @consumers: Consumer data; clients are stored here. + * @return 0 on success, an errno on failure + * + * This convenience API allows consumers to enable multiple regulator + * clients in a single API call. If any consumers cannot be enabled + * then any others that were enabled will be disabled again prior to + * return. + */ +int regulator_bulk_enable(int num_consumers, + struct regulator_bulk_data *consumers) +{ + ASYNC_DOMAIN_EXCLUSIVE(async_domain); + int i; + int ret = 0; + + for (i = 0; i < num_consumers; i++) { + if (consumers[i].consumer->always_on) + consumers[i].ret = 0; + else + async_schedule_domain(regulator_bulk_enable_async, + &consumers[i], &async_domain); + } + + async_synchronize_full_domain(&async_domain); + + /* If any consumer failed we need to unwind any that succeeded */ + for (i = 0; i < num_consumers; i++) { + if (consumers[i].ret != 0) { + ret = consumers[i].ret; + goto err; + } + } + + return 0; + +err: + for (i = 0; i < num_consumers; i++) { + if (consumers[i].ret < 0) + pr_err("Failed to enable %s: %d\n", consumers[i].supply, + consumers[i].ret); + else + regulator_disable(consumers[i].consumer); + } + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_bulk_enable); + +/** + * regulator_bulk_disable - disable multiple regulator consumers + * + * @num_consumers: Number of consumers + * @consumers: Consumer data; clients are stored here. + * @return 0 on success, an errno on failure + * + * This convenience API allows consumers to disable multiple regulator + * clients in a single API call. If any consumers cannot be disabled + * then any others that were disabled will be enabled again prior to + * return. + */ +int regulator_bulk_disable(int num_consumers, + struct regulator_bulk_data *consumers) +{ + int i; + int ret, r; + + for (i = num_consumers - 1; i >= 0; --i) { + ret = regulator_disable(consumers[i].consumer); + if (ret != 0) + goto err; + } + + return 0; + +err: + pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret); + for (++i; i < num_consumers; ++i) { + r = regulator_enable(consumers[i].consumer); + if (r != 0) + pr_err("Failed to reename %s: %d\n", + consumers[i].supply, r); + } + + return ret; +} +EXPORT_SYMBOL_GPL(regulator_bulk_disable); + +/** + * regulator_bulk_force_disable - force disable multiple regulator consumers + * + * @num_consumers: Number of consumers + * @consumers: Consumer data; clients are stored here. + * @return 0 on success, an errno on failure + * + * This convenience API allows consumers to forcibly disable multiple regulator + * clients in a single API call. + * NOTE: This should be used for situations when device damage will + * likely occur if the regulators are not disabled (e.g. over temp). + * Although regulator_force_disable function call for some consumers can + * return error numbers, the function is called for all consumers. + */ +int regulator_bulk_force_disable(int num_consumers, + struct regulator_bulk_data *consumers) +{ + int i; + int ret; + + for (i = 0; i < num_consumers; i++) + consumers[i].ret = + regulator_force_disable(consumers[i].consumer); + + for (i = 0; i < num_consumers; i++) { + if (consumers[i].ret != 0) { + ret = consumers[i].ret; + goto out; + } + } + + return 0; +out: + return ret; +} +EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); + +/** + * regulator_bulk_free - free multiple regulator consumers + * + * @num_consumers: Number of consumers + * @consumers: Consumer data; clients are stored here. + * + * This convenience API allows consumers to free multiple regulator + * clients in a single API call. + */ +void regulator_bulk_free(int num_consumers, + struct regulator_bulk_data *consumers) +{ + int i; + + for (i = 0; i < num_consumers; i++) { + regulator_put(consumers[i].consumer); + consumers[i].consumer = NULL; + } +} +EXPORT_SYMBOL_GPL(regulator_bulk_free); + +/** + * regulator_notifier_call_chain - call regulator event notifier + * @rdev: regulator source + * @event: notifier block + * @data: callback-specific data. + * + * Called by regulator drivers to notify clients a regulator event has + * occurred. We also notify regulator clients downstream. + * Note lock must be held by caller. + */ +int regulator_notifier_call_chain(struct regulator_dev *rdev, + unsigned long event, void *data) +{ + _notifier_call_chain(rdev, event, data); + return NOTIFY_DONE; + +} +EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); + +/** + * regulator_mode_to_status - convert a regulator mode into a status + * + * @mode: Mode to convert + * + * Convert a regulator mode into a status. + */ +int regulator_mode_to_status(unsigned int mode) +{ + switch (mode) { + case REGULATOR_MODE_FAST: + return REGULATOR_STATUS_FAST; + case REGULATOR_MODE_NORMAL: + return REGULATOR_STATUS_NORMAL; + case REGULATOR_MODE_IDLE: + return REGULATOR_STATUS_IDLE; + case REGULATOR_MODE_STANDBY: + return REGULATOR_STATUS_STANDBY; + default: + return REGULATOR_STATUS_UNDEFINED; + } +} +EXPORT_SYMBOL_GPL(regulator_mode_to_status); + +static struct attribute *regulator_dev_attrs[] = { + &dev_attr_name.attr, + &dev_attr_num_users.attr, + &dev_attr_type.attr, + &dev_attr_microvolts.attr, + &dev_attr_microamps.attr, + &dev_attr_opmode.attr, + &dev_attr_state.attr, + &dev_attr_status.attr, + &dev_attr_bypass.attr, + &dev_attr_requested_microamps.attr, + &dev_attr_min_microvolts.attr, + &dev_attr_max_microvolts.attr, + &dev_attr_min_microamps.attr, + &dev_attr_max_microamps.attr, + &dev_attr_suspend_standby_state.attr, + &dev_attr_suspend_mem_state.attr, + &dev_attr_suspend_disk_state.attr, + &dev_attr_suspend_standby_microvolts.attr, + &dev_attr_suspend_mem_microvolts.attr, + &dev_attr_suspend_disk_microvolts.attr, + &dev_attr_suspend_standby_mode.attr, + &dev_attr_suspend_mem_mode.attr, + &dev_attr_suspend_disk_mode.attr, + NULL +}; + +/* + * To avoid cluttering sysfs (and memory) with useless state, only + * create attributes that can be meaningfully displayed. + */ +static umode_t regulator_attr_is_visible(struct kobject *kobj, + struct attribute *attr, int idx) +{ + struct device *dev = kobj_to_dev(kobj); + struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev); + const struct regulator_ops *ops = rdev->desc->ops; + umode_t mode = attr->mode; + + /* these three are always present */ + if (attr == &dev_attr_name.attr || + attr == &dev_attr_num_users.attr || + attr == &dev_attr_type.attr) + return mode; + + /* some attributes need specific methods to be displayed */ + if (attr == &dev_attr_microvolts.attr) { + if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || + (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || + (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || + (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) + return mode; + return 0; + } + + if (attr == &dev_attr_microamps.attr) + return ops->get_current_limit ? mode : 0; + + if (attr == &dev_attr_opmode.attr) + return ops->get_mode ? mode : 0; + + if (attr == &dev_attr_state.attr) + return (rdev->ena_pin || ops->is_enabled) ? mode : 0; + + if (attr == &dev_attr_status.attr) + return ops->get_status ? mode : 0; + + if (attr == &dev_attr_bypass.attr) + return ops->get_bypass ? mode : 0; + + /* some attributes are type-specific */ + if (attr == &dev_attr_requested_microamps.attr) + return rdev->desc->type == REGULATOR_CURRENT ? mode : 0; + + /* constraints need specific supporting methods */ + if (attr == &dev_attr_min_microvolts.attr || + attr == &dev_attr_max_microvolts.attr) + return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; + + if (attr == &dev_attr_min_microamps.attr || + attr == &dev_attr_max_microamps.attr) + return ops->set_current_limit ? mode : 0; + + if (attr == &dev_attr_suspend_standby_state.attr || + attr == &dev_attr_suspend_mem_state.attr || + attr == &dev_attr_suspend_disk_state.attr) + return mode; + + if (attr == &dev_attr_suspend_standby_microvolts.attr || + attr == &dev_attr_suspend_mem_microvolts.attr || + attr == &dev_attr_suspend_disk_microvolts.attr) + return ops->set_suspend_voltage ? mode : 0; + + if (attr == &dev_attr_suspend_standby_mode.attr || + attr == &dev_attr_suspend_mem_mode.attr || + attr == &dev_attr_suspend_disk_mode.attr) + return ops->set_suspend_mode ? mode : 0; + + return mode; +} + +static const struct attribute_group regulator_dev_group = { + .attrs = regulator_dev_attrs, + .is_visible = regulator_attr_is_visible, +}; + +static const struct attribute_group *regulator_dev_groups[] = { + ®ulator_dev_group, + NULL +}; + +static void regulator_dev_release(struct device *dev) +{ + struct regulator_dev *rdev = dev_get_drvdata(dev); + kfree(rdev); +} + +static struct class regulator_class = { + .name = "regulator", + .dev_release = regulator_dev_release, + .dev_groups = regulator_dev_groups, +}; + +static void rdev_init_debugfs(struct regulator_dev *rdev) +{ + struct device *parent = rdev->dev.parent; + const char *rname = rdev_get_name(rdev); + char name[NAME_MAX]; + + /* Avoid duplicate debugfs directory names */ + if (parent && rname == rdev->desc->name) { + snprintf(name, sizeof(name), "%s-%s", dev_name(parent), + rname); + rname = name; + } + + rdev->debugfs = debugfs_create_dir(rname, debugfs_root); + if (!rdev->debugfs) { + rdev_warn(rdev, "Failed to create debugfs directory\n"); + return; + } + + debugfs_create_u32("use_count", 0444, rdev->debugfs, + &rdev->use_count); + debugfs_create_u32("open_count", 0444, rdev->debugfs, + &rdev->open_count); + debugfs_create_u32("bypass_count", 0444, rdev->debugfs, + &rdev->bypass_count); +} + +/** + * regulator_register - register regulator + * @regulator_desc: regulator to register + * @cfg: runtime configuration for regulator + * + * Called by regulator drivers to register a regulator. + * Returns a valid pointer to struct regulator_dev on success + * or an ERR_PTR() on error. + */ +struct regulator_dev * +regulator_register(const struct regulator_desc *regulator_desc, + const struct regulator_config *cfg) +{ + const struct regulation_constraints *constraints = NULL; + const struct regulator_init_data *init_data; + struct regulator_config *config = NULL; + static atomic_t regulator_no = ATOMIC_INIT(-1); + struct regulator_dev *rdev; + struct device *dev; + int ret, i; + + if (regulator_desc == NULL || cfg == NULL) + return ERR_PTR(-EINVAL); + + dev = cfg->dev; + WARN_ON(!dev); + + if (regulator_desc->name == NULL || regulator_desc->ops == NULL) + return ERR_PTR(-EINVAL); + + if (regulator_desc->type != REGULATOR_VOLTAGE && + regulator_desc->type != REGULATOR_CURRENT) + return ERR_PTR(-EINVAL); + + /* Only one of each should be implemented */ + WARN_ON(regulator_desc->ops->get_voltage && + regulator_desc->ops->get_voltage_sel); + WARN_ON(regulator_desc->ops->set_voltage && + regulator_desc->ops->set_voltage_sel); + + /* If we're using selectors we must implement list_voltage. */ + if (regulator_desc->ops->get_voltage_sel && + !regulator_desc->ops->list_voltage) { + return ERR_PTR(-EINVAL); + } + if (regulator_desc->ops->set_voltage_sel && + !regulator_desc->ops->list_voltage) { + return ERR_PTR(-EINVAL); + } + + rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); + if (rdev == NULL) + return ERR_PTR(-ENOMEM); + + /* + * Duplicate the config so the driver could override it after + * parsing init data. + */ + config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); + if (config == NULL) { + kfree(rdev); + return ERR_PTR(-ENOMEM); + } + + init_data = regulator_of_get_init_data(dev, regulator_desc, config, + &rdev->dev.of_node); + if (!init_data) { + init_data = config->init_data; + rdev->dev.of_node = of_node_get(config->of_node); + } + + mutex_lock(®ulator_list_mutex); + + mutex_init(&rdev->mutex); + rdev->reg_data = config->driver_data; + rdev->owner = regulator_desc->owner; + rdev->desc = regulator_desc; + if (config->regmap) + rdev->regmap = config->regmap; + else if (dev_get_regmap(dev, NULL)) + rdev->regmap = dev_get_regmap(dev, NULL); + else if (dev->parent) + rdev->regmap = dev_get_regmap(dev->parent, NULL); + INIT_LIST_HEAD(&rdev->consumer_list); + INIT_LIST_HEAD(&rdev->list); + BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); + INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); + + /* preform any regulator specific init */ + if (init_data && init_data->regulator_init) { + ret = init_data->regulator_init(rdev->reg_data); + if (ret < 0) + goto clean; + } + + /* register with sysfs */ + rdev->dev.class = ®ulator_class; + rdev->dev.parent = dev; + dev_set_name(&rdev->dev, "regulator.%lu", + (unsigned long) atomic_inc_return(®ulator_no)); + ret = device_register(&rdev->dev); + if (ret != 0) { + put_device(&rdev->dev); + goto clean; + } + + dev_set_drvdata(&rdev->dev, rdev); + + if ((config->ena_gpio || config->ena_gpio_initialized) && + gpio_is_valid(config->ena_gpio)) { + ret = regulator_ena_gpio_request(rdev, config); + if (ret != 0) { + rdev_err(rdev, "Failed to request enable GPIO%d: %d\n", + config->ena_gpio, ret); + goto wash; + } + } + + /* set regulator constraints */ + if (init_data) + constraints = &init_data->constraints; + + ret = set_machine_constraints(rdev, constraints); + if (ret < 0) + goto scrub; + + if (init_data && init_data->supply_regulator) + rdev->supply_name = init_data->supply_regulator; + else if (regulator_desc->supply_name) + rdev->supply_name = regulator_desc->supply_name; + + /* add consumers devices */ + if (init_data) { + for (i = 0; i < init_data->num_consumer_supplies; i++) { + ret = set_consumer_device_supply(rdev, + init_data->consumer_supplies[i].dev_name, + init_data->consumer_supplies[i].supply); + if (ret < 0) { + dev_err(dev, "Failed to set supply %s\n", + init_data->consumer_supplies[i].supply); + goto unset_supplies; + } + } + } + + list_add(&rdev->list, ®ulator_list); + + rdev_init_debugfs(rdev); +out: + mutex_unlock(®ulator_list_mutex); + kfree(config); + return rdev; + +unset_supplies: + unset_regulator_supplies(rdev); + +scrub: + regulator_ena_gpio_free(rdev); + kfree(rdev->constraints); +wash: + device_unregister(&rdev->dev); + /* device core frees rdev */ + rdev = ERR_PTR(ret); + goto out; + +clean: + kfree(rdev); + rdev = ERR_PTR(ret); + goto out; +} +EXPORT_SYMBOL_GPL(regulator_register); + +/** + * regulator_unregister - unregister regulator + * @rdev: regulator to unregister + * + * Called by regulator drivers to unregister a regulator. + */ +void regulator_unregister(struct regulator_dev *rdev) +{ + if (rdev == NULL) + return; + + if (rdev->supply) { + while (rdev->use_count--) + regulator_disable(rdev->supply); + regulator_put(rdev->supply); + } + mutex_lock(®ulator_list_mutex); + debugfs_remove_recursive(rdev->debugfs); + flush_work(&rdev->disable_work.work); + WARN_ON(rdev->open_count); + unset_regulator_supplies(rdev); + list_del(&rdev->list); + kfree(rdev->constraints); + regulator_ena_gpio_free(rdev); + of_node_put(rdev->dev.of_node); + device_unregister(&rdev->dev); + mutex_unlock(®ulator_list_mutex); +} +EXPORT_SYMBOL_GPL(regulator_unregister); + +/** + * regulator_suspend_prepare - prepare regulators for system wide suspend + * @state: system suspend state + * + * Configure each regulator with it's suspend operating parameters for state. + * This will usually be called by machine suspend code prior to supending. + */ +int regulator_suspend_prepare(suspend_state_t state) +{ + struct regulator_dev *rdev; + int ret = 0; + + /* ON is handled by regulator active state */ + if (state == PM_SUSPEND_ON) + return -EINVAL; + + mutex_lock(®ulator_list_mutex); + list_for_each_entry(rdev, ®ulator_list, list) { + + mutex_lock(&rdev->mutex); + ret = suspend_prepare(rdev, state); + mutex_unlock(&rdev->mutex); + + if (ret < 0) { + rdev_err(rdev, "failed to prepare\n"); + goto out; + } + } +out: + mutex_unlock(®ulator_list_mutex); + return ret; +} +EXPORT_SYMBOL_GPL(regulator_suspend_prepare); + +/** + * regulator_suspend_finish - resume regulators from system wide suspend + * + * Turn on regulators that might be turned off by regulator_suspend_prepare + * and that should be turned on according to the regulators properties. + */ +int regulator_suspend_finish(void) +{ + struct regulator_dev *rdev; + int ret = 0, error; + + mutex_lock(®ulator_list_mutex); + list_for_each_entry(rdev, ®ulator_list, list) { + mutex_lock(&rdev->mutex); + if (rdev->use_count > 0 || rdev->constraints->always_on) { + if (!_regulator_is_enabled(rdev)) { + error = _regulator_do_enable(rdev); + if (error) + ret = error; + } + } else { + if (!have_full_constraints()) + goto unlock; + if (!_regulator_is_enabled(rdev)) + goto unlock; + + error = _regulator_do_disable(rdev); + if (error) + ret = error; + } +unlock: + mutex_unlock(&rdev->mutex); + } + mutex_unlock(®ulator_list_mutex); + return ret; +} +EXPORT_SYMBOL_GPL(regulator_suspend_finish); + +/** + * regulator_has_full_constraints - the system has fully specified constraints + * + * Calling this function will cause the regulator API to disable all + * regulators which have a zero use count and don't have an always_on + * constraint in a late_initcall. + * + * The intention is that this will become the default behaviour in a + * future kernel release so users are encouraged to use this facility + * now. + */ +void regulator_has_full_constraints(void) +{ + has_full_constraints = 1; +} +EXPORT_SYMBOL_GPL(regulator_has_full_constraints); + +/** + * rdev_get_drvdata - get rdev regulator driver data + * @rdev: regulator + * + * Get rdev regulator driver private data. This call can be used in the + * regulator driver context. + */ +void *rdev_get_drvdata(struct regulator_dev *rdev) +{ + return rdev->reg_data; +} +EXPORT_SYMBOL_GPL(rdev_get_drvdata); + +/** + * regulator_get_drvdata - get regulator driver data + * @regulator: regulator + * + * Get regulator driver private data. This call can be used in the consumer + * driver context when non API regulator specific functions need to be called. + */ +void *regulator_get_drvdata(struct regulator *regulator) +{ + return regulator->rdev->reg_data; +} +EXPORT_SYMBOL_GPL(regulator_get_drvdata); + +/** + * regulator_set_drvdata - set regulator driver data + * @regulator: regulator + * @data: data + */ +void regulator_set_drvdata(struct regulator *regulator, void *data) +{ + regulator->rdev->reg_data = data; +} +EXPORT_SYMBOL_GPL(regulator_set_drvdata); + +/** + * regulator_get_id - get regulator ID + * @rdev: regulator + */ +int rdev_get_id(struct regulator_dev *rdev) +{ + return rdev->desc->id; +} +EXPORT_SYMBOL_GPL(rdev_get_id); + +struct device *rdev_get_dev(struct regulator_dev *rdev) +{ + return &rdev->dev; +} +EXPORT_SYMBOL_GPL(rdev_get_dev); + +void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) +{ + return reg_init_data->driver_data; +} +EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); + +#ifdef CONFIG_DEBUG_FS +static ssize_t supply_map_read_file(struct file *file, char __user *user_buf, + size_t count, loff_t *ppos) +{ + char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); + ssize_t len, ret = 0; + struct regulator_map *map; + + if (!buf) + return -ENOMEM; + + list_for_each_entry(map, ®ulator_map_list, list) { + len = snprintf(buf + ret, PAGE_SIZE - ret, + "%s -> %s.%s\n", + rdev_get_name(map->regulator), map->dev_name, + map->supply); + if (len >= 0) + ret += len; + if (ret > PAGE_SIZE) { + ret = PAGE_SIZE; + break; + } + } + + ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); + + kfree(buf); + + return ret; +} +#endif + +static const struct file_operations supply_map_fops = { +#ifdef CONFIG_DEBUG_FS + .read = supply_map_read_file, + .llseek = default_llseek, +#endif +}; + +#ifdef CONFIG_DEBUG_FS +static void regulator_summary_show_subtree(struct seq_file *s, + struct regulator_dev *rdev, + int level) +{ + struct list_head *list = s->private; + struct regulator_dev *child; + struct regulation_constraints *c; + struct regulator *consumer; + + if (!rdev) + return; + + seq_printf(s, "%*s%-*s %3d %4d %6d ", + level * 3 + 1, "", + 30 - level * 3, rdev_get_name(rdev), + rdev->use_count, rdev->open_count, rdev->bypass_count); + + seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000); + seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000); + + c = rdev->constraints; + if (c) { + switch (rdev->desc->type) { + case REGULATOR_VOLTAGE: + seq_printf(s, "%5dmV %5dmV ", + c->min_uV / 1000, c->max_uV / 1000); + break; + case REGULATOR_CURRENT: + seq_printf(s, "%5dmA %5dmA ", + c->min_uA / 1000, c->max_uA / 1000); + break; + } + } + + seq_puts(s, "\n"); + + list_for_each_entry(consumer, &rdev->consumer_list, list) { + if (consumer->dev->class == ®ulator_class) + continue; + + seq_printf(s, "%*s%-*s ", + (level + 1) * 3 + 1, "", + 30 - (level + 1) * 3, dev_name(consumer->dev)); + + switch (rdev->desc->type) { + case REGULATOR_VOLTAGE: + seq_printf(s, "%37dmV %5dmV", + consumer->min_uV / 1000, + consumer->max_uV / 1000); + break; + case REGULATOR_CURRENT: + break; + } + + seq_puts(s, "\n"); + } + + list_for_each_entry(child, list, list) { + /* handle only non-root regulators supplied by current rdev */ + if (!child->supply || child->supply->rdev != rdev) + continue; + + regulator_summary_show_subtree(s, child, level + 1); + } +} + +static int regulator_summary_show(struct seq_file *s, void *data) +{ + struct list_head *list = s->private; + struct regulator_dev *rdev; + + seq_puts(s, " regulator use open bypass voltage current min max\n"); + seq_puts(s, "-------------------------------------------------------------------------------\n"); + + mutex_lock(®ulator_list_mutex); + + list_for_each_entry(rdev, list, list) { + if (rdev->supply) + continue; + + regulator_summary_show_subtree(s, rdev, 0); + } + + mutex_unlock(®ulator_list_mutex); + + return 0; +} + +static int regulator_summary_open(struct inode *inode, struct file *file) +{ + return single_open(file, regulator_summary_show, inode->i_private); +} +#endif + +static const struct file_operations regulator_summary_fops = { +#ifdef CONFIG_DEBUG_FS + .open = regulator_summary_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +#endif +}; + +static int __init regulator_init(void) +{ + int ret; + + ret = class_register(®ulator_class); + + debugfs_root = debugfs_create_dir("regulator", NULL); + if (!debugfs_root) + pr_warn("regulator: Failed to create debugfs directory\n"); + + debugfs_create_file("supply_map", 0444, debugfs_root, NULL, + &supply_map_fops); + + debugfs_create_file("regulator_summary", 0444, debugfs_root, + ®ulator_list, ®ulator_summary_fops); + + regulator_dummy_init(); + + return ret; +} + +/* init early to allow our consumers to complete system booting */ +core_initcall(regulator_init); + +static int __init regulator_init_complete(void) +{ + struct regulator_dev *rdev; + const struct regulator_ops *ops; + struct regulation_constraints *c; + int enabled, ret; + + /* + * Since DT doesn't provide an idiomatic mechanism for + * enabling full constraints and since it's much more natural + * with DT to provide them just assume that a DT enabled + * system has full constraints. + */ + if (of_have_populated_dt()) + has_full_constraints = true; + + mutex_lock(®ulator_list_mutex); + + /* If we have a full configuration then disable any regulators + * we have permission to change the status for and which are + * not in use or always_on. This is effectively the default + * for DT and ACPI as they have full constraints. + */ + list_for_each_entry(rdev, ®ulator_list, list) { + ops = rdev->desc->ops; + c = rdev->constraints; + + if (c && c->always_on) + continue; + + if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS)) + continue; + + mutex_lock(&rdev->mutex); + + if (rdev->use_count) + goto unlock; + + /* If we can't read the status assume it's on. */ + if (ops->is_enabled) + enabled = ops->is_enabled(rdev); + else + enabled = 1; + + if (!enabled) + goto unlock; + + if (have_full_constraints()) { + /* We log since this may kill the system if it + * goes wrong. */ + rdev_info(rdev, "disabling\n"); + ret = _regulator_do_disable(rdev); + if (ret != 0) + rdev_err(rdev, "couldn't disable: %d\n", ret); + } else { + /* The intention is that in future we will + * assume that full constraints are provided + * so warn even if we aren't going to do + * anything here. + */ + rdev_warn(rdev, "incomplete constraints, leaving on\n"); + } + +unlock: + mutex_unlock(&rdev->mutex); + } + + mutex_unlock(®ulator_list_mutex); + + return 0; +} +late_initcall_sync(regulator_init_complete); -- cgit v1.2.3-54-g00ecf