From 5c545e1fb127a4b11ddc5f1a5ed066b853dd1a1a Mon Sep 17 00:00:00 2001 From: André Fabian Silva Delgado Date: Tue, 2 Feb 2016 23:22:20 -0300 Subject: Linux-libre 4.4.1-gnu --- kernel/sched/Makefile | 10 +- kernel/sched/bfs.c | 7561 ---------------------------------------------- kernel/sched/bfs_sched.h | 180 -- kernel/sched/idle.c | 4 - kernel/sched/stats.c | 4 - 5 files changed, 2 insertions(+), 7757 deletions(-) delete mode 100644 kernel/sched/bfs.c delete mode 100644 kernel/sched/bfs_sched.h (limited to 'kernel/sched') diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile index 35b18906f..67687973c 100644 --- a/kernel/sched/Makefile +++ b/kernel/sched/Makefile @@ -11,17 +11,11 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer endif -ifdef CONFIG_SCHED_BFS -obj-y += bfs.o clock.o -else obj-y += core.o loadavg.o clock.o cputime.o obj-y += idle_task.o fair.o rt.o deadline.o stop_task.o obj-y += wait.o completion.o idle.o -obj-$(CONFIG_SMP) += cpudeadline.o +obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o +obj-$(CONFIG_SCHEDSTATS) += stats.o obj-$(CONFIG_SCHED_DEBUG) += debug.o obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o -endif -obj-y += wait.o completion.o idle.o -obj-$(CONFIG_SMP) += cpupri.o -obj-$(CONFIG_SCHEDSTATS) += stats.o diff --git a/kernel/sched/bfs.c b/kernel/sched/bfs.c deleted file mode 100644 index a4e9de738..000000000 --- a/kernel/sched/bfs.c +++ /dev/null @@ -1,7561 +0,0 @@ -/* - * kernel/sched/bfs.c, was kernel/sched.c - * - * Kernel scheduler and related syscalls - * - * Copyright (C) 1991-2002 Linus Torvalds - * - * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and - * make semaphores SMP safe - * 1998-11-19 Implemented schedule_timeout() and related stuff - * by Andrea Arcangeli - * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: - * hybrid priority-list and round-robin design with - * an array-switch method of distributing timeslices - * and per-CPU runqueues. Cleanups and useful suggestions - * by Davide Libenzi, preemptible kernel bits by Robert Love. - * 2003-09-03 Interactivity tuning by Con Kolivas. - * 2004-04-02 Scheduler domains code by Nick Piggin - * 2007-04-15 Work begun on replacing all interactivity tuning with a - * fair scheduling design by Con Kolivas. - * 2007-05-05 Load balancing (smp-nice) and other improvements - * by Peter Williams - * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith - * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri - * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, - * Thomas Gleixner, Mike Kravetz - * now Brainfuck deadline scheduling policy by Con Kolivas deletes - * a whole lot of those previous things. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#ifdef CONFIG_PARAVIRT -#include -#endif - -#include "cpupri.h" -#include "../workqueue_internal.h" -#include "../smpboot.h" - -#define CREATE_TRACE_POINTS -#include - -#include "bfs_sched.h" - -#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO) -#define rt_task(p) rt_prio((p)->prio) -#define rt_queue(rq) rt_prio((rq)->rq_prio) -#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) -#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \ - (policy) == SCHED_RR) -#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy)) - -#define is_idle_policy(policy) ((policy) == SCHED_IDLEPRIO) -#define idleprio_task(p) unlikely(is_idle_policy((p)->policy)) -#define task_running_idle(p) unlikely((p)->prio == IDLE_PRIO) -#define idle_queue(rq) (unlikely(is_idle_policy((rq)->rq_policy))) - -#define is_iso_policy(policy) ((policy) == SCHED_ISO) -#define iso_task(p) unlikely(is_iso_policy((p)->policy)) -#define iso_queue(rq) unlikely(is_iso_policy((rq)->rq_policy)) -#define task_running_iso(p) unlikely((p)->prio == ISO_PRIO) -#define rq_running_iso(rq) ((rq)->rq_prio == ISO_PRIO) - -#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT) - -#define ISO_PERIOD ((5 * HZ * grq.noc) + 1) - -#define SCHED_PRIO(p) ((p) + MAX_RT_PRIO) -#define STOP_PRIO (MAX_RT_PRIO - 1) - -/* - * Some helpers for converting to/from various scales. Use shifts to get - * approximate multiples of ten for less overhead. - */ -#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ)) -#define JIFFY_NS (1000000000 / HZ) -#define HALF_JIFFY_NS (1000000000 / HZ / 2) -#define HALF_JIFFY_US (1000000 / HZ / 2) -#define MS_TO_NS(TIME) ((TIME) << 20) -#define MS_TO_US(TIME) ((TIME) << 10) -#define NS_TO_MS(TIME) ((TIME) >> 20) -#define NS_TO_US(TIME) ((TIME) >> 10) - -#define RESCHED_US (100) /* Reschedule if less than this many μs left */ - -void print_scheduler_version(void) -{ - printk(KERN_INFO "BFS CPU scheduler v0.467 by Con Kolivas.\n"); -} - -/* - * This is the time all tasks within the same priority round robin. - * Value is in ms and set to a minimum of 6ms. Scales with number of cpus. - * Tunable via /proc interface. - */ -#ifdef CONFIG_PCK_INTERACTIVE -int rr_interval __read_mostly = 3; -#else -int rr_interval __read_mostly = 6; -#endif - -/* Tunable to choose whether to prioritise latency or throughput, simple - * binary yes or no */ - -int sched_interactive __read_mostly = 1; - -/* - * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks - * are allowed to run five seconds as real time tasks. This is the total over - * all online cpus. - */ -#ifdef CONFIG_PCK_INTERACTIVE -int sched_iso_cpu __read_mostly = 25; -#else -int sched_iso_cpu __read_mostly = 70; -#endif - -/* - * The relative length of deadline for each priority(nice) level. - */ -static int prio_ratios[NICE_WIDTH] __read_mostly; - -/* - * The quota handed out to tasks of all priority levels when refilling their - * time_slice. - */ -static inline int timeslice(void) -{ - return MS_TO_US(rr_interval); -} - -/* - * The global runqueue data that all CPUs work off. Data is protected either - * by the global grq lock, or the discrete lock that precedes the data in this - * struct. - */ -struct global_rq { - raw_spinlock_t lock; - unsigned long nr_running; - unsigned long nr_uninterruptible; - unsigned long long nr_switches; - struct list_head queue[PRIO_LIMIT]; - DECLARE_BITMAP(prio_bitmap, PRIO_LIMIT + 1); - unsigned long qnr; /* queued not running */ -#ifdef CONFIG_SMP - cpumask_t cpu_idle_map; - bool idle_cpus; -#endif - int noc; /* num_online_cpus stored and updated when it changes */ - u64 niffies; /* Nanosecond jiffies */ - unsigned long last_jiffy; /* Last jiffy we updated niffies */ - - raw_spinlock_t iso_lock; - int iso_ticks; - bool iso_refractory; -}; - -#ifdef CONFIG_SMP -/* - * We add the notion of a root-domain which will be used to define per-domain - * variables. Each exclusive cpuset essentially defines an island domain by - * fully partitioning the member cpus from any other cpuset. Whenever a new - * exclusive cpuset is created, we also create and attach a new root-domain - * object. - * - */ -struct root_domain { - atomic_t refcount; - atomic_t rto_count; - struct rcu_head rcu; - cpumask_var_t span; - cpumask_var_t online; - - /* - * The "RT overload" flag: it gets set if a CPU has more than - * one runnable RT task. - */ - cpumask_var_t rto_mask; - struct cpupri cpupri; -}; - -/* - * By default the system creates a single root-domain with all cpus as - * members (mimicking the global state we have today). - */ -static struct root_domain def_root_domain; - -#endif /* CONFIG_SMP */ - -/* There can be only one */ -static struct global_rq grq; - -static DEFINE_MUTEX(sched_hotcpu_mutex); - -/* cpus with isolated domains */ -cpumask_var_t cpu_isolated_map; - -DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); -#ifdef CONFIG_SMP -struct rq *cpu_rq(int cpu) -{ - return &per_cpu(runqueues, (cpu)); -} -#define task_rq(p) cpu_rq(task_cpu(p)) -#define cpu_curr(cpu) (cpu_rq(cpu)->curr) -/* - * sched_domains_mutex serialises calls to init_sched_domains, - * detach_destroy_domains and partition_sched_domains. - */ -DEFINE_MUTEX(sched_domains_mutex); - -/* - * By default the system creates a single root-domain with all cpus as - * members (mimicking the global state we have today). - */ -static struct root_domain def_root_domain; - -int __weak arch_sd_sibling_asym_packing(void) -{ - return 0*SD_ASYM_PACKING; -} -#else -struct rq *uprq; -#endif /* CONFIG_SMP */ - -static inline void update_rq_clock(struct rq *rq); - -/* - * Sanity check should sched_clock return bogus values. We make sure it does - * not appear to go backwards, and use jiffies to determine the maximum and - * minimum it could possibly have increased, and round down to the nearest - * jiffy when it falls outside this. - */ -static inline void niffy_diff(s64 *niff_diff, int jiff_diff) -{ - unsigned long min_diff, max_diff; - - if (jiff_diff > 1) - min_diff = JIFFIES_TO_NS(jiff_diff - 1); - else - min_diff = 1; - /* Round up to the nearest tick for maximum */ - max_diff = JIFFIES_TO_NS(jiff_diff + 1); - - if (unlikely(*niff_diff < min_diff || *niff_diff > max_diff)) - *niff_diff = min_diff; -} - -#ifdef CONFIG_SMP -static inline int cpu_of(struct rq *rq) -{ - return rq->cpu; -} - -/* - * Niffies are a globally increasing nanosecond counter. Whenever a runqueue - * clock is updated with the grq.lock held, it is an opportunity to update the - * niffies value. Any CPU can update it by adding how much its clock has - * increased since it last updated niffies, minus any added niffies by other - * CPUs. - */ -static inline void update_clocks(struct rq *rq) -{ - s64 ndiff; - long jdiff; - - update_rq_clock(rq); - ndiff = rq->clock - rq->old_clock; - /* old_clock is only updated when we are updating niffies */ - rq->old_clock = rq->clock; - ndiff -= grq.niffies - rq->last_niffy; - jdiff = jiffies - grq.last_jiffy; - niffy_diff(&ndiff, jdiff); - grq.last_jiffy += jdiff; - grq.niffies += ndiff; - rq->last_niffy = grq.niffies; -} -#else /* CONFIG_SMP */ -static inline int cpu_of(struct rq *rq) -{ - return 0; -} - -static inline void update_clocks(struct rq *rq) -{ - s64 ndiff; - long jdiff; - - update_rq_clock(rq); - ndiff = rq->clock - rq->old_clock; - rq->old_clock = rq->clock; - jdiff = jiffies - grq.last_jiffy; - niffy_diff(&ndiff, jdiff); - grq.last_jiffy += jdiff; - grq.niffies += ndiff; -} -#endif - -#include "stats.h" - -#ifndef prepare_arch_switch -# define prepare_arch_switch(next) do { } while (0) -#endif -#ifndef finish_arch_switch -# define finish_arch_switch(prev) do { } while (0) -#endif -#ifndef finish_arch_post_lock_switch -# define finish_arch_post_lock_switch() do { } while (0) -#endif - -/* - * All common locking functions performed on grq.lock. rq->clock is local to - * the CPU accessing it so it can be modified just with interrupts disabled - * when we're not updating niffies. - * Looking up task_rq must be done under grq.lock to be safe. - */ -static void update_rq_clock_task(struct rq *rq, s64 delta); - -static inline void update_rq_clock(struct rq *rq) -{ - s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; - - if (unlikely(delta < 0)) - return; - rq->clock += delta; - update_rq_clock_task(rq, delta); -} - -static inline bool task_running(struct task_struct *p) -{ - return p->on_cpu; -} - -static inline void grq_lock(void) - __acquires(grq.lock) -{ - raw_spin_lock(&grq.lock); -} - -static inline void grq_unlock(void) - __releases(grq.lock) -{ - raw_spin_unlock(&grq.lock); -} - -static inline void grq_lock_irq(void) - __acquires(grq.lock) -{ - raw_spin_lock_irq(&grq.lock); -} - -static inline void time_lock_grq(struct rq *rq) - __acquires(grq.lock) -{ - grq_lock(); - update_clocks(rq); -} - -static inline void grq_unlock_irq(void) - __releases(grq.lock) -{ - raw_spin_unlock_irq(&grq.lock); -} - -static inline void grq_lock_irqsave(unsigned long *flags) - __acquires(grq.lock) -{ - raw_spin_lock_irqsave(&grq.lock, *flags); -} - -static inline void grq_unlock_irqrestore(unsigned long *flags) - __releases(grq.lock) -{ - raw_spin_unlock_irqrestore(&grq.lock, *flags); -} - -static inline struct rq -*task_grq_lock(struct task_struct *p, unsigned long *flags) - __acquires(grq.lock) -{ - grq_lock_irqsave(flags); - return task_rq(p); -} - -static inline struct rq -*time_task_grq_lock(struct task_struct *p, unsigned long *flags) - __acquires(grq.lock) -{ - struct rq *rq = task_grq_lock(p, flags); - update_clocks(rq); - return rq; -} - -static inline struct rq *task_grq_lock_irq(struct task_struct *p) - __acquires(grq.lock) -{ - grq_lock_irq(); - return task_rq(p); -} - -static inline void time_task_grq_lock_irq(struct task_struct *p) - __acquires(grq.lock) -{ - struct rq *rq = task_grq_lock_irq(p); - update_clocks(rq); -} - -static inline void task_grq_unlock_irq(void) - __releases(grq.lock) -{ - grq_unlock_irq(); -} - -static inline void task_grq_unlock(unsigned long *flags) - __releases(grq.lock) -{ - grq_unlock_irqrestore(flags); -} - -/** - * grunqueue_is_locked - * - * Returns true if the global runqueue is locked. - * This interface allows printk to be called with the runqueue lock - * held and know whether or not it is OK to wake up the klogd. - */ -bool grunqueue_is_locked(void) -{ - return raw_spin_is_locked(&grq.lock); -} - -void grq_unlock_wait(void) - __releases(grq.lock) -{ - smp_mb(); /* spin-unlock-wait is not a full memory barrier */ - raw_spin_unlock_wait(&grq.lock); -} - -static inline void time_grq_lock(struct rq *rq, unsigned long *flags) - __acquires(grq.lock) -{ - local_irq_save(*flags); - time_lock_grq(rq); -} - -static inline struct rq *__task_grq_lock(struct task_struct *p) - __acquires(grq.lock) -{ - grq_lock(); - return task_rq(p); -} - -static inline void __task_grq_unlock(void) - __releases(grq.lock) -{ - grq_unlock(); -} - -static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) -{ -} - -static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) -{ -#ifdef CONFIG_DEBUG_SPINLOCK - /* this is a valid case when another task releases the spinlock */ - grq.lock.owner = current; -#endif - /* - * If we are tracking spinlock dependencies then we have to - * fix up the runqueue lock - which gets 'carried over' from - * prev into current: - */ - spin_acquire(&grq.lock.dep_map, 0, 0, _THIS_IP_); - - grq_unlock_irq(); -} - -static inline bool deadline_before(u64 deadline, u64 time) -{ - return (deadline < time); -} - -static inline bool deadline_after(u64 deadline, u64 time) -{ - return (deadline > time); -} - -/* - * A task that is queued but not running will be on the grq run list. - * A task that is not running or queued will not be on the grq run list. - * A task that is currently running will have ->on_cpu set but not on the - * grq run list. - */ -static inline bool task_queued(struct task_struct *p) -{ - return (!list_empty(&p->run_list)); -} - -/* - * Removing from the global runqueue. Enter with grq locked. - */ -static void dequeue_task(struct task_struct *p) -{ - list_del_init(&p->run_list); - if (list_empty(grq.queue + p->prio)) - __clear_bit(p->prio, grq.prio_bitmap); - sched_info_dequeued(task_rq(p), p); -} - -/* - * To determine if it's safe for a task of SCHED_IDLEPRIO to actually run as - * an idle task, we ensure none of the following conditions are met. - */ -static bool idleprio_suitable(struct task_struct *p) -{ - return (!freezing(p) && !signal_pending(p) && - !(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING))); -} - -/* - * To determine if a task of SCHED_ISO can run in pseudo-realtime, we check - * that the iso_refractory flag is not set. - */ -static bool isoprio_suitable(void) -{ - return !grq.iso_refractory; -} - -/* - * Adding to the global runqueue. Enter with grq locked. - */ -static void enqueue_task(struct task_struct *p, struct rq *rq) -{ - if (!rt_task(p)) { - /* Check it hasn't gotten rt from PI */ - if ((idleprio_task(p) && idleprio_suitable(p)) || - (iso_task(p) && isoprio_suitable())) - p->prio = p->normal_prio; - else - p->prio = NORMAL_PRIO; - } - __set_bit(p->prio, grq.prio_bitmap); - list_add_tail(&p->run_list, grq.queue + p->prio); - sched_info_queued(rq, p); -} - -static inline void requeue_task(struct task_struct *p) -{ - sched_info_queued(task_rq(p), p); -} - -/* - * Returns the relative length of deadline all compared to the shortest - * deadline which is that of nice -20. - */ -static inline int task_prio_ratio(struct task_struct *p) -{ - return prio_ratios[TASK_USER_PRIO(p)]; -} - -/* - * task_timeslice - all tasks of all priorities get the exact same timeslice - * length. CPU distribution is handled by giving different deadlines to - * tasks of different priorities. Use 128 as the base value for fast shifts. - */ -static inline int task_timeslice(struct task_struct *p) -{ - return (rr_interval * task_prio_ratio(p) / 128); -} - -static void resched_task(struct task_struct *p); - -static inline void resched_curr(struct rq *rq) -{ - resched_task(rq->curr); -} - -/* - * qnr is the "queued but not running" count which is the total number of - * tasks on the global runqueue list waiting for cpu time but not actually - * currently running on a cpu. - */ -static inline void inc_qnr(void) -{ - grq.qnr++; -} - -static inline void dec_qnr(void) -{ - grq.qnr--; -} - -static inline int queued_notrunning(void) -{ - return grq.qnr; -} - -#ifdef CONFIG_SMP -/* - * The cpu_idle_map stores a bitmap of all the CPUs currently idle to - * allow easy lookup of whether any suitable idle CPUs are available. - * It's cheaper to maintain a binary yes/no if there are any idle CPUs on the - * idle_cpus variable than to do a full bitmask check when we are busy. - */ -static inline void set_cpuidle_map(int cpu) -{ - if (likely(cpu_online(cpu))) { - cpumask_set_cpu(cpu, &grq.cpu_idle_map); - grq.idle_cpus = true; - } -} - -static inline void clear_cpuidle_map(int cpu) -{ - cpumask_clear_cpu(cpu, &grq.cpu_idle_map); - if (cpumask_empty(&grq.cpu_idle_map)) - grq.idle_cpus = false; -} - -static bool suitable_idle_cpus(struct task_struct *p) -{ - if (!grq.idle_cpus) - return false; - return (cpumask_intersects(&p->cpus_allowed, &grq.cpu_idle_map)); -} - -#define CPUIDLE_DIFF_THREAD (1) -#define CPUIDLE_DIFF_CORE (2) -#define CPUIDLE_CACHE_BUSY (4) -#define CPUIDLE_DIFF_CPU (8) -#define CPUIDLE_THREAD_BUSY (16) -#define CPUIDLE_THROTTLED (32) -#define CPUIDLE_DIFF_NODE (64) - -static inline bool scaling_rq(struct rq *rq); - -/* - * The best idle CPU is chosen according to the CPUIDLE ranking above where the - * lowest value would give the most suitable CPU to schedule p onto next. The - * order works out to be the following: - * - * Same core, idle or busy cache, idle or busy threads - * Other core, same cache, idle or busy cache, idle threads. - * Same node, other CPU, idle cache, idle threads. - * Same node, other CPU, busy cache, idle threads. - * Other core, same cache, busy threads. - * Same node, other CPU, busy threads. - * Other node, other CPU, idle cache, idle threads. - * Other node, other CPU, busy cache, idle threads. - * Other node, other CPU, busy threads. - */ -static int best_mask_cpu(int best_cpu, struct rq *rq, cpumask_t *tmpmask) -{ - int best_ranking = CPUIDLE_DIFF_NODE | CPUIDLE_THROTTLED | - CPUIDLE_THREAD_BUSY | CPUIDLE_DIFF_CPU | CPUIDLE_CACHE_BUSY | - CPUIDLE_DIFF_CORE | CPUIDLE_DIFF_THREAD; - int cpu_tmp; - - if (cpumask_test_cpu(best_cpu, tmpmask)) - goto out; - - for_each_cpu(cpu_tmp, tmpmask) { - int ranking, locality; - struct rq *tmp_rq; - - ranking = 0; - tmp_rq = cpu_rq(cpu_tmp); - - locality = rq->cpu_locality[cpu_tmp]; -#ifdef CONFIG_NUMA - if (locality > 3) - ranking |= CPUIDLE_DIFF_NODE; - else -#endif - if (locality > 2) - ranking |= CPUIDLE_DIFF_CPU; -#ifdef CONFIG_SCHED_MC - else if (locality == 2) - ranking |= CPUIDLE_DIFF_CORE; - if (!(tmp_rq->cache_idle(cpu_tmp))) - ranking |= CPUIDLE_CACHE_BUSY; -#endif -#ifdef CONFIG_SCHED_SMT - if (locality == 1) - ranking |= CPUIDLE_DIFF_THREAD; - if (!(tmp_rq->siblings_idle(cpu_tmp))) - ranking |= CPUIDLE_THREAD_BUSY; -#endif - if (scaling_rq(tmp_rq)) - ranking |= CPUIDLE_THROTTLED; - - if (ranking < best_ranking) { - best_cpu = cpu_tmp; - best_ranking = ranking; - } - } -out: - return best_cpu; -} - -static void resched_best_mask(int best_cpu, struct rq *rq, cpumask_t *tmpmask) -{ - best_cpu = best_mask_cpu(best_cpu, rq, tmpmask); - resched_curr(cpu_rq(best_cpu)); -} - -bool cpus_share_cache(int this_cpu, int that_cpu) -{ - struct rq *this_rq = cpu_rq(this_cpu); - - return (this_rq->cpu_locality[that_cpu] < 3); -} - -#ifdef CONFIG_SCHED_SMT -#ifdef CONFIG_SMT_NICE -static const cpumask_t *thread_cpumask(int cpu); - -/* Find the best real time priority running on any SMT siblings of cpu and if - * none are running, the static priority of the best deadline task running. - * The lookups to the other runqueues is done lockless as the occasional wrong - * value would be harmless. */ -static int best_smt_bias(int cpu) -{ - int other_cpu, best_bias = 0; - - for_each_cpu(other_cpu, thread_cpumask(cpu)) { - struct rq *rq; - - if (other_cpu == cpu) - continue; - rq = cpu_rq(other_cpu); - if (rq_idle(rq)) - continue; - if (!rq->online) - continue; - if (!rq->rq_mm) - continue; - if (likely(rq->rq_smt_bias > best_bias)) - best_bias = rq->rq_smt_bias; - } - return best_bias; -} - -static int task_prio_bias(struct task_struct *p) -{ - if (rt_task(p)) - return 1 << 30; - else if (task_running_iso(p)) - return 1 << 29; - else if (task_running_idle(p)) - return 0; - return MAX_PRIO - p->static_prio; -} - -/* We've already decided p can run on CPU, now test if it shouldn't for SMT - * nice reasons. */ -static bool smt_should_schedule(struct task_struct *p, int cpu) -{ - int best_bias, task_bias; - - /* Kernel threads always run */ - if (unlikely(!p->mm)) - return true; - if (rt_task(p)) - return true; - if (!idleprio_suitable(p)) - return true; - best_bias = best_smt_bias(cpu); - /* The smt siblings are all idle or running IDLEPRIO */ - if (best_bias < 1) - return true; - task_bias = task_prio_bias(p); - if (task_bias < 1) - return false; - if (task_bias >= best_bias) - return true; - /* Dither 25% cpu of normal tasks regardless of nice difference */ - if (best_bias % 4 == 1) - return true; - /* Sorry, you lose */ - return false; -} -#endif -#endif - -static bool resched_best_idle(struct task_struct *p) -{ - cpumask_t tmpmask; - int best_cpu; - - cpumask_and(&tmpmask, &p->cpus_allowed, &grq.cpu_idle_map); - best_cpu = best_mask_cpu(task_cpu(p), task_rq(p), &tmpmask); -#ifdef CONFIG_SMT_NICE - if (!smt_should_schedule(p, best_cpu)) - return false; -#endif - resched_curr(cpu_rq(best_cpu)); - return true; -} - -static inline void resched_suitable_idle(struct task_struct *p) -{ - if (suitable_idle_cpus(p)) - resched_best_idle(p); -} -/* - * Flags to tell us whether this CPU is running a CPU frequency governor that - * has slowed its speed or not. No locking required as the very rare wrongly - * read value would be harmless. - */ -void cpu_scaling(int cpu) -{ - cpu_rq(cpu)->scaling = true; -} - -void cpu_nonscaling(int cpu) -{ - cpu_rq(cpu)->scaling = false; -} - -static inline bool scaling_rq(struct rq *rq) -{ - return rq->scaling; -} - -static inline int locality_diff(int cpu, struct rq *rq) -{ - return rq->cpu_locality[cpu]; -} -#else /* CONFIG_SMP */ -static inline void set_cpuidle_map(int cpu) -{ -} - -static inline void clear_cpuidle_map(int cpu) -{ -} - -static inline bool suitable_idle_cpus(struct task_struct *p) -{ - return uprq->curr == uprq->idle; -} - -static inline void resched_suitable_idle(struct task_struct *p) -{ -} - -void cpu_scaling(int __unused) -{ -} - -void cpu_nonscaling(int __unused) -{ -} - -/* - * Although CPUs can scale in UP, there is nowhere else for tasks to go so this - * always returns 0. - */ -static inline bool scaling_rq(struct rq *rq) -{ - return false; -} - -static inline int locality_diff(struct task_struct *p, struct rq *rq) -{ - return 0; -} -#endif /* CONFIG_SMP */ -EXPORT_SYMBOL_GPL(cpu_scaling); -EXPORT_SYMBOL_GPL(cpu_nonscaling); - -static inline int normal_prio(struct task_struct *p) -{ - if (has_rt_policy(p)) - return MAX_RT_PRIO - 1 - p->rt_priority; - if (idleprio_task(p)) - return IDLE_PRIO; - if (iso_task(p)) - return ISO_PRIO; - return NORMAL_PRIO; -} - -/* - * Calculate the current priority, i.e. the priority - * taken into account by the scheduler. This value might - * be boosted by RT tasks as it will be RT if the task got - * RT-boosted. If not then it returns p->normal_prio. - */ -static int effective_prio(struct task_struct *p) -{ - p->normal_prio = normal_prio(p); - /* - * If we are RT tasks or we were boosted to RT priority, - * keep the priority unchanged. Otherwise, update priority - * to the normal priority: - */ - if (!rt_prio(p->prio)) - return p->normal_prio; - return p->prio; -} - -/* - * activate_task - move a task to the runqueue. Enter with grq locked. - */ -static void activate_task(struct task_struct *p, struct rq *rq) -{ - update_clocks(rq); - - /* - * Sleep time is in units of nanosecs, so shift by 20 to get a - * milliseconds-range estimation of the amount of time that the task - * spent sleeping: - */ - if (unlikely(prof_on == SLEEP_PROFILING)) { - if (p->state == TASK_UNINTERRUPTIBLE) - profile_hits(SLEEP_PROFILING, (void *)get_wchan(p), - (rq->clock_task - p->last_ran) >> 20); - } - - p->prio = effective_prio(p); - if (task_contributes_to_load(p)) - grq.nr_uninterruptible--; - enqueue_task(p, rq); - rq->soft_affined++; - p->on_rq = 1; - grq.nr_running++; - inc_qnr(); -} - -static inline void clear_sticky(struct task_struct *p); - -/* - * deactivate_task - If it's running, it's not on the grq and we can just - * decrement the nr_running. Enter with grq locked. - */ -static inline void deactivate_task(struct task_struct *p, struct rq *rq) -{ - if (task_contributes_to_load(p)) - grq.nr_uninterruptible++; - rq->soft_affined--; - p->on_rq = 0; - grq.nr_running--; - clear_sticky(p); -} - -#ifdef CONFIG_SMP -void set_task_cpu(struct task_struct *p, unsigned int cpu) -{ -#ifdef CONFIG_LOCKDEP - /* - * The caller should hold grq lock. - */ - WARN_ON_ONCE(debug_locks && !lockdep_is_held(&grq.lock)); -#endif - if (task_cpu(p) == cpu) - return; - trace_sched_migrate_task(p, cpu); - perf_event_task_migrate(p); - - /* - * After ->cpu is set up to a new value, task_grq_lock(p, ...) can be - * successfully executed on another CPU. We must ensure that updates of - * per-task data have been completed by this moment. - */ - smp_wmb(); - if (p->on_rq) { - task_rq(p)->soft_affined--; - cpu_rq(cpu)->soft_affined++; - } - task_thread_info(p)->cpu = cpu; -} - -static inline void clear_sticky(struct task_struct *p) -{ - p->sticky = false; -} - -static inline bool task_sticky(struct task_struct *p) -{ - return p->sticky; -} - -/* Reschedule the best idle CPU that is not this one. */ -static void -resched_closest_idle(struct rq *rq, int cpu, struct task_struct *p) -{ - cpumask_t tmpmask; - - cpumask_and(&tmpmask, &p->cpus_allowed, &grq.cpu_idle_map); - cpumask_clear_cpu(cpu, &tmpmask); - if (cpumask_empty(&tmpmask)) - return; - resched_best_mask(cpu, rq, &tmpmask); -} - -/* - * We set the sticky flag on a task that is descheduled involuntarily meaning - * it is awaiting further CPU time. If the last sticky task is still sticky - * but unlucky enough to not be the next task scheduled, we unstick it and try - * to find it an idle CPU. Realtime tasks do not stick to minimise their - * latency at all times. - */ -static inline void -swap_sticky(struct rq *rq, int cpu, struct task_struct *p) -{ - if (rq->sticky_task) { - if (rq->sticky_task == p) { - p->sticky = true; - return; - } - if (task_sticky(rq->sticky_task)) { - clear_sticky(rq->sticky_task); - resched_closest_idle(rq, cpu, rq->sticky_task); - } - } - if (!rt_task(p)) { - p->sticky = true; - rq->sticky_task = p; - } else { - resched_closest_idle(rq, cpu, p); - rq->sticky_task = NULL; - } -} - -static inline void unstick_task(struct rq *rq, struct task_struct *p) -{ - rq->sticky_task = NULL; - clear_sticky(p); -} -#else -static inline void clear_sticky(struct task_struct *p) -{ -} - -static inline bool task_sticky(struct task_struct *p) -{ - return false; -} - -static inline void -swap_sticky(struct rq *rq, int cpu, struct task_struct *p) -{ -} - -static inline void unstick_task(struct rq *rq, struct task_struct *p) -{ -} -#endif - -/* - * Move a task off the global queue and take it to a cpu for it will - * become the running task. - */ -static inline void take_task(int cpu, struct task_struct *p) -{ - set_task_cpu(p, cpu); - dequeue_task(p); - clear_sticky(p); - dec_qnr(); -} - -/* - * Returns a descheduling task to the grq runqueue unless it is being - * deactivated. - */ -static inline void return_task(struct task_struct *p, struct rq *rq, bool deactivate) -{ - if (deactivate) - deactivate_task(p, rq); - else { - inc_qnr(); - enqueue_task(p, rq); - } -} - -/* Enter with grq lock held. We know p is on the local cpu */ -static inline void __set_tsk_resched(struct task_struct *p) -{ - set_tsk_need_resched(p); - set_preempt_need_resched(); -} - -/* - * resched_task - mark a task 'to be rescheduled now'. - * - * On UP this means the setting of the need_resched flag, on SMP it - * might also involve a cross-CPU call to trigger the scheduler on - * the target CPU. - */ -void resched_task(struct task_struct *p) -{ - int cpu; - - lockdep_assert_held(&grq.lock); - - if (test_tsk_need_resched(p)) - return; - - set_tsk_need_resched(p); - - cpu = task_cpu(p); - if (cpu == smp_processor_id()) { - set_preempt_need_resched(); - return; - } - - smp_send_reschedule(cpu); -} - -/** - * task_curr - is this task currently executing on a CPU? - * @p: the task in question. - * - * Return: 1 if the task is currently executing. 0 otherwise. - */ -inline int task_curr(const struct task_struct *p) -{ - return cpu_curr(task_cpu(p)) == p; -} - -#ifdef CONFIG_SMP -struct migration_req { - struct task_struct *task; - int dest_cpu; -}; - -/* - * wait_task_inactive - wait for a thread to unschedule. - * - * If @match_state is nonzero, it's the @p->state value just checked and - * not expected to change. If it changes, i.e. @p might have woken up, - * then return zero. When we succeed in waiting for @p to be off its CPU, - * we return a positive number (its total switch count). If a second call - * a short while later returns the same number, the caller can be sure that - * @p has remained unscheduled the whole time. - * - * The caller must ensure that the task *will* unschedule sometime soon, - * else this function might spin for a *long* time. This function can't - * be called with interrupts off, or it may introduce deadlock with - * smp_call_function() if an IPI is sent by the same process we are - * waiting to become inactive. - */ -unsigned long wait_task_inactive(struct task_struct *p, long match_state) -{ - unsigned long flags; - bool running, on_rq; - unsigned long ncsw; - struct rq *rq; - - for (;;) { - rq = task_rq(p); - - /* - * If the task is actively running on another CPU - * still, just relax and busy-wait without holding - * any locks. - * - * NOTE! Since we don't hold any locks, it's not - * even sure that "rq" stays as the right runqueue! - * But we don't care, since this will return false - * if the runqueue has changed and p is actually now - * running somewhere else! - */ - while (task_running(p) && p == rq->curr) { - if (match_state && unlikely(p->state != match_state)) - return 0; - cpu_relax(); - } - - /* - * Ok, time to look more closely! We need the grq - * lock now, to be *sure*. If we're wrong, we'll - * just go back and repeat. - */ - rq = task_grq_lock(p, &flags); - trace_sched_wait_task(p); - running = task_running(p); - on_rq = p->on_rq; - ncsw = 0; - if (!match_state || p->state == match_state) - ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ - task_grq_unlock(&flags); - - /* - * If it changed from the expected state, bail out now. - */ - if (unlikely(!ncsw)) - break; - - /* - * Was it really running after all now that we - * checked with the proper locks actually held? - * - * Oops. Go back and try again.. - */ - if (unlikely(running)) { - cpu_relax(); - continue; - } - - /* - * It's not enough that it's not actively running, - * it must be off the runqueue _entirely_, and not - * preempted! - * - * So if it was still runnable (but just not actively - * running right now), it's preempted, and we should - * yield - it could be a while. - */ - if (unlikely(on_rq)) { - ktime_t to = ktime_set(0, NSEC_PER_SEC / HZ); - - set_current_state(TASK_UNINTERRUPTIBLE); - schedule_hrtimeout(&to, HRTIMER_MODE_REL); - continue; - } - - /* - * Ahh, all good. It wasn't running, and it wasn't - * runnable, which means that it will never become - * running in the future either. We're all done! - */ - break; - } - - return ncsw; -} - -/*** - * kick_process - kick a running thread to enter/exit the kernel - * @p: the to-be-kicked thread - * - * Cause a process which is running on another CPU to enter - * kernel-mode, without any delay. (to get signals handled.) - * - * NOTE: this function doesn't have to take the runqueue lock, - * because all it wants to ensure is that the remote task enters - * the kernel. If the IPI races and the task has been migrated - * to another CPU then no harm is done and the purpose has been - * achieved as well. - */ -void kick_process(struct task_struct *p) -{ - int cpu; - - preempt_disable(); - cpu = task_cpu(p); - if ((cpu != smp_processor_id()) && task_curr(p)) - smp_send_reschedule(cpu); - preempt_enable(); -} -EXPORT_SYMBOL_GPL(kick_process); -#endif - -/* - * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the - * basis of earlier deadlines. SCHED_IDLEPRIO don't preempt anything else or - * between themselves, they cooperatively multitask. An idle rq scores as - * prio PRIO_LIMIT so it is always preempted. - */ -static inline bool -can_preempt(struct task_struct *p, int prio, u64 deadline) -{ - /* Better static priority RT task or better policy preemption */ - if (p->prio < prio) - return true; - if (p->prio > prio) - return false; - /* SCHED_NORMAL, BATCH and ISO will preempt based on deadline */ - if (!deadline_before(p->deadline, deadline)) - return false; - return true; -} - -#ifdef CONFIG_SMP -#define cpu_online_map (*(cpumask_t *)cpu_online_mask) -#ifdef CONFIG_HOTPLUG_CPU -/* - * Check to see if there is a task that is affined only to offline CPUs but - * still wants runtime. This happens to kernel threads during suspend/halt and - * disabling of CPUs. - */ -static inline bool online_cpus(struct task_struct *p) -{ - return (likely(cpumask_intersects(&cpu_online_map, &p->cpus_allowed))); -} -#else /* CONFIG_HOTPLUG_CPU */ -/* All available CPUs are always online without hotplug. */ -static inline bool online_cpus(struct task_struct *p) -{ - return true; -} -#endif - -/* - * Check to see if p can run on cpu, and if not, whether there are any online - * CPUs it can run on instead. - */ -static inline bool needs_other_cpu(struct task_struct *p, int cpu) -{ - if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed))) - return true; - return false; -} - -/* - * When all else is equal, still prefer this_rq. - */ -static void try_preempt(struct task_struct *p, struct rq *this_rq) -{ - struct rq *highest_prio_rq = NULL; - int cpu, highest_prio; - u64 latest_deadline; - cpumask_t tmp; - - /* - * We clear the sticky flag here because for a task to have called - * try_preempt with the sticky flag enabled means some complicated - * re-scheduling has occurred and we should ignore the sticky flag. - */ - clear_sticky(p); - - if (suitable_idle_cpus(p) && resched_best_idle(p)) - return; - - /* IDLEPRIO tasks never preempt anything but idle */ - if (p->policy == SCHED_IDLEPRIO) - return; - - if (likely(online_cpus(p))) - cpumask_and(&tmp, &cpu_online_map, &p->cpus_allowed); - else - return; - - highest_prio = latest_deadline = 0; - - for_each_cpu(cpu, &tmp) { - struct rq *rq; - int rq_prio; - - rq = cpu_rq(cpu); - rq_prio = rq->rq_prio; - if (rq_prio < highest_prio) - continue; - - if (rq_prio > highest_prio || - deadline_after(rq->rq_deadline, latest_deadline)) { - latest_deadline = rq->rq_deadline; - highest_prio = rq_prio; - highest_prio_rq = rq; - } - } - - if (likely(highest_prio_rq)) { -#ifdef CONFIG_SMT_NICE - cpu = cpu_of(highest_prio_rq); - if (!smt_should_schedule(p, cpu)) - return; -#endif - if (can_preempt(p, highest_prio, highest_prio_rq->rq_deadline)) - resched_curr(highest_prio_rq); - } -} -static int __set_cpus_allowed_ptr(struct task_struct *p, - const struct cpumask *new_mask, bool check); -#else /* CONFIG_SMP */ -static inline bool needs_other_cpu(struct task_struct *p, int cpu) -{ - return false; -} - -static void try_preempt(struct task_struct *p, struct rq *this_rq) -{ - if (p->policy == SCHED_IDLEPRIO) - return; - if (can_preempt(p, uprq->rq_prio, uprq->rq_deadline)) - resched_curr(uprq); -} - -static inline int __set_cpus_allowed_ptr(struct task_struct *p, - const struct cpumask *new_mask, bool check) -{ - return set_cpus_allowed_ptr(p, new_mask); -} -#endif /* CONFIG_SMP */ - -static void -ttwu_stat(struct task_struct *p, int cpu, int wake_flags) -{ -#ifdef CONFIG_SCHEDSTATS - struct rq *rq = this_rq(); - -#ifdef CONFIG_SMP - int this_cpu = smp_processor_id(); - - if (cpu == this_cpu) - schedstat_inc(rq, ttwu_local); - else { - struct sched_domain *sd; - - rcu_read_lock(); - for_each_domain(this_cpu, sd) { - if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { - schedstat_inc(sd, ttwu_wake_remote); - break; - } - } - rcu_read_unlock(); - } - -#endif /* CONFIG_SMP */ - - schedstat_inc(rq, ttwu_count); -#endif /* CONFIG_SCHEDSTATS */ -} - -void wake_up_if_idle(int cpu) -{ - struct rq *rq = cpu_rq(cpu); - unsigned long flags; - - rcu_read_lock(); - - if (!is_idle_task(rcu_dereference(rq->curr))) - goto out; - - grq_lock_irqsave(&flags); - if (likely(is_idle_task(rq->curr))) - smp_send_reschedule(cpu); - /* Else cpu is not in idle, do nothing here */ - grq_unlock_irqrestore(&flags); - -out: - rcu_read_unlock(); -} - -#ifdef CONFIG_SMP -void scheduler_ipi(void) -{ - /* - * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting - * TIF_NEED_RESCHED remotely (for the first time) will also send - * this IPI. - */ - preempt_fold_need_resched(); -} -#endif - -static inline void ttwu_activate(struct task_struct *p, struct rq *rq, - bool is_sync) -{ - activate_task(p, rq); - - /* - * Sync wakeups (i.e. those types of wakeups where the waker - * has indicated that it will leave the CPU in short order) - * don't trigger a preemption if there are no idle cpus, - * instead waiting for current to deschedule. - */ - if (!is_sync || suitable_idle_cpus(p)) - try_preempt(p, rq); -} - -static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq, - bool success) -{ - trace_sched_wakeup(p); - p->state = TASK_RUNNING; - - /* - * if a worker is waking up, notify workqueue. Note that on BFS, we - * don't really know what cpu it will be, so we fake it for - * wq_worker_waking_up :/ - */ - if ((p->flags & PF_WQ_WORKER) && success) - wq_worker_waking_up(p, cpu_of(rq)); -} - -/* - * wake flags - */ -#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ -#define WF_FORK 0x02 /* child wakeup after fork */ -#define WF_MIGRATED 0x4 /* internal use, task got migrated */ - -/*** - * try_to_wake_up - wake up a thread - * @p: the thread to be awakened - * @state: the mask of task states that can be woken - * @wake_flags: wake modifier flags (WF_*) - * - * Put it on the run-queue if it's not already there. The "current" - * thread is always on the run-queue (except when the actual - * re-schedule is in progress), and as such you're allowed to do - * the simpler "current->state = TASK_RUNNING" to mark yourself - * runnable without the overhead of this. - * - * Return: %true if @p was woken up, %false if it was already running. - * or @state didn't match @p's state. - */ -static bool try_to_wake_up(struct task_struct *p, unsigned int state, - int wake_flags) -{ - bool success = false; - unsigned long flags; - struct rq *rq; - int cpu; - - get_cpu(); - - /* - * If we are going to wake up a thread waiting for CONDITION we - * need to ensure that CONDITION=1 done by the caller can not be - * reordered with p->state check below. This pairs with mb() in - * set_current_state() the waiting thread does. - */ - smp_mb__before_spinlock(); - - /* - * No need to do time_lock_grq as we only need to update the rq clock - * if we activate the task - */ - rq = task_grq_lock(p, &flags); - cpu = task_cpu(p); - - /* state is a volatile long, どうして、分からない */ - if (!((unsigned int)p->state & state)) - goto out_unlock; - - trace_sched_waking(p); - - if (task_queued(p) || task_running(p)) - goto out_running; - - ttwu_activate(p, rq, wake_flags & WF_SYNC); - success = true; - -out_running: - ttwu_post_activation(p, rq, success); -out_unlock: - task_grq_unlock(&flags); - - ttwu_stat(p, cpu, wake_flags); - - put_cpu(); - - return success; -} - -/** - * try_to_wake_up_local - try to wake up a local task with grq lock held - * @p: the thread to be awakened - * - * Put @p on the run-queue if it's not already there. The caller must - * ensure that grq is locked and, @p is not the current task. - * grq stays locked over invocation. - */ -static void try_to_wake_up_local(struct task_struct *p) -{ - struct rq *rq = task_rq(p); - bool success = false; - - lockdep_assert_held(&grq.lock); - - if (!(p->state & TASK_NORMAL)) - return; - - trace_sched_waking(p); - - if (!task_queued(p)) { - if (likely(!task_running(p))) { - schedstat_inc(rq, ttwu_count); - schedstat_inc(rq, ttwu_local); - } - ttwu_activate(p, rq, false); - ttwu_stat(p, smp_processor_id(), 0); - success = true; - } - ttwu_post_activation(p, rq, success); -} - -/** - * wake_up_process - Wake up a specific process - * @p: The process to be woken up. - * - * Attempt to wake up the nominated process and move it to the set of runnable - * processes. - * - * Return: 1 if the process was woken up, 0 if it was already running. - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -int wake_up_process(struct task_struct *p) -{ - WARN_ON(task_is_stopped_or_traced(p)); - return try_to_wake_up(p, TASK_NORMAL, 0); -} -EXPORT_SYMBOL(wake_up_process); - -int wake_up_state(struct task_struct *p, unsigned int state) -{ - return try_to_wake_up(p, state, 0); -} - -static void time_slice_expired(struct task_struct *p); - -/* - * Perform scheduler related setup for a newly forked process p. - * p is forked by current. - */ -int sched_fork(unsigned long __maybe_unused clone_flags, struct task_struct *p) -{ -#ifdef CONFIG_PREEMPT_NOTIFIERS - INIT_HLIST_HEAD(&p->preempt_notifiers); -#endif - /* - * The process state is set to the same value of the process executing - * do_fork() code. That is running. This guarantees that nobody will - * actually run it, and a signal or other external event cannot wake - * it up and insert it on the runqueue either. - */ - - /* Should be reset in fork.c but done here for ease of bfs patching */ - p->on_rq = - p->utime = - p->stime = - p->utimescaled = - p->stimescaled = - p->sched_time = - p->stime_pc = - p->utime_pc = 0; - - /* - * Revert to default priority/policy on fork if requested. - */ - if (unlikely(p->sched_reset_on_fork)) { - if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { - p->policy = SCHED_NORMAL; - p->normal_prio = normal_prio(p); - } - - if (PRIO_TO_NICE(p->static_prio) < 0) { - p->static_prio = NICE_TO_PRIO(0); - p->normal_prio = p->static_prio; - } - - /* - * We don't need the reset flag anymore after the fork. It has - * fulfilled its duty: - */ - p->sched_reset_on_fork = 0; - } - - INIT_LIST_HEAD(&p->run_list); -#ifdef CONFIG_SCHED_INFO - if (unlikely(sched_info_on())) - memset(&p->sched_info, 0, sizeof(p->sched_info)); -#endif - p->on_cpu = false; - clear_sticky(p); - init_task_preempt_count(p); - return 0; -} - -/* - * wake_up_new_task - wake up a newly created task for the first time. - * - * This function will do some initial scheduler statistics housekeeping - * that must be done for every newly created context, then puts the task - * on the runqueue and wakes it. - */ -void wake_up_new_task(struct task_struct *p) -{ - struct task_struct *parent; - unsigned long flags; - struct rq *rq; - - parent = p->parent; - rq = task_grq_lock(p, &flags); - - /* - * Reinit new task deadline as its creator deadline could have changed - * since call to dup_task_struct(). - */ - p->deadline = rq->rq_deadline; - - /* - * If the task is a new process, current and parent are the same. If - * the task is a new thread in the thread group, it will have much more - * in common with current than with the parent. - */ - set_task_cpu(p, task_cpu(rq->curr)); - - /* - * Make sure we do not leak PI boosting priority to the child. - */ - p->prio = rq->curr->normal_prio; - - activate_task(p, rq); - trace_sched_wakeup_new(p); - if (unlikely(p->policy == SCHED_FIFO)) - goto after_ts_init; - - /* - * Share the timeslice between parent and child, thus the - * total amount of pending timeslices in the system doesn't change, - * resulting in more scheduling fairness. If it's negative, it won't - * matter since that's the same as being 0. current's time_slice is - * actually in rq_time_slice when it's running, as is its last_ran - * value. rq->rq_deadline is only modified within schedule() so it - * is always equal to current->deadline. - */ - p->last_ran = rq->rq_last_ran; - if (likely(rq->rq_time_slice >= RESCHED_US * 2)) { - rq->rq_time_slice /= 2; - p->time_slice = rq->rq_time_slice; -after_ts_init: - if (rq->curr == parent && !suitable_idle_cpus(p)) { - /* - * The VM isn't cloned, so we're in a good position to - * do child-runs-first in anticipation of an exec. This - * usually avoids a lot of COW overhead. - */ - __set_tsk_resched(parent); - } else - try_preempt(p, rq); - } else { - if (rq->curr == parent) { - /* - * Forking task has run out of timeslice. Reschedule it and - * start its child with a new time slice and deadline. The - * child will end up running first because its deadline will - * be slightly earlier. - */ - rq->rq_time_slice = 0; - __set_tsk_resched(parent); - } - time_slice_expired(p); - } - task_grq_unlock(&flags); -} - -#ifdef CONFIG_PREEMPT_NOTIFIERS - -static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE; - -void preempt_notifier_inc(void) -{ - static_key_slow_inc(&preempt_notifier_key); -} -EXPORT_SYMBOL_GPL(preempt_notifier_inc); - -void preempt_notifier_dec(void) -{ - static_key_slow_dec(&preempt_notifier_key); -} -EXPORT_SYMBOL_GPL(preempt_notifier_dec); - -/** - * preempt_notifier_register - tell me when current is being preempted & rescheduled - * @notifier: notifier struct to register - */ -void preempt_notifier_register(struct preempt_notifier *notifier) -{ - if (!static_key_false(&preempt_notifier_key)) - WARN(1, "registering preempt_notifier while notifiers disabled\n"); - - hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); -} -EXPORT_SYMBOL_GPL(preempt_notifier_register); - -/** - * preempt_notifier_unregister - no longer interested in preemption notifications - * @notifier: notifier struct to unregister - * - * This is *not* safe to call from within a preemption notifier. - */ -void preempt_notifier_unregister(struct preempt_notifier *notifier) -{ - hlist_del(¬ifier->link); -} -EXPORT_SYMBOL_GPL(preempt_notifier_unregister); - -static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) -{ - struct preempt_notifier *notifier; - - hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) - notifier->ops->sched_in(notifier, raw_smp_processor_id()); -} - -static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) -{ - if (static_key_false(&preempt_notifier_key)) - __fire_sched_in_preempt_notifiers(curr); -} - -static void -__fire_sched_out_preempt_notifiers(struct task_struct *curr, - struct task_struct *next) -{ - struct preempt_notifier *notifier; - - hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) - notifier->ops->sched_out(notifier, next); -} - -static __always_inline void -fire_sched_out_preempt_notifiers(struct task_struct *curr, - struct task_struct *next) -{ - if (static_key_false(&preempt_notifier_key)) - __fire_sched_out_preempt_notifiers(curr, next); -} - -#else /* !CONFIG_PREEMPT_NOTIFIERS */ - -static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) -{ -} - -static inline void -fire_sched_out_preempt_notifiers(struct task_struct *curr, - struct task_struct *next) -{ -} - -#endif /* CONFIG_PREEMPT_NOTIFIERS */ - -/** - * prepare_task_switch - prepare to switch tasks - * @rq: the runqueue preparing to switch - * @next: the task we are going to switch to. - * - * This is called with the rq lock held and interrupts off. It must - * be paired with a subsequent finish_task_switch after the context - * switch. - * - * prepare_task_switch sets up locking and calls architecture specific - * hooks. - */ -static inline void -prepare_task_switch(struct rq *rq, struct task_struct *prev, - struct task_struct *next) -{ - sched_info_switch(rq, prev, next); - perf_event_task_sched_out(prev, next); - fire_sched_out_preempt_notifiers(prev, next); - prepare_lock_switch(rq, next); - prepare_arch_switch(next); - trace_sched_switch(prev, next); -} - -/** - * finish_task_switch - clean up after a task-switch - * @rq: runqueue associated with task-switch - * @prev: the thread we just switched away from. - * - * finish_task_switch must be called after the context switch, paired - * with a prepare_task_switch call before the context switch. - * finish_task_switch will reconcile locking set up by prepare_task_switch, - * and do any other architecture-specific cleanup actions. - * - * Note that we may have delayed dropping an mm in context_switch(). If - * so, we finish that here outside of the runqueue lock. (Doing it - * with the lock held can cause deadlocks; see schedule() for - * details.) - * - * The context switch have flipped the stack from under us and restored the - * local variables which were saved when this task called schedule() in the - * past. prev == current is still correct but we need to recalculate this_rq - * because prev may have moved to another CPU. - */ -static struct rq *finish_task_switch(struct task_struct *prev) - __releases(grq.lock) -{ - struct rq *rq = this_rq(); - struct mm_struct *mm = rq->prev_mm; - long prev_state; - - rq->prev_mm = NULL; - - /* - * A task struct has one reference for the use as "current". - * If a task dies, then it sets TASK_DEAD in tsk->state and calls - * schedule one last time. The schedule call will never return, and - * the scheduled task must drop that reference. - * - * We must observe prev->state before clearing prev->on_cpu (in - * finish_lock_switch), otherwise a concurrent wakeup can get prev - * running on another CPU and we could rave with its RUNNING -> DEAD - * transition, resulting in a double drop. - */ - prev_state = prev->state; - vtime_task_switch(prev); - perf_event_task_sched_in(prev, current); - finish_lock_switch(rq, prev); - finish_arch_post_lock_switch(); - - fire_sched_in_preempt_notifiers(current); - if (mm) - mmdrop(mm); - if (unlikely(prev_state == TASK_DEAD)) { - /* - * Remove function-return probe instances associated with this - * task and put them back on the free list. - */ - kprobe_flush_task(prev); - put_task_struct(prev); - } - return rq; -} - -/** - * schedule_tail - first thing a freshly forked thread must call. - * @prev: the thread we just switched away from. - */ -asmlinkage __visible void schedule_tail(struct task_struct *prev) - __releases(grq.lock) -{ - struct rq *rq; - - /* finish_task_switch() drops rq->lock and enables preemption */ - preempt_disable(); - rq = finish_task_switch(prev); - preempt_enable(); - - if (current->set_child_tid) - put_user(task_pid_vnr(current), current->set_child_tid); -} - -/* - * context_switch - switch to the new MM and the new thread's register state. - */ -static inline struct rq * -context_switch(struct rq *rq, struct task_struct *prev, - struct task_struct *next) -{ - struct mm_struct *mm, *oldmm; - - prepare_task_switch(rq, prev, next); - - mm = next->mm; - oldmm = prev->active_mm; - /* - * For paravirt, this is coupled with an exit in switch_to to - * combine the page table reload and the switch backend into - * one hypercall. - */ - arch_start_context_switch(prev); - - if (!mm) { - next->active_mm = oldmm; - atomic_inc(&oldmm->mm_count); - enter_lazy_tlb(oldmm, next); - } else - switch_mm(oldmm, mm, next); - - if (!prev->mm) { - prev->active_mm = NULL; - rq->prev_mm = oldmm; - } - /* - * Since the runqueue lock will be released by the next - * task (which is an invalid locking op but in the case - * of the scheduler it's an obvious special-case), so we - * do an early lockdep release here: - */ - spin_release(&grq.lock.dep_map, 1, _THIS_IP_); - - /* Here we just switch the register state and the stack. */ - switch_to(prev, next, prev); - barrier(); - - return finish_task_switch(prev); -} - -/* - * nr_running, nr_uninterruptible and nr_context_switches: - * - * externally visible scheduler statistics: current number of runnable - * threads, total number of context switches performed since bootup. All are - * measured without grabbing the grq lock but the occasional inaccurate result - * doesn't matter so long as it's positive. - */ -unsigned long nr_running(void) -{ - long nr = grq.nr_running; - - if (unlikely(nr < 0)) - nr = 0; - return (unsigned long)nr; -} - -static unsigned long nr_uninterruptible(void) -{ - long nu = grq.nr_uninterruptible; - - if (unlikely(nu < 0)) - nu = 0; - return nu; -} - -/* - * Check if only the current task is running on the cpu. - * - * Caution: this function does not check that the caller has disabled - * preemption, thus the result might have a time-of-check-to-time-of-use - * race. The caller is responsible to use it correctly, for example: - * - * - from a non-preemptable section (of course) - * - * - from a thread that is bound to a single CPU - * - * - in a loop with very short iterations (e.g. a polling loop) - */ -bool single_task_running(void) -{ - if (cpu_rq(smp_processor_id())->soft_affined == 1) - return true; - else - return false; -} -EXPORT_SYMBOL(single_task_running); - -unsigned long long nr_context_switches(void) -{ - long long ns = grq.nr_switches; - - /* This is of course impossible */ - if (unlikely(ns < 0)) - ns = 1; - return (unsigned long long)ns; -} - -unsigned long nr_iowait(void) -{ - unsigned long i, sum = 0; - - for_each_possible_cpu(i) - sum += atomic_read(&cpu_rq(i)->nr_iowait); - - return sum; -} - -unsigned long nr_iowait_cpu(int cpu) -{ - struct rq *this = cpu_rq(cpu); - return atomic_read(&this->nr_iowait); -} - -unsigned long nr_active(void) -{ - return nr_running() + nr_uninterruptible(); -} - -/* Beyond a task running on this CPU, load is equal everywhere on BFS, so we - * base it on the number of running or queued tasks with their ->rq pointer - * set to this cpu as being the CPU they're more likely to run on. */ -void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) -{ - struct rq *rq = this_rq(); - - *nr_waiters = atomic_read(&rq->nr_iowait); - *load = rq->soft_affined; -} - -/* Variables and functions for calc_load */ -static unsigned long calc_load_update; -unsigned long avenrun[3]; -EXPORT_SYMBOL(avenrun); - -/** - * get_avenrun - get the load average array - * @loads: pointer to dest load array - * @offset: offset to add - * @shift: shift count to shift the result left - * - * These values are estimates at best, so no need for locking. - */ -void get_avenrun(unsigned long *loads, unsigned long offset, int shift) -{ - loads[0] = (avenrun[0] + offset) << shift; - loads[1] = (avenrun[1] + offset) << shift; - loads[2] = (avenrun[2] + offset) << shift; -} - -static unsigned long -calc_load(unsigned long load, unsigned long exp, unsigned long active) -{ - load *= exp; - load += active * (FIXED_1 - exp); - return load >> FSHIFT; -} - -/* - * calc_load - update the avenrun load estimates every LOAD_FREQ seconds. - */ -void calc_global_load(unsigned long ticks) -{ - long active; - - if (time_before(jiffies, calc_load_update)) - return; - active = nr_active() * FIXED_1; - - avenrun[0] = calc_load(avenrun[0], EXP_1, active); - avenrun[1] = calc_load(avenrun[1], EXP_5, active); - avenrun[2] = calc_load(avenrun[2], EXP_15, active); - - calc_load_update = jiffies + LOAD_FREQ; -} - -DEFINE_PER_CPU(struct kernel_stat, kstat); -DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); - -EXPORT_PER_CPU_SYMBOL(kstat); -EXPORT_PER_CPU_SYMBOL(kernel_cpustat); - -#ifdef CONFIG_IRQ_TIME_ACCOUNTING - -/* - * There are no locks covering percpu hardirq/softirq time. - * They are only modified in account_system_vtime, on corresponding CPU - * with interrupts disabled. So, writes are safe. - * They are read and saved off onto struct rq in update_rq_clock(). - * This may result in other CPU reading this CPU's irq time and can - * race with irq/account_system_vtime on this CPU. We would either get old - * or new value with a side effect of accounting a slice of irq time to wrong - * task when irq is in progress while we read rq->clock. That is a worthy - * compromise in place of having locks on each irq in account_system_time. - */ -static DEFINE_PER_CPU(u64, cpu_hardirq_time); -static DEFINE_PER_CPU(u64, cpu_softirq_time); - -static DEFINE_PER_CPU(u64, irq_start_time); -static int sched_clock_irqtime; - -void enable_sched_clock_irqtime(void) -{ - sched_clock_irqtime = 1; -} - -void disable_sched_clock_irqtime(void) -{ - sched_clock_irqtime = 0; -} - -#ifndef CONFIG_64BIT -static DEFINE_PER_CPU(seqcount_t, irq_time_seq); - -static inline void irq_time_write_begin(void) -{ - __this_cpu_inc(irq_time_seq.sequence); - smp_wmb(); -} - -static inline void irq_time_write_end(void) -{ - smp_wmb(); - __this_cpu_inc(irq_time_seq.sequence); -} - -static inline u64 irq_time_read(int cpu) -{ - u64 irq_time; - unsigned seq; - - do { - seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); - irq_time = per_cpu(cpu_softirq_time, cpu) + - per_cpu(cpu_hardirq_time, cpu); - } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); - - return irq_time; -} -#else /* CONFIG_64BIT */ -static inline void irq_time_write_begin(void) -{ -} - -static inline void irq_time_write_end(void) -{ -} - -static inline u64 irq_time_read(int cpu) -{ - return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); -} -#endif /* CONFIG_64BIT */ - -/* - * Called before incrementing preempt_count on {soft,}irq_enter - * and before decrementing preempt_count on {soft,}irq_exit. - */ -void irqtime_account_irq(struct task_struct *curr) -{ - unsigned long flags; - s64 delta; - int cpu; - - if (!sched_clock_irqtime) - return; - - local_irq_save(flags); - - cpu = smp_processor_id(); - delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); - __this_cpu_add(irq_start_time, delta); - - irq_time_write_begin(); - /* - * We do not account for softirq time from ksoftirqd here. - * We want to continue accounting softirq time to ksoftirqd thread - * in that case, so as not to confuse scheduler with a special task - * that do not consume any time, but still wants to run. - */ - if (hardirq_count()) - __this_cpu_add(cpu_hardirq_time, delta); - else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) - __this_cpu_add(cpu_softirq_time, delta); - - irq_time_write_end(); - local_irq_restore(flags); -} -EXPORT_SYMBOL_GPL(irqtime_account_irq); - -#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ - -#ifdef CONFIG_PARAVIRT -static inline u64 steal_ticks(u64 steal) -{ - if (unlikely(steal > NSEC_PER_SEC)) - return div_u64(steal, TICK_NSEC); - - return __iter_div_u64_rem(steal, TICK_NSEC, &steal); -} -#endif - -static void update_rq_clock_task(struct rq *rq, s64 delta) -{ -/* - * In theory, the compile should just see 0 here, and optimize out the call - * to sched_rt_avg_update. But I don't trust it... - */ -#ifdef CONFIG_IRQ_TIME_ACCOUNTING - s64 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; - - /* - * Since irq_time is only updated on {soft,}irq_exit, we might run into - * this case when a previous update_rq_clock() happened inside a - * {soft,}irq region. - * - * When this happens, we stop ->clock_task and only update the - * prev_irq_time stamp to account for the part that fit, so that a next - * update will consume the rest. This ensures ->clock_task is - * monotonic. - * - * It does however cause some slight miss-attribution of {soft,}irq - * time, a more accurate solution would be to update the irq_time using - * the current rq->clock timestamp, except that would require using - * atomic ops. - */ - if (irq_delta > delta) - irq_delta = delta; - - rq->prev_irq_time += irq_delta; - delta -= irq_delta; -#endif -#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING - if (static_key_false((¶virt_steal_rq_enabled))) { - s64 steal = paravirt_steal_clock(cpu_of(rq)); - - steal -= rq->prev_steal_time_rq; - - if (unlikely(steal > delta)) - steal = delta; - - rq->prev_steal_time_rq += steal; - - delta -= steal; - } -#endif - - rq->clock_task += delta; -} - -#ifndef nsecs_to_cputime -# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) -#endif - -#ifdef CONFIG_IRQ_TIME_ACCOUNTING -static void irqtime_account_hi_si(void) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - u64 latest_ns; - - latest_ns = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time)); - if (latest_ns > cpustat[CPUTIME_IRQ]) - cpustat[CPUTIME_IRQ] += (__force u64)cputime_one_jiffy; - - latest_ns = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time)); - if (latest_ns > cpustat[CPUTIME_SOFTIRQ]) - cpustat[CPUTIME_SOFTIRQ] += (__force u64)cputime_one_jiffy; -} -#else /* CONFIG_IRQ_TIME_ACCOUNTING */ - -#define sched_clock_irqtime (0) - -static inline void irqtime_account_hi_si(void) -{ -} -#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ - -static __always_inline bool steal_account_process_tick(void) -{ -#ifdef CONFIG_PARAVIRT - if (static_key_false(¶virt_steal_enabled)) { - u64 steal; - cputime_t steal_ct; - - steal = paravirt_steal_clock(smp_processor_id()); - steal -= this_rq()->prev_steal_time; - - /* - * cputime_t may be less precise than nsecs (eg: if it's - * based on jiffies). Lets cast the result to cputime - * granularity and account the rest on the next rounds. - */ - steal_ct = nsecs_to_cputime(steal); - this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct); - - account_steal_time(steal_ct); - return steal_ct; - } -#endif - return false; -} - -/* - * Accumulate raw cputime values of dead tasks (sig->[us]time) and live - * tasks (sum on group iteration) belonging to @tsk's group. - */ -void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) -{ - struct signal_struct *sig = tsk->signal; - cputime_t utime, stime; - struct task_struct *t; - unsigned int seq, nextseq; - unsigned long flags; - - rcu_read_lock(); - /* Attempt a lockless read on the first round. */ - nextseq = 0; - do { - seq = nextseq; - flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); - times->utime = sig->utime; - times->stime = sig->stime; - times->sum_exec_runtime = sig->sum_sched_runtime; - - for_each_thread(tsk, t) { - task_cputime(t, &utime, &stime); - times->utime += utime; - times->stime += stime; - times->sum_exec_runtime += task_sched_runtime(t); - } - /* If lockless access failed, take the lock. */ - nextseq = 1; - } while (need_seqretry(&sig->stats_lock, seq)); - done_seqretry_irqrestore(&sig->stats_lock, seq, flags); - rcu_read_unlock(); -} - -/* - * On each tick, see what percentage of that tick was attributed to each - * component and add the percentage to the _pc values. Once a _pc value has - * accumulated one tick's worth, account for that. This means the total - * percentage of load components will always be 128 (pseudo 100) per tick. - */ -static void pc_idle_time(struct rq *rq, struct task_struct *idle, unsigned long pc) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - - if (atomic_read(&rq->nr_iowait) > 0) { - rq->iowait_pc += pc; - if (rq->iowait_pc >= 128) { - cpustat[CPUTIME_IOWAIT] += (__force u64)cputime_one_jiffy * rq->iowait_pc / 128; - rq->iowait_pc %= 128; - } - } else { - rq->idle_pc += pc; - if (rq->idle_pc >= 128) { - cpustat[CPUTIME_IDLE] += (__force u64)cputime_one_jiffy * rq->idle_pc / 128; - rq->idle_pc %= 128; - } - } - acct_update_integrals(idle); -} - -static void -pc_system_time(struct rq *rq, struct task_struct *p, int hardirq_offset, - unsigned long pc, unsigned long ns) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); - - p->stime_pc += pc; - if (p->stime_pc >= 128) { - int jiffs = p->stime_pc / 128; - - p->stime_pc %= 128; - p->stime += (__force u64)cputime_one_jiffy * jiffs; - p->stimescaled += one_jiffy_scaled * jiffs; - account_group_system_time(p, cputime_one_jiffy * jiffs); - } - p->sched_time += ns; - account_group_exec_runtime(p, ns); - - if (hardirq_count() - hardirq_offset) { - rq->irq_pc += pc; - if (rq->irq_pc >= 128) { - cpustat[CPUTIME_IRQ] += (__force u64)cputime_one_jiffy * rq->irq_pc / 128; - rq->irq_pc %= 128; - } - } else if (in_serving_softirq()) { - rq->softirq_pc += pc; - if (rq->softirq_pc >= 128) { - cpustat[CPUTIME_SOFTIRQ] += (__force u64)cputime_one_jiffy * rq->softirq_pc / 128; - rq->softirq_pc %= 128; - } - } else { - rq->system_pc += pc; - if (rq->system_pc >= 128) { - cpustat[CPUTIME_SYSTEM] += (__force u64)cputime_one_jiffy * rq->system_pc / 128; - rq->system_pc %= 128; - } - } - acct_update_integrals(p); -} - -static void pc_user_time(struct rq *rq, struct task_struct *p, - unsigned long pc, unsigned long ns) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); - - p->utime_pc += pc; - if (p->utime_pc >= 128) { - int jiffs = p->utime_pc / 128; - - p->utime_pc %= 128; - p->utime += (__force u64)cputime_one_jiffy * jiffs; - p->utimescaled += one_jiffy_scaled * jiffs; - account_group_user_time(p, cputime_one_jiffy * jiffs); - } - p->sched_time += ns; - account_group_exec_runtime(p, ns); - - if (this_cpu_ksoftirqd() == p) { - /* - * ksoftirqd time do not get accounted in cpu_softirq_time. - * So, we have to handle it separately here. - */ - rq->softirq_pc += pc; - if (rq->softirq_pc >= 128) { - cpustat[CPUTIME_SOFTIRQ] += (__force u64)cputime_one_jiffy * rq->softirq_pc / 128; - rq->softirq_pc %= 128; - } - } - - if (task_nice(p) > 0 || idleprio_task(p)) { - rq->nice_pc += pc; - if (rq->nice_pc >= 128) { - cpustat[CPUTIME_NICE] += (__force u64)cputime_one_jiffy * rq->nice_pc / 128; - rq->nice_pc %= 128; - } - } else { - rq->user_pc += pc; - if (rq->user_pc >= 128) { - cpustat[CPUTIME_USER] += (__force u64)cputime_one_jiffy * rq->user_pc / 128; - rq->user_pc %= 128; - } - } - acct_update_integrals(p); -} - -/* - * Convert nanoseconds to pseudo percentage of one tick. Use 128 for fast - * shifts instead of 100 - */ -#define NS_TO_PC(NS) (NS * 128 / JIFFY_NS) - -/* - * This is called on clock ticks. - * Bank in p->sched_time the ns elapsed since the last tick or switch. - * CPU scheduler quota accounting is also performed here in microseconds. - */ -static void -update_cpu_clock_tick(struct rq *rq, struct task_struct *p) -{ - long account_ns = rq->clock_task - rq->rq_last_ran; - struct task_struct *idle = rq->idle; - unsigned long account_pc; - - if (unlikely(account_ns < 0) || steal_account_process_tick()) - goto ts_account; - - account_pc = NS_TO_PC(account_ns); - - /* Accurate tick timekeeping */ - if (user_mode(get_irq_regs())) - pc_user_time(rq, p, account_pc, account_ns); - else if (p != idle || (irq_count() != HARDIRQ_OFFSET)) - pc_system_time(rq, p, HARDIRQ_OFFSET, - account_pc, account_ns); - else - pc_idle_time(rq, idle, account_pc); - - if (sched_clock_irqtime) - irqtime_account_hi_si(); - -ts_account: - /* time_slice accounting is done in usecs to avoid overflow on 32bit */ - if (rq->rq_policy != SCHED_FIFO && p != idle) { - s64 time_diff = rq->clock - rq->timekeep_clock; - - niffy_diff(&time_diff, 1); - rq->rq_time_slice -= NS_TO_US(time_diff); - } - - rq->rq_last_ran = rq->clock_task; - rq->timekeep_clock = rq->clock; -} - -/* - * This is called on context switches. - * Bank in p->sched_time the ns elapsed since the last tick or switch. - * CPU scheduler quota accounting is also performed here in microseconds. - */ -static void -update_cpu_clock_switch(struct rq *rq, struct task_struct *p) -{ - long account_ns = rq->clock_task - rq->rq_last_ran; - struct task_struct *idle = rq->idle; - unsigned long account_pc; - - if (unlikely(account_ns < 0)) - goto ts_account; - - account_pc = NS_TO_PC(account_ns); - - /* Accurate subtick timekeeping */ - if (p != idle) { - pc_user_time(rq, p, account_pc, account_ns); - } - else - pc_idle_time(rq, idle, account_pc); - -ts_account: - /* time_slice accounting is done in usecs to avoid overflow on 32bit */ - if (rq->rq_policy != SCHED_FIFO && p != idle) { - s64 time_diff = rq->clock - rq->timekeep_clock; - - niffy_diff(&time_diff, 1); - rq->rq_time_slice -= NS_TO_US(time_diff); - } - - rq->rq_last_ran = rq->clock_task; - rq->timekeep_clock = rq->clock; -} - -/* - * Return any ns on the sched_clock that have not yet been accounted in - * @p in case that task is currently running. - * - * Called with task_grq_lock() held. - */ -static inline u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) -{ - u64 ns = 0; - - /* - * Must be ->curr _and_ ->on_rq. If dequeued, we would - * project cycles that may never be accounted to this - * thread, breaking clock_gettime(). - */ - if (p == rq->curr && p->on_rq) { - update_clocks(rq); - ns = rq->clock_task - rq->rq_last_ran; - if (unlikely((s64)ns < 0)) - ns = 0; - } - - return ns; -} - -/* - * Return accounted runtime for the task. - * Return separately the current's pending runtime that have not been - * accounted yet. - * - */ -unsigned long long task_sched_runtime(struct task_struct *p) -{ - unsigned long flags; - struct rq *rq; - u64 ns; - -#if defined(CONFIG_64BIT) && defined(CONFIG_SMP) - /* - * 64-bit doesn't need locks to atomically read a 64bit value. - * So we have a optimization chance when the task's delta_exec is 0. - * Reading ->on_cpu is racy, but this is ok. - * - * If we race with it leaving cpu, we'll take a lock. So we're correct. - * If we race with it entering cpu, unaccounted time is 0. This is - * indistinguishable from the read occurring a few cycles earlier. - * If we see ->on_cpu without ->on_rq, the task is leaving, and has - * been accounted, so we're correct here as well. - */ - if (!p->on_cpu || !p->on_rq) - return tsk_seruntime(p); -#endif - - rq = task_grq_lock(p, &flags); - ns = p->sched_time + do_task_delta_exec(p, rq); - task_grq_unlock(&flags); - - return ns; -} - -/* Compatibility crap */ -void account_user_time(struct task_struct *p, cputime_t cputime, - cputime_t cputime_scaled) -{ -} - -void account_idle_time(cputime_t cputime) -{ -} - -/* - * Account guest cpu time to a process. - * @p: the process that the cpu time gets accounted to - * @cputime: the cpu time spent in virtual machine since the last update - * @cputime_scaled: cputime scaled by cpu frequency - */ -static void account_guest_time(struct task_struct *p, cputime_t cputime, - cputime_t cputime_scaled) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - - /* Add guest time to process. */ - p->utime += (__force u64)cputime; - p->utimescaled += (__force u64)cputime_scaled; - account_group_user_time(p, cputime); - p->gtime += (__force u64)cputime; - - /* Add guest time to cpustat. */ - if (task_nice(p) > 0) { - cpustat[CPUTIME_NICE] += (__force u64)cputime; - cpustat[CPUTIME_GUEST_NICE] += (__force u64)cputime; - } else { - cpustat[CPUTIME_USER] += (__force u64)cputime; - cpustat[CPUTIME_GUEST] += (__force u64)cputime; - } -} - -/* - * Account system cpu time to a process and desired cpustat field - * @p: the process that the cpu time gets accounted to - * @cputime: the cpu time spent in kernel space since the last update - * @cputime_scaled: cputime scaled by cpu frequency - * @target_cputime64: pointer to cpustat field that has to be updated - */ -static inline -void __account_system_time(struct task_struct *p, cputime_t cputime, - cputime_t cputime_scaled, cputime64_t *target_cputime64) -{ - /* Add system time to process. */ - p->stime += (__force u64)cputime; - p->stimescaled += (__force u64)cputime_scaled; - account_group_system_time(p, cputime); - - /* Add system time to cpustat. */ - *target_cputime64 += (__force u64)cputime; - - /* Account for system time used */ - acct_update_integrals(p); -} - -/* - * Account system cpu time to a process. - * @p: the process that the cpu time gets accounted to - * @hardirq_offset: the offset to subtract from hardirq_count() - * @cputime: the cpu time spent in kernel space since the last update - * @cputime_scaled: cputime scaled by cpu frequency - * This is for guest only now. - */ -void account_system_time(struct task_struct *p, int hardirq_offset, - cputime_t cputime, cputime_t cputime_scaled) -{ - - if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) - account_guest_time(p, cputime, cputime_scaled); -} - -/* - * Account for involuntary wait time. - * @steal: the cpu time spent in involuntary wait - */ -void account_steal_time(cputime_t cputime) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - - cpustat[CPUTIME_STEAL] += (__force u64)cputime; -} - -/* - * Account for idle time. - * @cputime: the cpu time spent in idle wait - */ -static void account_idle_times(cputime_t cputime) -{ - u64 *cpustat = kcpustat_this_cpu->cpustat; - struct rq *rq = this_rq(); - - if (atomic_read(&rq->nr_iowait) > 0) - cpustat[CPUTIME_IOWAIT] += (__force u64)cputime; - else - cpustat[CPUTIME_IDLE] += (__force u64)cputime; -} - -#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE - -void account_process_tick(struct task_struct *p, int user_tick) -{ -} - -/* - * Account multiple ticks of steal time. - * @p: the process from which the cpu time has been stolen - * @ticks: number of stolen ticks - */ -void account_steal_ticks(unsigned long ticks) -{ - account_steal_time(jiffies_to_cputime(ticks)); -} - -/* - * Account multiple ticks of idle time. - * @ticks: number of stolen ticks - */ -void account_idle_ticks(unsigned long ticks) -{ - account_idle_times(jiffies_to_cputime(ticks)); -} -#endif - -static inline void grq_iso_lock(void) - __acquires(grq.iso_lock) -{ - raw_spin_lock(&grq.iso_lock); -} - -static inline void grq_iso_unlock(void) - __releases(grq.iso_lock) -{ - raw_spin_unlock(&grq.iso_lock); -} - -/* - * Functions to test for when SCHED_ISO tasks have used their allocated - * quota as real time scheduling and convert them back to SCHED_NORMAL. - * Where possible, the data is tested lockless, to avoid grabbing iso_lock - * because the occasional inaccurate result won't matter. However the - * tick data is only ever modified under lock. iso_refractory is only simply - * set to 0 or 1 so it's not worth grabbing the lock yet again for that. - */ -static bool set_iso_refractory(void) -{ - grq.iso_refractory = true; - return grq.iso_refractory; -} - -static bool clear_iso_refractory(void) -{ - grq.iso_refractory = false; - return grq.iso_refractory; -} - -/* - * Test if SCHED_ISO tasks have run longer than their alloted period as RT - * tasks and set the refractory flag if necessary. There is 10% hysteresis - * for unsetting the flag. 115/128 is ~90/100 as a fast shift instead of a - * slow division. - */ -static bool test_ret_isorefractory(struct rq *rq) -{ - if (likely(!grq.iso_refractory)) { - if (grq.iso_ticks > ISO_PERIOD * sched_iso_cpu) - return set_iso_refractory(); - } else { - if (grq.iso_ticks < ISO_PERIOD * (sched_iso_cpu * 115 / 128)) - return clear_iso_refractory(); - } - return grq.iso_refractory; -} - -static void iso_tick(void) -{ - grq_iso_lock(); - grq.iso_ticks += 100; - grq_iso_unlock(); -} - -/* No SCHED_ISO task was running so decrease rq->iso_ticks */ -static inline void no_iso_tick(void) -{ - if (grq.iso_ticks) { - grq_iso_lock(); - grq.iso_ticks -= grq.iso_ticks / ISO_PERIOD + 1; - if (unlikely(grq.iso_refractory && grq.iso_ticks < - ISO_PERIOD * (sched_iso_cpu * 115 / 128))) - clear_iso_refractory(); - grq_iso_unlock(); - } -} - -/* This manages tasks that have run out of timeslice during a scheduler_tick */ -static void task_running_tick(struct rq *rq) -{ - struct task_struct *p; - - /* - * If a SCHED_ISO task is running we increment the iso_ticks. In - * order to prevent SCHED_ISO tasks from causing starvation in the - * presence of true RT tasks we account those as iso_ticks as well. - */ - if ((rt_queue(rq) || (iso_queue(rq) && !grq.iso_refractory))) { - if (grq.iso_ticks <= (ISO_PERIOD * 128) - 128) - iso_tick(); - } else - no_iso_tick(); - - if (iso_queue(rq)) { - if (unlikely(test_ret_isorefractory(rq))) { - if (rq_running_iso(rq)) { - /* - * SCHED_ISO task is running as RT and limit - * has been hit. Force it to reschedule as - * SCHED_NORMAL by zeroing its time_slice - */ - rq->rq_time_slice = 0; - } - } - } - - /* SCHED_FIFO tasks never run out of timeslice. */ - if (rq->rq_policy == SCHED_FIFO) - return; - /* - * Tasks that were scheduled in the first half of a tick are not - * allowed to run into the 2nd half of the next tick if they will - * run out of time slice in the interim. Otherwise, if they have - * less than RESCHED_US μs of time slice left they will be rescheduled. - */ - if (rq->dither) { - if (rq->rq_time_slice > HALF_JIFFY_US) - return; - else - rq->rq_time_slice = 0; - } else if (rq->rq_time_slice >= RESCHED_US) - return; - - /* p->time_slice < RESCHED_US. We only modify task_struct under grq lock */ - p = rq->curr; - - grq_lock(); - requeue_task(p); - __set_tsk_resched(p); - grq_unlock(); -} - -/* - * This function gets called by the timer code, with HZ frequency. - * We call it with interrupts disabled. The data modified is all - * local to struct rq so we don't need to grab grq lock. - */ -void scheduler_tick(void) -{ - int cpu __maybe_unused = smp_processor_id(); - struct rq *rq = cpu_rq(cpu); - - sched_clock_tick(); - /* grq lock not grabbed, so only update rq clock */ - update_rq_clock(rq); - update_cpu_clock_tick(rq, rq->curr); - if (!rq_idle(rq)) - task_running_tick(rq); - else - no_iso_tick(); - rq->last_tick = rq->clock; - perf_event_task_tick(); -} - -notrace unsigned long get_parent_ip(unsigned long addr) -{ - if (in_lock_functions(addr)) { - addr = CALLER_ADDR2; - if (in_lock_functions(addr)) - addr = CALLER_ADDR3; - } - return addr; -} - -#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ - defined(CONFIG_PREEMPT_TRACER)) -void preempt_count_add(int val) -{ -#ifdef CONFIG_DEBUG_PREEMPT - /* - * Underflow? - */ - if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) - return; -#endif - __preempt_count_add(val); -#ifdef CONFIG_DEBUG_PREEMPT - /* - * Spinlock count overflowing soon? - */ - DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= - PREEMPT_MASK - 10); -#endif - if (preempt_count() == val) { - unsigned long ip = get_parent_ip(CALLER_ADDR1); -#ifdef CONFIG_DEBUG_PREEMPT - current->preempt_disable_ip = ip; -#endif - trace_preempt_off(CALLER_ADDR0, ip); - } -} -EXPORT_SYMBOL(preempt_count_add); -NOKPROBE_SYMBOL(preempt_count_add); - -void preempt_count_sub(int val) -{ -#ifdef CONFIG_DEBUG_PREEMPT - /* - * Underflow? - */ - if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) - return; - /* - * Is the spinlock portion underflowing? - */ - if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && - !(preempt_count() & PREEMPT_MASK))) - return; -#endif - - if (preempt_count() == val) - trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); - __preempt_count_sub(val); -} -EXPORT_SYMBOL(preempt_count_sub); -NOKPROBE_SYMBOL(preempt_count_sub); -#endif - -/* - * Deadline is "now" in niffies + (offset by priority). Setting the deadline - * is the key to everything. It distributes cpu fairly amongst tasks of the - * same nice value, it proportions cpu according to nice level, it means the - * task that last woke up the longest ago has the earliest deadline, thus - * ensuring that interactive tasks get low latency on wake up. The CPU - * proportion works out to the square of the virtual deadline difference, so - * this equation will give nice 19 3% CPU compared to nice 0. - */ -static inline u64 prio_deadline_diff(int user_prio) -{ - return (prio_ratios[user_prio] * rr_interval * (MS_TO_NS(1) / 128)); -} - -static inline u64 task_deadline_diff(struct task_struct *p) -{ - return prio_deadline_diff(TASK_USER_PRIO(p)); -} - -static inline u64 static_deadline_diff(int static_prio) -{ - return prio_deadline_diff(USER_PRIO(static_prio)); -} - -static inline int longest_deadline_diff(void) -{ - return prio_deadline_diff(39); -} - -static inline int ms_longest_deadline_diff(void) -{ - return NS_TO_MS(longest_deadline_diff()); -} - -/* - * The time_slice is only refilled when it is empty and that is when we set a - * new deadline. - */ -static void time_slice_expired(struct task_struct *p) -{ - p->time_slice = timeslice(); - p->deadline = grq.niffies + task_deadline_diff(p); -#ifdef CONFIG_SMT_NICE - if (!p->mm) - p->smt_bias = 0; - else if (rt_task(p)) - p->smt_bias = 1 << 30; - else if (task_running_iso(p)) - p->smt_bias = 1 << 29; - else if (idleprio_task(p)) { - if (task_running_idle(p)) - p->smt_bias = 0; - else - p->smt_bias = 1; - } else if (--p->smt_bias < 1) - p->smt_bias = MAX_PRIO - p->static_prio; -#endif -} - -/* - * Timeslices below RESCHED_US are considered as good as expired as there's no - * point rescheduling when there's so little time left. SCHED_BATCH tasks - * have been flagged be not latency sensitive and likely to be fully CPU - * bound so every time they're rescheduled they have their time_slice - * refilled, but get a new later deadline to have little effect on - * SCHED_NORMAL tasks. - - */ -static inline void check_deadline(struct task_struct *p) -{ - if (p->time_slice < RESCHED_US || batch_task(p)) - time_slice_expired(p); -} - -#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG) - -/* - * Scheduler queue bitmap specific find next bit. - */ -static inline unsigned long -next_sched_bit(const unsigned long *addr, unsigned long offset) -{ - const unsigned long *p; - unsigned long result; - unsigned long size; - unsigned long tmp; - - size = PRIO_LIMIT; - if (offset >= size) - return size; - - p = addr + BITOP_WORD(offset); - result = offset & ~(BITS_PER_LONG-1); - size -= result; - offset %= BITS_PER_LONG; - if (offset) { - tmp = *(p++); - tmp &= (~0UL << offset); - if (size < BITS_PER_LONG) - goto found_first; - if (tmp) - goto found_middle; - size -= BITS_PER_LONG; - result += BITS_PER_LONG; - } - while (size & ~(BITS_PER_LONG-1)) { - if ((tmp = *(p++))) - goto found_middle; - result += BITS_PER_LONG; - size -= BITS_PER_LONG; - } - if (!size) - return result; - tmp = *p; - -found_first: - tmp &= (~0UL >> (BITS_PER_LONG - size)); - if (tmp == 0UL) /* Are any bits set? */ - return result + size; /* Nope. */ -found_middle: - return result + __ffs(tmp); -} - -/* - * O(n) lookup of all tasks in the global runqueue. The real brainfuck - * of lock contention and O(n). It's not really O(n) as only the queued, - * but not running tasks are scanned, and is O(n) queued in the worst case - * scenario only because the right task can be found before scanning all of - * them. - * Tasks are selected in this order: - * Real time tasks are selected purely by their static priority and in the - * order they were queued, so the lowest value idx, and the first queued task - * of that priority value is chosen. - * If no real time tasks are found, the SCHED_ISO priority is checked, and - * all SCHED_ISO tasks have the same priority value, so they're selected by - * the earliest deadline value. - * If no SCHED_ISO tasks are found, SCHED_NORMAL tasks are selected by the - * earliest deadline. - * Finally if no SCHED_NORMAL tasks are found, SCHED_IDLEPRIO tasks are - * selected by the earliest deadline. - */ -static inline struct -task_struct *earliest_deadline_task(struct rq *rq, int cpu, struct task_struct *idle) -{ - struct task_struct *edt = NULL; - unsigned long idx = -1; - - do { - struct list_head *queue; - struct task_struct *p; - u64 earliest_deadline; - - idx = next_sched_bit(grq.prio_bitmap, ++idx); - if (idx >= PRIO_LIMIT) - return idle; - queue = grq.queue + idx; - - if (idx < MAX_RT_PRIO) { - /* We found an rt task */ - list_for_each_entry(p, queue, run_list) { - /* Make sure cpu affinity is ok */ - if (needs_other_cpu(p, cpu)) - continue; - edt = p; - goto out_take; - } - /* - * None of the RT tasks at this priority can run on - * this cpu - */ - continue; - } - - /* - * No rt tasks. Find the earliest deadline task. Now we're in - * O(n) territory. - */ - earliest_deadline = ~0ULL; - list_for_each_entry(p, queue, run_list) { - u64 dl; - - /* Make sure cpu affinity is ok */ - if (needs_other_cpu(p, cpu)) - continue; - -#ifdef CONFIG_SMT_NICE - if (!smt_should_schedule(p, cpu)) - continue; -#endif - /* - * Soft affinity happens here by not scheduling a task - * with its sticky flag set that ran on a different CPU - * last when the CPU is scaling, or by greatly biasing - * against its deadline when not, based on cpu cache - * locality. - */ - if (sched_interactive) - dl = p->deadline; - else { - int tcpu = task_cpu(p); - - if (tcpu != cpu && task_sticky(p) && scaling_rq(rq)) - continue; - dl = p->deadline << locality_diff(tcpu, rq); - } - - if (deadline_before(dl, earliest_deadline)) { - earliest_deadline = dl; - edt = p; - } - } - } while (!edt); - -out_take: - take_task(cpu, edt); - return edt; -} - - -/* - * Print scheduling while atomic bug: - */ -static noinline void __schedule_bug(struct task_struct *prev) -{ - if (oops_in_progress) - return; - - printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", - prev->comm, prev->pid, preempt_count()); - - debug_show_held_locks(prev); - print_modules(); - if (irqs_disabled()) - print_irqtrace_events(prev); -#ifdef CONFIG_DEBUG_PREEMPT - if (in_atomic_preempt_off()) { - pr_err("Preemption disabled at:"); - print_ip_sym(current->preempt_disable_ip); - pr_cont("\n"); - } -#endif - dump_stack(); - add_taint(TAINT_WARN, LOCKDEP_STILL_OK); -} - -/* - * Various schedule()-time debugging checks and statistics: - */ -static inline void schedule_debug(struct task_struct *prev) -{ -#ifdef CONFIG_SCHED_STACK_END_CHECK - BUG_ON(unlikely(task_stack_end_corrupted(prev))); -#endif - /* - * Test if we are atomic. Since do_exit() needs to call into - * schedule() atomically, we ignore that path. Otherwise whine - * if we are scheduling when we should not. - */ - if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) - __schedule_bug(prev); - rcu_sleep_check(); - - profile_hit(SCHED_PROFILING, __builtin_return_address(0)); - - schedstat_inc(this_rq(), sched_count); -} - -/* - * The currently running task's information is all stored in rq local data - * which is only modified by the local CPU, thereby allowing the data to be - * changed without grabbing the grq lock. - */ -static inline void set_rq_task(struct rq *rq, struct task_struct *p) -{ - rq->rq_time_slice = p->time_slice; - rq->rq_deadline = p->deadline; - rq->rq_last_ran = p->last_ran = rq->clock_task; - rq->rq_policy = p->policy; - rq->rq_prio = p->prio; -#ifdef CONFIG_SMT_NICE - rq->rq_mm = p->mm; - rq->rq_smt_bias = p->smt_bias; -#endif - if (p != rq->idle) - rq->rq_running = true; - else - rq->rq_running = false; -} - -static void reset_rq_task(struct rq *rq, struct task_struct *p) -{ - rq->rq_policy = p->policy; - rq->rq_prio = p->prio; -#ifdef CONFIG_SMT_NICE - rq->rq_smt_bias = p->smt_bias; -#endif -} - -#ifdef CONFIG_SMT_NICE -/* Iterate over smt siblings when we've scheduled a process on cpu and decide - * whether they should continue running or be descheduled. */ -static void check_smt_siblings(int cpu) -{ - int other_cpu; - - for_each_cpu(other_cpu, thread_cpumask(cpu)) { - struct task_struct *p; - struct rq *rq; - - if (other_cpu == cpu) - continue; - rq = cpu_rq(other_cpu); - if (rq_idle(rq)) - continue; - if (!rq->online) - continue; - p = rq->curr; - if (!smt_should_schedule(p, cpu)) { - set_tsk_need_resched(p); - smp_send_reschedule(other_cpu); - } - } -} - -static void wake_smt_siblings(int cpu) -{ - int other_cpu; - - if (!queued_notrunning()) - return; - - for_each_cpu(other_cpu, thread_cpumask(cpu)) { - struct rq *rq; - - if (other_cpu == cpu) - continue; - rq = cpu_rq(other_cpu); - if (rq_idle(rq)) { - struct task_struct *p = rq->curr; - - set_tsk_need_resched(p); - smp_send_reschedule(other_cpu); - } - } -} -#else -static void check_smt_siblings(int __maybe_unused cpu) {} -static void wake_smt_siblings(int __maybe_unused cpu) {} -#endif - -/* - * schedule() is the main scheduler function. - * - * The main means of driving the scheduler and thus entering this function are: - * - * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. - * - * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return - * paths. For example, see arch/x86/entry_64.S. - * - * To drive preemption between tasks, the scheduler sets the flag in timer - * interrupt handler scheduler_tick(). - * - * 3. Wakeups don't really cause entry into schedule(). They add a - * task to the run-queue and that's it. - * - * Now, if the new task added to the run-queue preempts the current - * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets - * called on the nearest possible occasion: - * - * - If the kernel is preemptible (CONFIG_PREEMPT=y): - * - * - in syscall or exception context, at the next outmost - * preempt_enable(). (this might be as soon as the wake_up()'s - * spin_unlock()!) - * - * - in IRQ context, return from interrupt-handler to - * preemptible context - * - * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) - * then at the next: - * - * - cond_resched() call - * - explicit schedule() call - * - return from syscall or exception to user-space - * - return from interrupt-handler to user-space - * - * WARNING: must be called with preemption disabled! - */ -static void __sched __schedule(void) -{ - struct task_struct *prev, *next, *idle; - unsigned long *switch_count; - bool deactivate = false; - struct rq *rq; - int cpu; - - cpu = smp_processor_id(); - rq = cpu_rq(cpu); - rcu_note_context_switch(); - prev = rq->curr; - - schedule_debug(prev); - - /* - * Make sure that signal_pending_state()->signal_pending() below - * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) - * done by the caller to avoid the race with signal_wake_up(). - */ - smp_mb__before_spinlock(); - grq_lock_irq(); - - switch_count = &prev->nivcsw; - if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { - if (unlikely(signal_pending_state(prev->state, prev))) { - prev->state = TASK_RUNNING; - } else { - deactivate = true; - prev->on_rq = 0; - - /* - * If a worker is going to sleep, notify and - * ask workqueue whether it wants to wake up a - * task to maintain concurrency. If so, wake - * up the task. - */ - if (prev->flags & PF_WQ_WORKER) { - struct task_struct *to_wakeup; - - to_wakeup = wq_worker_sleeping(prev, cpu); - if (to_wakeup) { - /* This shouldn't happen, but does */ - if (unlikely(to_wakeup == prev)) - deactivate = false; - else - try_to_wake_up_local(to_wakeup); - } - } - } - switch_count = &prev->nvcsw; - } - - update_clocks(rq); - update_cpu_clock_switch(rq, prev); - if (rq->clock - rq->last_tick > HALF_JIFFY_NS) - rq->dither = false; - else - rq->dither = true; - - clear_tsk_need_resched(prev); - clear_preempt_need_resched(); - - idle = rq->idle; - if (idle != prev) { - /* Update all the information stored on struct rq */ - prev->time_slice = rq->rq_time_slice; - prev->deadline = rq->rq_deadline; - check_deadline(prev); - prev->last_ran = rq->clock_task; - - /* Task changed affinity off this CPU */ - if (likely(!needs_other_cpu(prev, cpu))) { - if (!deactivate) { - if (!queued_notrunning()) { - /* - * We now know prev is the only thing that is - * awaiting CPU so we can bypass rechecking for - * the earliest deadline task and just run it - * again. - */ - set_rq_task(rq, prev); - check_smt_siblings(cpu); - grq_unlock_irq(); - goto rerun_prev_unlocked; - } else - swap_sticky(rq, cpu, prev); - } - } - return_task(prev, rq, deactivate); - } - - if (unlikely(!queued_notrunning())) { - /* - * This CPU is now truly idle as opposed to when idle is - * scheduled as a high priority task in its own right. - */ - next = idle; - schedstat_inc(rq, sched_goidle); - set_cpuidle_map(cpu); - } else { - next = earliest_deadline_task(rq, cpu, idle); - if (likely(next->prio != PRIO_LIMIT)) - clear_cpuidle_map(cpu); - else - set_cpuidle_map(cpu); - } - - if (likely(prev != next)) { - /* - * Don't reschedule an idle task or deactivated tasks - */ - if (prev != idle && !deactivate) - resched_suitable_idle(prev); - /* - * Don't stick tasks when a real time task is going to run as - * they may literally get stuck. - */ - if (rt_task(next)) - unstick_task(rq, prev); - set_rq_task(rq, next); - if (next != idle) - check_smt_siblings(cpu); - else - wake_smt_siblings(cpu); - grq.nr_switches++; - prev->on_cpu = false; - next->on_cpu = true; - rq->curr = next; - ++*switch_count; - - rq = context_switch(rq, prev, next); /* unlocks the grq */ - cpu = cpu_of(rq); - idle = rq->idle; - } else { - check_smt_siblings(cpu); - grq_unlock_irq(); - } - -rerun_prev_unlocked: - return; -} - -static inline void sched_submit_work(struct task_struct *tsk) -{ - if (!tsk->state || tsk_is_pi_blocked(tsk) || - (preempt_count() & PREEMPT_ACTIVE) || - signal_pending_state(tsk->state, tsk)) - return; - - /* - * If we are going to sleep and we have plugged IO queued, - * make sure to submit it to avoid deadlocks. - */ - if (blk_needs_flush_plug(tsk)) - blk_schedule_flush_plug(tsk); -} - -asmlinkage __visible void __sched schedule(void) -{ - struct task_struct *tsk = current; - - sched_submit_work(tsk); - do { - preempt_disable(); - __schedule(); - sched_preempt_enable_no_resched(); - } while (need_resched()); -} - -EXPORT_SYMBOL(schedule); - -#ifdef CONFIG_CONTEXT_TRACKING -asmlinkage __visible void __sched schedule_user(void) -{ - /* - * If we come here after a random call to set_need_resched(), - * or we have been woken up remotely but the IPI has not yet arrived, - * we haven't yet exited the RCU idle mode. Do it here manually until - * we find a better solution. - * - * NB: There are buggy callers of this function. Ideally we - * should warn if prev_state != IN_USER, but that will trigger - * too frequently to make sense yet. - */ - enum ctx_state prev_state = exception_enter(); - schedule(); - exception_exit(prev_state); -} -#endif - -/** - * schedule_preempt_disabled - called with preemption disabled - * - * Returns with preemption disabled. Note: preempt_count must be 1 - */ -void __sched schedule_preempt_disabled(void) -{ - sched_preempt_enable_no_resched(); - schedule(); - preempt_disable(); -} - -static void __sched notrace preempt_schedule_common(void) -{ - do { - preempt_active_enter(); - __schedule(); - preempt_active_exit(); - - /* - * Check again in case we missed a preemption opportunity - * between schedule and now. - */ - } while (need_resched()); -} - -#ifdef CONFIG_PREEMPT -/* - * this is the entry point to schedule() from in-kernel preemption - * off of preempt_enable. Kernel preemptions off return from interrupt - * occur there and call schedule directly. - */ -asmlinkage __visible void __sched notrace preempt_schedule(void) -{ - /* - * If there is a non-zero preempt_count or interrupts are disabled, - * we do not want to preempt the current task. Just return.. - */ - if (likely(!preemptible())) - return; - - preempt_schedule_common(); -} -NOKPROBE_SYMBOL(preempt_schedule); -EXPORT_SYMBOL(preempt_schedule); - -/** - * preempt_schedule_notrace - preempt_schedule called by tracing - * - * The tracing infrastructure uses preempt_enable_notrace to prevent - * recursion and tracing preempt enabling caused by the tracing - * infrastructure itself. But as tracing can happen in areas coming - * from userspace or just about to enter userspace, a preempt enable - * can occur before user_exit() is called. This will cause the scheduler - * to be called when the system is still in usermode. - * - * To prevent this, the preempt_enable_notrace will use this function - * instead of preempt_schedule() to exit user context if needed before - * calling the scheduler. - */ -asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) -{ - enum ctx_state prev_ctx; - - if (likely(!preemptible())) - return; - - do { - /* - * Use raw __prempt_count() ops that don't call function. - * We can't call functions before disabling preemption which - * disarm preemption tracing recursions. - */ - __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET); - barrier(); - /* - * Needs preempt disabled in case user_exit() is traced - * and the tracer calls preempt_enable_notrace() causing - * an infinite recursion. - */ - prev_ctx = exception_enter(); - __schedule(); - exception_exit(prev_ctx); - - barrier(); - __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET); - } while (need_resched()); -} -EXPORT_SYMBOL_GPL(preempt_schedule_notrace); - -#endif /* CONFIG_PREEMPT */ - -/* - * this is the entry point to schedule() from kernel preemption - * off of irq context. - * Note, that this is called and return with irqs disabled. This will - * protect us against recursive calling from irq. - */ -asmlinkage __visible void __sched preempt_schedule_irq(void) -{ - enum ctx_state prev_state; - - /* Catch callers which need to be fixed */ - BUG_ON(preempt_count() || !irqs_disabled()); - - prev_state = exception_enter(); - - do { - preempt_active_enter(); - local_irq_enable(); - __schedule(); - local_irq_disable(); - preempt_active_exit(); - } while (need_resched()); - - exception_exit(prev_state); -} - -int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, - void *key) -{ - return try_to_wake_up(curr->private, mode, wake_flags); -} -EXPORT_SYMBOL(default_wake_function); - -#ifdef CONFIG_RT_MUTEXES - -/* - * rt_mutex_setprio - set the current priority of a task - * @p: task - * @prio: prio value (kernel-internal form) - * - * This function changes the 'effective' priority of a task. It does - * not touch ->normal_prio like __setscheduler(). - * - * Used by the rt_mutex code to implement priority inheritance - * logic. Call site only calls if the priority of the task changed. - */ -void rt_mutex_setprio(struct task_struct *p, int prio) -{ - unsigned long flags; - int queued, oldprio; - struct rq *rq; - - BUG_ON(prio < 0 || prio > MAX_PRIO); - - rq = task_grq_lock(p, &flags); - - /* - * Idle task boosting is a nono in general. There is one - * exception, when PREEMPT_RT and NOHZ is active: - * - * The idle task calls get_next_timer_interrupt() and holds - * the timer wheel base->lock on the CPU and another CPU wants - * to access the timer (probably to cancel it). We can safely - * ignore the boosting request, as the idle CPU runs this code - * with interrupts disabled and will complete the lock - * protected section without being interrupted. So there is no - * real need to boost. - */ - if (unlikely(p == rq->idle)) { - WARN_ON(p != rq->curr); - WARN_ON(p->pi_blocked_on); - goto out_unlock; - } - - trace_sched_pi_setprio(p, prio); - oldprio = p->prio; - queued = task_queued(p); - if (queued) - dequeue_task(p); - p->prio = prio; - if (task_running(p) && prio > oldprio) - resched_task(p); - if (queued) { - enqueue_task(p, rq); - try_preempt(p, rq); - } - -out_unlock: - task_grq_unlock(&flags); -} - -#endif - -/* - * Adjust the deadline for when the priority is to change, before it's - * changed. - */ -static inline void adjust_deadline(struct task_struct *p, int new_prio) -{ - p->deadline += static_deadline_diff(new_prio) - task_deadline_diff(p); -} - -void set_user_nice(struct task_struct *p, long nice) -{ - int queued, new_static, old_static; - unsigned long flags; - struct rq *rq; - - if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) - return; - new_static = NICE_TO_PRIO(nice); - /* - * We have to be careful, if called from sys_setpriority(), - * the task might be in the middle of scheduling on another CPU. - */ - rq = time_task_grq_lock(p, &flags); - /* - * The RT priorities are set via sched_setscheduler(), but we still - * allow the 'normal' nice value to be set - but as expected - * it wont have any effect on scheduling until the task is - * not SCHED_NORMAL/SCHED_BATCH: - */ - if (has_rt_policy(p)) { - p->static_prio = new_static; - goto out_unlock; - } - queued = task_queued(p); - if (queued) - dequeue_task(p); - - adjust_deadline(p, new_static); - old_static = p->static_prio; - p->static_prio = new_static; - p->prio = effective_prio(p); - - if (queued) { - enqueue_task(p, rq); - if (new_static < old_static) - try_preempt(p, rq); - } else if (task_running(p)) { - reset_rq_task(rq, p); - if (old_static < new_static) - resched_task(p); - } -out_unlock: - task_grq_unlock(&flags); -} -EXPORT_SYMBOL(set_user_nice); - -/* - * can_nice - check if a task can reduce its nice value - * @p: task - * @nice: nice value - */ -int can_nice(const struct task_struct *p, const int nice) -{ - /* convert nice value [19,-20] to rlimit style value [1,40] */ - int nice_rlim = nice_to_rlimit(nice); - - return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || - capable(CAP_SYS_NICE)); -} - -#ifdef __ARCH_WANT_SYS_NICE - -/* - * sys_nice - change the priority of the current process. - * @increment: priority increment - * - * sys_setpriority is a more generic, but much slower function that - * does similar things. - */ -SYSCALL_DEFINE1(nice, int, increment) -{ - long nice, retval; - - /* - * Setpriority might change our priority at the same moment. - * We don't have to worry. Conceptually one call occurs first - * and we have a single winner. - */ - - increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); - nice = task_nice(current) + increment; - - nice = clamp_val(nice, MIN_NICE, MAX_NICE); - if (increment < 0 && !can_nice(current, nice)) - return -EPERM; - - retval = security_task_setnice(current, nice); - if (retval) - return retval; - - set_user_nice(current, nice); - return 0; -} - -#endif - -/** - * task_prio - return the priority value of a given task. - * @p: the task in question. - * - * Return: The priority value as seen by users in /proc. - * RT tasks are offset by -100. Normal tasks are centered around 1, value goes - * from 0 (SCHED_ISO) up to 82 (nice +19 SCHED_IDLEPRIO). - */ -int task_prio(const struct task_struct *p) -{ - int delta, prio = p->prio - MAX_RT_PRIO; - - /* rt tasks and iso tasks */ - if (prio <= 0) - goto out; - - /* Convert to ms to avoid overflows */ - delta = NS_TO_MS(p->deadline - grq.niffies); - delta = delta * 40 / ms_longest_deadline_diff(); - if (delta > 0 && delta <= 80) - prio += delta; - if (idleprio_task(p)) - prio += 40; -out: - return prio; -} - -/** - * idle_cpu - is a given cpu idle currently? - * @cpu: the processor in question. - * - * Return: 1 if the CPU is currently idle. 0 otherwise. - */ -int idle_cpu(int cpu) -{ - return cpu_curr(cpu) == cpu_rq(cpu)->idle; -} - -/** - * idle_task - return the idle task for a given cpu. - * @cpu: the processor in question. - * - * Return: The idle task for the cpu @cpu. - */ -struct task_struct *idle_task(int cpu) -{ - return cpu_rq(cpu)->idle; -} - -/** - * find_process_by_pid - find a process with a matching PID value. - * @pid: the pid in question. - * - * The task of @pid, if found. %NULL otherwise. - */ -static inline struct task_struct *find_process_by_pid(pid_t pid) -{ - return pid ? find_task_by_vpid(pid) : current; -} - -/* Actually do priority change: must hold grq lock. */ -static void __setscheduler(struct task_struct *p, struct rq *rq, int policy, - int prio, bool keep_boost) -{ - int oldrtprio, oldprio; - - p->policy = policy; - oldrtprio = p->rt_priority; - p->rt_priority = prio; - p->normal_prio = normal_prio(p); - oldprio = p->prio; - /* - * Keep a potential priority boosting if called from - * sched_setscheduler(). - */ - if (keep_boost) { - /* - * Take priority boosted tasks into account. If the new - * effective priority is unchanged, we just store the new - * normal parameters and do not touch the scheduler class and - * the runqueue. This will be done when the task deboost - * itself. - */ - p->prio = rt_mutex_get_effective_prio(p, p->normal_prio); - } else - p->prio = p->normal_prio; - if (task_running(p)) { - reset_rq_task(rq, p); - /* Resched only if we might now be preempted */ - if (p->prio > oldprio || p->rt_priority > oldrtprio) - resched_task(p); - } -} - -/* - * check the target process has a UID that matches the current process's - */ -static bool check_same_owner(struct task_struct *p) -{ - const struct cred *cred = current_cred(), *pcred; - bool match; - - rcu_read_lock(); - pcred = __task_cred(p); - match = (uid_eq(cred->euid, pcred->euid) || - uid_eq(cred->euid, pcred->uid)); - rcu_read_unlock(); - return match; -} - -static int -__sched_setscheduler(struct task_struct *p, int policy, - const struct sched_param *param, bool user, bool pi) -{ - struct sched_param zero_param = { .sched_priority = 0 }; - int queued, retval, oldpolicy = -1; - unsigned long flags, rlim_rtprio = 0; - int reset_on_fork; - struct rq *rq; - - /* may grab non-irq protected spin_locks */ - BUG_ON(in_interrupt()); - - if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) { - unsigned long lflags; - - if (!lock_task_sighand(p, &lflags)) - return -ESRCH; - rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); - unlock_task_sighand(p, &lflags); - if (rlim_rtprio) - goto recheck; - /* - * If the caller requested an RT policy without having the - * necessary rights, we downgrade the policy to SCHED_ISO. - * We also set the parameter to zero to pass the checks. - */ - policy = SCHED_ISO; - param = &zero_param; - } -recheck: - /* double check policy once rq lock held */ - if (policy < 0) { - reset_on_fork = p->sched_reset_on_fork; - policy = oldpolicy = p->policy; - } else { - reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); - policy &= ~SCHED_RESET_ON_FORK; - - if (!SCHED_RANGE(policy)) - return -EINVAL; - } - - /* - * Valid priorities for SCHED_FIFO and SCHED_RR are - * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and - * SCHED_BATCH is 0. - */ - if (param->sched_priority < 0 || - (p->mm && param->sched_priority > MAX_USER_RT_PRIO - 1) || - (!p->mm && param->sched_priority > MAX_RT_PRIO - 1)) - return -EINVAL; - if (is_rt_policy(policy) != (param->sched_priority != 0)) - return -EINVAL; - - /* - * Allow unprivileged RT tasks to decrease priority: - */ - if (user && !capable(CAP_SYS_NICE)) { - if (is_rt_policy(policy)) { - unsigned long rlim_rtprio = - task_rlimit(p, RLIMIT_RTPRIO); - - /* can't set/change the rt policy */ - if (policy != p->policy && !rlim_rtprio) - return -EPERM; - - /* can't increase priority */ - if (param->sched_priority > p->rt_priority && - param->sched_priority > rlim_rtprio) - return -EPERM; - } else { - switch (p->policy) { - /* - * Can only downgrade policies but not back to - * SCHED_NORMAL - */ - case SCHED_ISO: - if (policy == SCHED_ISO) - goto out; - if (policy == SCHED_NORMAL) - return -EPERM; - break; - case SCHED_BATCH: - if (policy == SCHED_BATCH) - goto out; - if (policy != SCHED_IDLEPRIO) - return -EPERM; - break; - case SCHED_IDLEPRIO: - if (policy == SCHED_IDLEPRIO) - goto out; - return -EPERM; - default: - break; - } - } - - /* can't change other user's priorities */ - if (!check_same_owner(p)) - return -EPERM; - - /* Normal users shall not reset the sched_reset_on_fork flag */ - if (p->sched_reset_on_fork && !reset_on_fork) - return -EPERM; - } - - if (user) { - retval = security_task_setscheduler(p); - if (retval) - return retval; - } - - /* - * make sure no PI-waiters arrive (or leave) while we are - * changing the priority of the task: - */ - raw_spin_lock_irqsave(&p->pi_lock, flags); - /* - * To be able to change p->policy safely, the grunqueue lock must be - * held. - */ - rq = __task_grq_lock(p); - - /* - * Changing the policy of the stop threads its a very bad idea - */ - if (p == rq->stop) { - __task_grq_unlock(); - raw_spin_unlock_irqrestore(&p->pi_lock, flags); - return -EINVAL; - } - - /* - * If not changing anything there's no need to proceed further: - */ - if (unlikely(policy == p->policy && (!is_rt_policy(policy) || - param->sched_priority == p->rt_priority))) { - - __task_grq_unlock(); - raw_spin_unlock_irqrestore(&p->pi_lock, flags); - return 0; - } - - /* recheck policy now with rq lock held */ - if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { - policy = oldpolicy = -1; - __task_grq_unlock(); - raw_spin_unlock_irqrestore(&p->pi_lock, flags); - goto recheck; - } - update_clocks(rq); - p->sched_reset_on_fork = reset_on_fork; - - queued = task_queued(p); - if (queued) - dequeue_task(p); - __setscheduler(p, rq, policy, param->sched_priority, pi); - if (queued) { - enqueue_task(p, rq); - try_preempt(p, rq); - } - __task_grq_unlock(); - raw_spin_unlock_irqrestore(&p->pi_lock, flags); - - if (pi) - rt_mutex_adjust_pi(p); -out: - return 0; -} - -/** - * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. - * @p: the task in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - * - * Return: 0 on success. An error code otherwise. - * - * NOTE that the task may be already dead. - */ -int sched_setscheduler(struct task_struct *p, int policy, - const struct sched_param *param) -{ - return __sched_setscheduler(p, policy, param, true, true); -} - -EXPORT_SYMBOL_GPL(sched_setscheduler); - -int sched_setattr(struct task_struct *p, const struct sched_attr *attr) -{ - const struct sched_param param = { .sched_priority = attr->sched_priority }; - int policy = attr->sched_policy; - - return __sched_setscheduler(p, policy, ¶m, true, true); -} -EXPORT_SYMBOL_GPL(sched_setattr); - -/** - * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. - * @p: the task in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - * - * Just like sched_setscheduler, only don't bother checking if the - * current context has permission. For example, this is needed in - * stop_machine(): we create temporary high priority worker threads, - * but our caller might not have that capability. - * - * Return: 0 on success. An error code otherwise. - */ -int sched_setscheduler_nocheck(struct task_struct *p, int policy, - const struct sched_param *param) -{ - return __sched_setscheduler(p, policy, param, false, true); -} - -static int -do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) -{ - struct sched_param lparam; - struct task_struct *p; - int retval; - - if (!param || pid < 0) - return -EINVAL; - if (copy_from_user(&lparam, param, sizeof(struct sched_param))) - return -EFAULT; - - rcu_read_lock(); - retval = -ESRCH; - p = find_process_by_pid(pid); - if (p != NULL) - retval = sched_setscheduler(p, policy, &lparam); - rcu_read_unlock(); - - return retval; -} - -/* - * Mimics kernel/events/core.c perf_copy_attr(). - */ -static int sched_copy_attr(struct sched_attr __user *uattr, - struct sched_attr *attr) -{ - u32 size; - int ret; - - if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) - return -EFAULT; - - /* - * zero the full structure, so that a short copy will be nice. - */ - memset(attr, 0, sizeof(*attr)); - - ret = get_user(size, &uattr->size); - if (ret) - return ret; - - if (size > PAGE_SIZE) /* silly large */ - goto err_size; - - if (!size) /* abi compat */ - size = SCHED_ATTR_SIZE_VER0; - - if (size < SCHED_ATTR_SIZE_VER0) - goto err_size; - - /* - * If we're handed a bigger struct than we know of, - * ensure all the unknown bits are 0 - i.e. new - * user-space does not rely on any kernel feature - * extensions we dont know about yet. - */ - if (size > sizeof(*attr)) { - unsigned char __user *addr; - unsigned char __user *end; - unsigned char val; - - addr = (void __user *)uattr + sizeof(*attr); - end = (void __user *)uattr + size; - - for (; addr < end; addr++) { - ret = get_user(val, addr); - if (ret) - return ret; - if (val) - goto err_size; - } - size = sizeof(*attr); - } - - ret = copy_from_user(attr, uattr, size); - if (ret) - return -EFAULT; - - /* - * XXX: do we want to be lenient like existing syscalls; or do we want - * to be strict and return an error on out-of-bounds values? - */ - attr->sched_nice = clamp(attr->sched_nice, -20, 19); - - /* sched/core.c uses zero here but we already know ret is zero */ - return 0; - -err_size: - put_user(sizeof(*attr), &uattr->size); - return -E2BIG; -} - -/** - * sys_sched_setscheduler - set/change the scheduler policy and RT priority - * @pid: the pid in question. - * @policy: new policy. - * - * Return: 0 on success. An error code otherwise. - * @param: structure containing the new RT priority. - */ -asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, - struct sched_param __user *param) -{ - /* negative values for policy are not valid */ - if (policy < 0) - return -EINVAL; - - return do_sched_setscheduler(pid, policy, param); -} - -/* - * sched_setparam() passes in -1 for its policy, to let the functions - * it calls know not to change it. - */ -#define SETPARAM_POLICY -1 - -/** - * sys_sched_setparam - set/change the RT priority of a thread - * @pid: the pid in question. - * @param: structure containing the new RT priority. - * - * Return: 0 on success. An error code otherwise. - */ -SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) -{ - return do_sched_setscheduler(pid, SETPARAM_POLICY, param); -} - -/** - * sys_sched_setattr - same as above, but with extended sched_attr - * @pid: the pid in question. - * @uattr: structure containing the extended parameters. - */ -SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, - unsigned int, flags) -{ - struct sched_attr attr; - struct task_struct *p; - int retval; - - if (!uattr || pid < 0 || flags) - return -EINVAL; - - retval = sched_copy_attr(uattr, &attr); - if (retval) - return retval; - - if ((int)attr.sched_policy < 0) - return -EINVAL; - - rcu_read_lock(); - retval = -ESRCH; - p = find_process_by_pid(pid); - if (p != NULL) - retval = sched_setattr(p, &attr); - rcu_read_unlock(); - - return retval; -} - -/** - * sys_sched_getscheduler - get the policy (scheduling class) of a thread - * @pid: the pid in question. - * - * Return: On success, the policy of the thread. Otherwise, a negative error - * code. - */ -SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) -{ - struct task_struct *p; - int retval = -EINVAL; - - if (pid < 0) - goto out_nounlock; - - retval = -ESRCH; - rcu_read_lock(); - p = find_process_by_pid(pid); - if (p) { - retval = security_task_getscheduler(p); - if (!retval) - retval = p->policy; - } - rcu_read_unlock(); - -out_nounlock: - return retval; -} - -/** - * sys_sched_getscheduler - get the RT priority of a thread - * @pid: the pid in question. - * @param: structure containing the RT priority. - * - * Return: On success, 0 and the RT priority is in @param. Otherwise, an error - * code. - */ -SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) -{ - struct sched_param lp = { .sched_priority = 0 }; - struct task_struct *p; - int retval = -EINVAL; - - if (!param || pid < 0) - goto out_nounlock; - - rcu_read_lock(); - p = find_process_by_pid(pid); - retval = -ESRCH; - if (!p) - goto out_unlock; - - retval = security_task_getscheduler(p); - if (retval) - goto out_unlock; - - if (has_rt_policy(p)) - lp.sched_priority = p->rt_priority; - rcu_read_unlock(); - - /* - * This one might sleep, we cannot do it with a spinlock held ... - */ - retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; - -out_nounlock: - return retval; - -out_unlock: - rcu_read_unlock(); - return retval; -} - -static int sched_read_attr(struct sched_attr __user *uattr, - struct sched_attr *attr, - unsigned int usize) -{ - int ret; - - if (!access_ok(VERIFY_WRITE, uattr, usize)) - return -EFAULT; - - /* - * If we're handed a smaller struct than we know of, - * ensure all the unknown bits are 0 - i.e. old - * user-space does not get uncomplete information. - */ - if (usize < sizeof(*attr)) { - unsigned char *addr; - unsigned char *end; - - addr = (void *)attr + usize; - end = (void *)attr + sizeof(*attr); - - for (; addr < end; addr++) { - if (*addr) - return -EFBIG; - } - - attr->size = usize; - } - - ret = copy_to_user(uattr, attr, attr->size); - if (ret) - return -EFAULT; - - /* sched/core.c uses zero here but we already know ret is zero */ - return ret; -} - -/** - * sys_sched_getattr - similar to sched_getparam, but with sched_attr - * @pid: the pid in question. - * @uattr: structure containing the extended parameters. - * @size: sizeof(attr) for fwd/bwd comp. - * @flags: for future extension. - */ -SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, - unsigned int, size, unsigned int, flags) -{ - struct sched_attr attr = { - .size = sizeof(struct sched_attr), - }; - struct task_struct *p; - int retval; - - if (!uattr || pid < 0 || size > PAGE_SIZE || - size < SCHED_ATTR_SIZE_VER0 || flags) - return -EINVAL; - - rcu_read_lock(); - p = find_process_by_pid(pid); - retval = -ESRCH; - if (!p) - goto out_unlock; - - retval = security_task_getscheduler(p); - if (retval) - goto out_unlock; - - attr.sched_policy = p->policy; - if (rt_task(p)) - attr.sched_priority = p->rt_priority; - else - attr.sched_nice = task_nice(p); - - rcu_read_unlock(); - - retval = sched_read_attr(uattr, &attr, size); - return retval; - -out_unlock: - rcu_read_unlock(); - return retval; -} - -long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) -{ - cpumask_var_t cpus_allowed, new_mask; - struct task_struct *p; - int retval; - - get_online_cpus(); - rcu_read_lock(); - - p = find_process_by_pid(pid); - if (!p) { - rcu_read_unlock(); - put_online_cpus(); - return -ESRCH; - } - - /* Prevent p going away */ - get_task_struct(p); - rcu_read_unlock(); - - if (p->flags & PF_NO_SETAFFINITY) { - retval = -EINVAL; - goto out_put_task; - } - if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { - retval = -ENOMEM; - goto out_put_task; - } - if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { - retval = -ENOMEM; - goto out_free_cpus_allowed; - } - retval = -EPERM; - if (!check_same_owner(p)) { - rcu_read_lock(); - if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { - rcu_read_unlock(); - goto out_unlock; - } - rcu_read_unlock(); - } - - retval = security_task_setscheduler(p); - if (retval) - goto out_unlock; - - cpuset_cpus_allowed(p, cpus_allowed); - cpumask_and(new_mask, in_mask, cpus_allowed); -again: - retval = __set_cpus_allowed_ptr(p, new_mask, true); - - if (!retval) { - cpuset_cpus_allowed(p, cpus_allowed); - if (!cpumask_subset(new_mask, cpus_allowed)) { - /* - * We must have raced with a concurrent cpuset - * update. Just reset the cpus_allowed to the - * cpuset's cpus_allowed - */ - cpumask_copy(new_mask, cpus_allowed); - goto again; - } - } -out_unlock: - free_cpumask_var(new_mask); -out_free_cpus_allowed: - free_cpumask_var(cpus_allowed); -out_put_task: - put_task_struct(p); - put_online_cpus(); - return retval; -} - -static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, - cpumask_t *new_mask) -{ - if (len < sizeof(cpumask_t)) { - memset(new_mask, 0, sizeof(cpumask_t)); - } else if (len > sizeof(cpumask_t)) { - len = sizeof(cpumask_t); - } - return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; -} - - -/** - * sys_sched_setaffinity - set the cpu affinity of a process - * @pid: pid of the process - * @len: length in bytes of the bitmask pointed to by user_mask_ptr - * @user_mask_ptr: user-space pointer to the new cpu mask - * - * Return: 0 on success. An error code otherwise. - */ -SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, - unsigned long __user *, user_mask_ptr) -{ - cpumask_var_t new_mask; - int retval; - - if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) - return -ENOMEM; - - retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); - if (retval == 0) - retval = sched_setaffinity(pid, new_mask); - free_cpumask_var(new_mask); - return retval; -} - -long sched_getaffinity(pid_t pid, cpumask_t *mask) -{ - struct task_struct *p; - unsigned long flags; - int retval; - - get_online_cpus(); - rcu_read_lock(); - - retval = -ESRCH; - p = find_process_by_pid(pid); - if (!p) - goto out_unlock; - - retval = security_task_getscheduler(p); - if (retval) - goto out_unlock; - - grq_lock_irqsave(&flags); - cpumask_and(mask, tsk_cpus_allowed(p), cpu_active_mask); - grq_unlock_irqrestore(&flags); - -out_unlock: - rcu_read_unlock(); - put_online_cpus(); - - return retval; -} - -/** - * sys_sched_getaffinity - get the cpu affinity of a process - * @pid: pid of the process - * @len: length in bytes of the bitmask pointed to by user_mask_ptr - * @user_mask_ptr: user-space pointer to hold the current cpu mask - * - * Return: 0 on success. An error code otherwise. - */ -SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, - unsigned long __user *, user_mask_ptr) -{ - int ret; - cpumask_var_t mask; - - if ((len * BITS_PER_BYTE) < nr_cpu_ids) - return -EINVAL; - if (len & (sizeof(unsigned long)-1)) - return -EINVAL; - - if (!alloc_cpumask_var(&mask, GFP_KERNEL)) - return -ENOMEM; - - ret = sched_getaffinity(pid, mask); - if (ret == 0) { - size_t retlen = min_t(size_t, len, cpumask_size()); - - if (copy_to_user(user_mask_ptr, mask, retlen)) - ret = -EFAULT; - else - ret = retlen; - } - free_cpumask_var(mask); - - return ret; -} - -/** - * sys_sched_yield - yield the current processor to other threads. - * - * This function yields the current CPU to other tasks. It does this by - * scheduling away the current task. If it still has the earliest deadline - * it will be scheduled again as the next task. - * - * Return: 0. - */ -SYSCALL_DEFINE0(sched_yield) -{ - struct task_struct *p; - - p = current; - grq_lock_irq(); - schedstat_inc(task_rq(p), yld_count); - requeue_task(p); - - /* - * Since we are going to call schedule() anyway, there's - * no need to preempt or enable interrupts: - */ - __release(grq.lock); - spin_release(&grq.lock.dep_map, 1, _THIS_IP_); - do_raw_spin_unlock(&grq.lock); - sched_preempt_enable_no_resched(); - - schedule(); - - return 0; -} - -int __sched _cond_resched(void) -{ - if (should_resched(0)) { - preempt_schedule_common(); - return 1; - } - return 0; -} -EXPORT_SYMBOL(_cond_resched); - -/* - * __cond_resched_lock() - if a reschedule is pending, drop the given lock, - * call schedule, and on return reacquire the lock. - * - * This works OK both with and without CONFIG_PREEMPT. We do strange low-level - * operations here to prevent schedule() from being called twice (once via - * spin_unlock(), once by hand). - */ -int __cond_resched_lock(spinlock_t *lock) -{ - int resched = should_resched(PREEMPT_LOCK_OFFSET); - int ret = 0; - - lockdep_assert_held(lock); - - if (spin_needbreak(lock) || resched) { - spin_unlock(lock); - if (resched) - preempt_schedule_common(); - else - cpu_relax(); - ret = 1; - spin_lock(lock); - } - return ret; -} -EXPORT_SYMBOL(__cond_resched_lock); - -int __sched __cond_resched_softirq(void) -{ - BUG_ON(!in_softirq()); - - if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { - local_bh_enable(); - preempt_schedule_common(); - local_bh_disable(); - return 1; - } - return 0; -} -EXPORT_SYMBOL(__cond_resched_softirq); - -/** - * yield - yield the current processor to other threads. - * - * Do not ever use this function, there's a 99% chance you're doing it wrong. - * - * The scheduler is at all times free to pick the calling task as the most - * eligible task to run, if removing the yield() call from your code breaks - * it, its already broken. - * - * Typical broken usage is: - * - * while (!event) - * yield(); - * - * where one assumes that yield() will let 'the other' process run that will - * make event true. If the current task is a SCHED_FIFO task that will never - * happen. Never use yield() as a progress guarantee!! - * - * If you want to use yield() to wait for something, use wait_event(). - * If you want to use yield() to be 'nice' for others, use cond_resched(). - * If you still want to use yield(), do not! - */ -void __sched yield(void) -{ - set_current_state(TASK_RUNNING); - sys_sched_yield(); -} -EXPORT_SYMBOL(yield); - -/** - * yield_to - yield the current processor to another thread in - * your thread group, or accelerate that thread toward the - * processor it's on. - * @p: target task - * @preempt: whether task preemption is allowed or not - * - * It's the caller's job to ensure that the target task struct - * can't go away on us before we can do any checks. - * - * Return: - * true (>0) if we indeed boosted the target task. - * false (0) if we failed to boost the target. - * -ESRCH if there's no task to yield to. - */ -int __sched yield_to(struct task_struct *p, bool preempt) -{ - struct rq *rq, *p_rq; - unsigned long flags; - int yielded = 0; - - rq = this_rq(); - grq_lock_irqsave(&flags); - if (task_running(p) || p->state) { - yielded = -ESRCH; - goto out_unlock; - } - - p_rq = task_rq(p); - yielded = 1; - if (p->deadline > rq->rq_deadline) - p->deadline = rq->rq_deadline; - p->time_slice += rq->rq_time_slice; - rq->rq_time_slice = 0; - if (p->time_slice > timeslice()) - p->time_slice = timeslice(); - if (preempt && rq != p_rq) - resched_curr(p_rq); -out_unlock: - grq_unlock_irqrestore(&flags); - - if (yielded > 0) - schedule(); - return yielded; -} -EXPORT_SYMBOL_GPL(yield_to); - -/* - * This task is about to go to sleep on IO. Increment rq->nr_iowait so - * that process accounting knows that this is a task in IO wait state. - * - * But don't do that if it is a deliberate, throttling IO wait (this task - * has set its backing_dev_info: the queue against which it should throttle) - */ - -long __sched io_schedule_timeout(long timeout) -{ - int old_iowait = current->in_iowait; - struct rq *rq; - long ret; - - current->in_iowait = 1; - blk_schedule_flush_plug(current); - - delayacct_blkio_start(); - rq = raw_rq(); - atomic_inc(&rq->nr_iowait); - ret = schedule_timeout(timeout); - current->in_iowait = old_iowait; - atomic_dec(&rq->nr_iowait); - delayacct_blkio_end(); - - return ret; -} -EXPORT_SYMBOL(io_schedule_timeout); - -/** - * sys_sched_get_priority_max - return maximum RT priority. - * @policy: scheduling class. - * - * Return: On success, this syscall returns the maximum - * rt_priority that can be used by a given scheduling class. - * On failure, a negative error code is returned. - */ -SYSCALL_DEFINE1(sched_get_priority_max, int, policy) -{ - int ret = -EINVAL; - - switch (policy) { - case SCHED_FIFO: - case SCHED_RR: - ret = MAX_USER_RT_PRIO-1; - break; - case SCHED_NORMAL: - case SCHED_BATCH: - case SCHED_ISO: - case SCHED_IDLEPRIO: - ret = 0; - break; - } - return ret; -} - -/** - * sys_sched_get_priority_min - return minimum RT priority. - * @policy: scheduling class. - * - * Return: On success, this syscall returns the minimum - * rt_priority that can be used by a given scheduling class. - * On failure, a negative error code is returned. - */ -SYSCALL_DEFINE1(sched_get_priority_min, int, policy) -{ - int ret = -EINVAL; - - switch (policy) { - case SCHED_FIFO: - case SCHED_RR: - ret = 1; - break; - case SCHED_NORMAL: - case SCHED_BATCH: - case SCHED_ISO: - case SCHED_IDLEPRIO: - ret = 0; - break; - } - return ret; -} - -/** - * sys_sched_rr_get_interval - return the default timeslice of a process. - * @pid: pid of the process. - * @interval: userspace pointer to the timeslice value. - * - * - * Return: On success, 0 and the timeslice is in @interval. Otherwise, - * an error code. - */ -SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, - struct timespec __user *, interval) -{ - struct task_struct *p; - unsigned int time_slice; - unsigned long flags; - int retval; - struct timespec t; - - if (pid < 0) - return -EINVAL; - - retval = -ESRCH; - rcu_read_lock(); - p = find_process_by_pid(pid); - if (!p) - goto out_unlock; - - retval = security_task_getscheduler(p); - if (retval) - goto out_unlock; - - grq_lock_irqsave(&flags); - time_slice = p->policy == SCHED_FIFO ? 0 : MS_TO_NS(task_timeslice(p)); - grq_unlock_irqrestore(&flags); - - rcu_read_unlock(); - t = ns_to_timespec(time_slice); - retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; - return retval; - -out_unlock: - rcu_read_unlock(); - return retval; -} - -static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; - -void sched_show_task(struct task_struct *p) -{ - unsigned long free = 0; - int ppid; - unsigned long state = p->state; - - if (state) - state = __ffs(state) + 1; - printk(KERN_INFO "%-15.15s %c", p->comm, - state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); -#if BITS_PER_LONG == 32 - if (state == TASK_RUNNING) - printk(KERN_CONT " running "); - else - printk(KERN_CONT " %08lx ", thread_saved_pc(p)); -#else - if (state == TASK_RUNNING) - printk(KERN_CONT " running task "); - else - printk(KERN_CONT " %016lx ", thread_saved_pc(p)); -#endif -#ifdef CONFIG_DEBUG_STACK_USAGE - free = stack_not_used(p); -#endif - ppid = 0; - rcu_read_lock(); - if (pid_alive(p)) - ppid = task_pid_nr(rcu_dereference(p->real_parent)); - rcu_read_unlock(); - printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, - task_pid_nr(p), ppid, - (unsigned long)task_thread_info(p)->flags); - - print_worker_info(KERN_INFO, p); - show_stack(p, NULL); -} - -void show_state_filter(unsigned long state_filter) -{ - struct task_struct *g, *p; - -#if BITS_PER_LONG == 32 - printk(KERN_INFO - " task PC stack pid father\n"); -#else - printk(KERN_INFO - " task PC stack pid father\n"); -#endif - rcu_read_lock(); - for_each_process_thread(g, p) { - /* - * reset the NMI-timeout, listing all files on a slow - * console might take a lot of time: - */ - touch_nmi_watchdog(); - if (!state_filter || (p->state & state_filter)) - sched_show_task(p); - } - - touch_all_softlockup_watchdogs(); - - rcu_read_unlock(); - /* - * Only show locks if all tasks are dumped: - */ - if (!state_filter) - debug_show_all_locks(); -} - -void dump_cpu_task(int cpu) -{ - pr_info("Task dump for CPU %d:\n", cpu); - sched_show_task(cpu_curr(cpu)); -} - -#ifdef CONFIG_SMP -void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) -{ - cpumask_copy(&p->cpus_allowed, new_mask); - p->nr_cpus_allowed = cpumask_weight(new_mask); -} - -void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) -{ - cpumask_copy(tsk_cpus_allowed(p), new_mask); -} -#endif - -/** - * init_idle - set up an idle thread for a given CPU - * @idle: task in question - * @cpu: cpu the idle task belongs to - * - * NOTE: this function does not set the idle thread's NEED_RESCHED - * flag, to make booting more robust. - */ -void init_idle(struct task_struct *idle, int cpu) -{ - struct rq *rq = cpu_rq(cpu); - unsigned long flags; - - raw_spin_lock_irqsave(&idle->pi_lock, flags); - time_lock_grq(rq); - idle->last_ran = rq->clock_task; - idle->state = TASK_RUNNING; - /* Setting prio to illegal value shouldn't matter when never queued */ - idle->prio = PRIO_LIMIT; -#ifdef CONFIG_SMT_NICE - idle->smt_bias = 0; -#endif - set_rq_task(rq, idle); - do_set_cpus_allowed(idle, get_cpu_mask(cpu)); - /* Silence PROVE_RCU */ - rcu_read_lock(); - set_task_cpu(idle, cpu); - rcu_read_unlock(); - rq->curr = rq->idle = idle; - idle->on_cpu = 1; - grq_unlock(); - raw_spin_unlock_irqrestore(&idle->pi_lock, flags); - - /* Set the preempt count _outside_ the spinlocks! */ - init_idle_preempt_count(idle, cpu); - - ftrace_graph_init_idle_task(idle, cpu); -#ifdef CONFIG_SMP - sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); -#endif -} - -int cpuset_cpumask_can_shrink(const struct cpumask __maybe_unused *cur, - const struct cpumask __maybe_unused *trial) -{ - return 1; -} - -int task_can_attach(struct task_struct *p, - const struct cpumask *cs_cpus_allowed) -{ - int ret = 0; - - /* - * Kthreads which disallow setaffinity shouldn't be moved - * to a new cpuset; we don't want to change their cpu - * affinity and isolating such threads by their set of - * allowed nodes is unnecessary. Thus, cpusets are not - * applicable for such threads. This prevents checking for - * success of set_cpus_allowed_ptr() on all attached tasks - * before cpus_allowed may be changed. - */ - if (p->flags & PF_NO_SETAFFINITY) - ret = -EINVAL; - - return ret; -} - -void wake_q_add(struct wake_q_head *head, struct task_struct *task) -{ - struct wake_q_node *node = &task->wake_q; - - /* - * Atomically grab the task, if ->wake_q is !nil already it means - * its already queued (either by us or someone else) and will get the - * wakeup due to that. - * - * This cmpxchg() implies a full barrier, which pairs with the write - * barrier implied by the wakeup in wake_up_list(). - */ - if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) - return; - - get_task_struct(task); - - /* - * The head is context local, there can be no concurrency. - */ - *head->lastp = node; - head->lastp = &node->next; -} - -void wake_up_q(struct wake_q_head *head) -{ - struct wake_q_node *node = head->first; - - while (node != WAKE_Q_TAIL) { - struct task_struct *task; - - task = container_of(node, struct task_struct, wake_q); - BUG_ON(!task); - /* task can safely be re-inserted now */ - node = node->next; - task->wake_q.next = NULL; - - /* - * wake_up_process() implies a wmb() to pair with the queueing - * in wake_q_add() so as not to miss wakeups. - */ - wake_up_process(task); - put_task_struct(task); - } -} - -void resched_cpu(int cpu) -{ - unsigned long flags; - - grq_lock_irqsave(&flags); - resched_task(cpu_curr(cpu)); - grq_unlock_irqrestore(&flags); -} - -#ifdef CONFIG_SMP -#ifdef CONFIG_NO_HZ_COMMON -void nohz_balance_enter_idle(int cpu) -{ -} - -void select_nohz_load_balancer(int stop_tick) -{ -} - -void set_cpu_sd_state_idle(void) {} -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -/** - * lowest_flag_domain - Return lowest sched_domain containing flag. - * @cpu: The cpu whose lowest level of sched domain is to - * be returned. - * @flag: The flag to check for the lowest sched_domain - * for the given cpu. - * - * Returns the lowest sched_domain of a cpu which contains the given flag. - */ -static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) -{ - struct sched_domain *sd; - - for_each_domain(cpu, sd) - if (sd && (sd->flags & flag)) - break; - - return sd; -} - -/** - * for_each_flag_domain - Iterates over sched_domains containing the flag. - * @cpu: The cpu whose domains we're iterating over. - * @sd: variable holding the value of the power_savings_sd - * for cpu. - * @flag: The flag to filter the sched_domains to be iterated. - * - * Iterates over all the scheduler domains for a given cpu that has the 'flag' - * set, starting from the lowest sched_domain to the highest. - */ -#define for_each_flag_domain(cpu, sd, flag) \ - for (sd = lowest_flag_domain(cpu, flag); \ - (sd && (sd->flags & flag)); sd = sd->parent) - -#endif /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ - -/* - * In the semi idle case, use the nearest busy cpu for migrating timers - * from an idle cpu. This is good for power-savings. - * - * We don't do similar optimization for completely idle system, as - * selecting an idle cpu will add more delays to the timers than intended - * (as that cpu's timer base may not be uptodate wrt jiffies etc). - */ -int get_nohz_timer_target(void) -{ - int i, cpu = smp_processor_id(); - struct sched_domain *sd; - - if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu)) - return cpu; - - rcu_read_lock(); - for_each_domain(cpu, sd) { - for_each_cpu(i, sched_domain_span(sd)) { - if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) { - cpu = i; - goto unlock; - } - } - } - - if (!is_housekeeping_cpu(cpu)) - cpu = housekeeping_any_cpu(); -unlock: - rcu_read_unlock(); - return cpu; -} - -/* - * When add_timer_on() enqueues a timer into the timer wheel of an - * idle CPU then this timer might expire before the next timer event - * which is scheduled to wake up that CPU. In case of a completely - * idle system the next event might even be infinite time into the - * future. wake_up_idle_cpu() ensures that the CPU is woken up and - * leaves the inner idle loop so the newly added timer is taken into - * account when the CPU goes back to idle and evaluates the timer - * wheel for the next timer event. - */ -void wake_up_idle_cpu(int cpu) -{ - if (cpu == smp_processor_id()) - return; - - set_tsk_need_resched(cpu_rq(cpu)->idle); - smp_send_reschedule(cpu); -} - -void wake_up_nohz_cpu(int cpu) -{ - wake_up_idle_cpu(cpu); -} -#endif /* CONFIG_NO_HZ_COMMON */ - -/* - * Change a given task's CPU affinity. Migrate the thread to a - * proper CPU and schedule it away if the CPU it's executing on - * is removed from the allowed bitmask. - * - * NOTE: the caller must have a valid reference to the task, the - * task must not exit() & deallocate itself prematurely. The - * call is not atomic; no spinlocks may be held. - */ -static int __set_cpus_allowed_ptr(struct task_struct *p, - const struct cpumask *new_mask, bool check) -{ - bool running_wrong = false; - bool queued = false; - unsigned long flags; - struct rq *rq; - int ret = 0; - - rq = task_grq_lock(p, &flags); - - /* - * Must re-check here, to close a race against __kthread_bind(), - * sched_setaffinity() is not guaranteed to observe the flag. - */ - if (check && (p->flags & PF_NO_SETAFFINITY)) { - ret = -EINVAL; - goto out; - } - - if (cpumask_equal(tsk_cpus_allowed(p), new_mask)) - goto out; - - if (!cpumask_intersects(new_mask, cpu_active_mask)) { - ret = -EINVAL; - goto out; - } - - queued = task_queued(p); - - do_set_cpus_allowed(p, new_mask); - - /* Can the task run on the task's current CPU? If so, we're done */ - if (cpumask_test_cpu(task_cpu(p), new_mask)) - goto out; - - if (task_running(p)) { - /* Task is running on the wrong cpu now, reschedule it. */ - if (rq == this_rq()) { - set_tsk_need_resched(p); - running_wrong = true; - } else - resched_task(p); - } else - set_task_cpu(p, cpumask_any_and(cpu_active_mask, new_mask)); - -out: - if (queued) - try_preempt(p, rq); - task_grq_unlock(&flags); - - if (running_wrong) - preempt_schedule_common(); - - return ret; -} - -int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) -{ - return __set_cpus_allowed_ptr(p, new_mask, false); -} -EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); - -#ifdef CONFIG_HOTPLUG_CPU -/* Run through task list and find tasks affined to the dead cpu, then remove - * that cpu from the list, enable cpu0 and set the zerobound flag. */ -static void bind_zero(int src_cpu) -{ - struct task_struct *p, *t; - int bound = 0; - - if (src_cpu == 0) - return; - - do_each_thread(t, p) { - if (cpumask_test_cpu(src_cpu, tsk_cpus_allowed(p))) { - cpumask_clear_cpu(src_cpu, tsk_cpus_allowed(p)); - cpumask_set_cpu(0, tsk_cpus_allowed(p)); - p->zerobound = true; - bound++; - } - clear_sticky(p); - } while_each_thread(t, p); - - if (bound) { - printk(KERN_INFO "Removed affinity for %d processes to cpu %d\n", - bound, src_cpu); - } -} - -/* Find processes with the zerobound flag and reenable their affinity for the - * CPU coming alive. */ -static void unbind_zero(int src_cpu) -{ - int unbound = 0, zerobound = 0; - struct task_struct *p, *t; - - if (src_cpu == 0) - return; - - do_each_thread(t, p) { - if (!p->mm) - p->zerobound = false; - if (p->zerobound) { - unbound++; - cpumask_set_cpu(src_cpu, tsk_cpus_allowed(p)); - /* Once every CPU affinity has been re-enabled, remove - * the zerobound flag */ - if (cpumask_subset(cpu_possible_mask, tsk_cpus_allowed(p))) { - p->zerobound = false; - zerobound++; - } - } - } while_each_thread(t, p); - - if (unbound) { - printk(KERN_INFO "Added affinity for %d processes to cpu %d\n", - unbound, src_cpu); - } - if (zerobound) { - printk(KERN_INFO "Released forced binding to cpu0 for %d processes\n", - zerobound); - } -} - -/* - * Ensures that the idle task is using init_mm right before its cpu goes - * offline. - */ -void idle_task_exit(void) -{ - struct mm_struct *mm = current->active_mm; - - BUG_ON(cpu_online(smp_processor_id())); - - if (mm != &init_mm) { - switch_mm(mm, &init_mm, current); - finish_arch_post_lock_switch(); - } - mmdrop(mm); -} -#else /* CONFIG_HOTPLUG_CPU */ -static void unbind_zero(int src_cpu) {} -#endif /* CONFIG_HOTPLUG_CPU */ - -void sched_set_stop_task(int cpu, struct task_struct *stop) -{ - struct sched_param stop_param = { .sched_priority = STOP_PRIO }; - struct sched_param start_param = { .sched_priority = 0 }; - struct task_struct *old_stop = cpu_rq(cpu)->stop; - - if (stop) { - /* - * Make it appear like a SCHED_FIFO task, its something - * userspace knows about and won't get confused about. - * - * Also, it will make PI more or less work without too - * much confusion -- but then, stop work should not - * rely on PI working anyway. - */ - sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param); - } - - cpu_rq(cpu)->stop = stop; - - if (old_stop) { - /* - * Reset it back to a normal scheduling policy so that - * it can die in pieces. - */ - sched_setscheduler_nocheck(old_stop, SCHED_NORMAL, &start_param); - } -} - - -#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) - -static struct ctl_table sd_ctl_dir[] = { - { - .procname = "sched_domain", - .mode = 0555, - }, - {} -}; - -static struct ctl_table sd_ctl_root[] = { - { - .procname = "kernel", - .mode = 0555, - .child = sd_ctl_dir, - }, - {} -}; - -static struct ctl_table *sd_alloc_ctl_entry(int n) -{ - struct ctl_table *entry = - kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); - - return entry; -} - -static void sd_free_ctl_entry(struct ctl_table **tablep) -{ - struct ctl_table *entry; - - /* - * In the intermediate directories, both the child directory and - * procname are dynamically allocated and could fail but the mode - * will always be set. In the lowest directory the names are - * static strings and all have proc handlers. - */ - for (entry = *tablep; entry->mode; entry++) { - if (entry->child) - sd_free_ctl_entry(&entry->child); - if (entry->proc_handler == NULL) - kfree(entry->procname); - } - - kfree(*tablep); - *tablep = NULL; -} - -static void -set_table_entry(struct ctl_table *entry, - const char *procname, void *data, int maxlen, - mode_t mode, proc_handler *proc_handler) -{ - entry->procname = procname; - entry->data = data; - entry->maxlen = maxlen; - entry->mode = mode; - entry->proc_handler = proc_handler; -} - -static struct ctl_table * -sd_alloc_ctl_domain_table(struct sched_domain *sd) -{ - struct ctl_table *table = sd_alloc_ctl_entry(14); - - if (table == NULL) - return NULL; - - set_table_entry(&table[0], "min_interval", &sd->min_interval, - sizeof(long), 0644, proc_doulongvec_minmax); - set_table_entry(&table[1], "max_interval", &sd->max_interval, - sizeof(long), 0644, proc_doulongvec_minmax); - set_table_entry(&table[2], "busy_idx", &sd->busy_idx, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[3], "idle_idx", &sd->idle_idx, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[5], "wake_idx", &sd->wake_idx, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[7], "busy_factor", &sd->busy_factor, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[9], "cache_nice_tries", - &sd->cache_nice_tries, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[10], "flags", &sd->flags, - sizeof(int), 0644, proc_dointvec_minmax); - set_table_entry(&table[11], "max_newidle_lb_cost", - &sd->max_newidle_lb_cost, - sizeof(long), 0644, proc_doulongvec_minmax); - set_table_entry(&table[12], "name", sd->name, - CORENAME_MAX_SIZE, 0444, proc_dostring); - /* &table[13] is terminator */ - - return table; -} - -static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) -{ - struct ctl_table *entry, *table; - struct sched_domain *sd; - int domain_num = 0, i; - char buf[32]; - - for_each_domain(cpu, sd) - domain_num++; - entry = table = sd_alloc_ctl_entry(domain_num + 1); - if (table == NULL) - return NULL; - - i = 0; - for_each_domain(cpu, sd) { - snprintf(buf, 32, "domain%d", i); - entry->procname = kstrdup(buf, GFP_KERNEL); - entry->mode = 0555; - entry->child = sd_alloc_ctl_domain_table(sd); - entry++; - i++; - } - return table; -} - -static struct ctl_table_header *sd_sysctl_header; -static void register_sched_domain_sysctl(void) -{ - int i, cpu_num = num_possible_cpus(); - struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); - char buf[32]; - - WARN_ON(sd_ctl_dir[0].child); - sd_ctl_dir[0].child = entry; - - if (entry == NULL) - return; - - for_each_possible_cpu(i) { - snprintf(buf, 32, "cpu%d", i); - entry->procname = kstrdup(buf, GFP_KERNEL); - entry->mode = 0555; - entry->child = sd_alloc_ctl_cpu_table(i); - entry++; - } - - WARN_ON(sd_sysctl_header); - sd_sysctl_header = register_sysctl_table(sd_ctl_root); -} - -/* may be called multiple times per register */ -static void unregister_sched_domain_sysctl(void) -{ - unregister_sysctl_table(sd_sysctl_header); - sd_sysctl_header = NULL; - if (sd_ctl_dir[0].child) - sd_free_ctl_entry(&sd_ctl_dir[0].child); -} -#else /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */ -static void register_sched_domain_sysctl(void) -{ -} -static void unregister_sched_domain_sysctl(void) -{ -} -#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */ - -static void set_rq_online(struct rq *rq) -{ - if (!rq->online) { - cpumask_set_cpu(cpu_of(rq), rq->rd->online); - rq->online = true; - } -} - -static void set_rq_offline(struct rq *rq) -{ - if (rq->online) { - cpumask_clear_cpu(cpu_of(rq), rq->rd->online); - rq->online = false; - } -} - -/* - * migration_call - callback that gets triggered when a CPU is added. - */ -static int -migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) -{ - int cpu = (long)hcpu; - unsigned long flags; - struct rq *rq = cpu_rq(cpu); -#ifdef CONFIG_HOTPLUG_CPU - struct task_struct *idle = rq->idle; -#endif - - switch (action & ~CPU_TASKS_FROZEN) { - case CPU_STARTING: - return NOTIFY_OK; - case CPU_UP_PREPARE: - break; - - case CPU_ONLINE: - /* Update our root-domain */ - grq_lock_irqsave(&flags); - if (rq->rd) { - BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); - - set_rq_online(rq); - } - unbind_zero(cpu); - grq.noc = num_online_cpus(); - grq_unlock_irqrestore(&flags); - break; - -#ifdef CONFIG_HOTPLUG_CPU - case CPU_DEAD: - grq_lock_irq(); - set_rq_task(rq, idle); - update_clocks(rq); - grq_unlock_irq(); - break; - - case CPU_DYING: - /* Update our root-domain */ - grq_lock_irqsave(&flags); - if (rq->rd) { - BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); - set_rq_offline(rq); - } - bind_zero(cpu); - grq.noc = num_online_cpus(); - grq_unlock_irqrestore(&flags); - break; -#endif - } - return NOTIFY_OK; -} - -/* - * Register at high priority so that task migration (migrate_all_tasks) - * happens before everything else. This has to be lower priority than - * the notifier in the perf_counter subsystem, though. - */ -static struct notifier_block migration_notifier = { - .notifier_call = migration_call, - .priority = CPU_PRI_MIGRATION, -}; - -static int sched_cpu_active(struct notifier_block *nfb, - unsigned long action, void *hcpu) -{ - switch (action & ~CPU_TASKS_FROZEN) { - case CPU_STARTING: - return NOTIFY_OK; - case CPU_ONLINE: - /* - * At this point a starting CPU has marked itself as online via - * set_cpu_online(). But it might not yet have marked itself - * as active, which is essential from here on. - * - * Thus, fall-through and help the starting CPU along. - */ - case CPU_DOWN_FAILED: - set_cpu_active((long)hcpu, true); - return NOTIFY_OK; - default: - return NOTIFY_DONE; - } -} - -static int sched_cpu_inactive(struct notifier_block *nfb, - unsigned long action, void *hcpu) -{ - switch (action & ~CPU_TASKS_FROZEN) { - case CPU_DOWN_PREPARE: - set_cpu_active((long)hcpu, false); - return NOTIFY_OK; - default: - return NOTIFY_DONE; - } -} - -int __init migration_init(void) -{ - void *cpu = (void *)(long)smp_processor_id(); - int err; - - /* Initialise migration for the boot CPU */ - err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); - BUG_ON(err == NOTIFY_BAD); - migration_call(&migration_notifier, CPU_ONLINE, cpu); - register_cpu_notifier(&migration_notifier); - - /* Register cpu active notifiers */ - cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); - cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); - - return 0; -} -early_initcall(migration_init); - -static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ - -#ifdef CONFIG_SCHED_DEBUG - -static __read_mostly int sched_debug_enabled; - -static int __init sched_debug_setup(char *str) -{ - sched_debug_enabled = 1; - - return 0; -} -early_param("sched_debug", sched_debug_setup); - -static inline bool sched_debug(void) -{ - return sched_debug_enabled; -} - -static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, - struct cpumask *groupmask) -{ - cpumask_clear(groupmask); - - printk(KERN_DEBUG "%*s domain %d: ", level, "", level); - - if (!(sd->flags & SD_LOAD_BALANCE)) { - printk("does not load-balance\n"); - if (sd->parent) - printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" - " has parent"); - return -1; - } - - printk(KERN_CONT "span %*pbl level %s\n", - cpumask_pr_args(sched_domain_span(sd)), sd->name); - - if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { - printk(KERN_ERR "ERROR: domain->span does not contain " - "CPU%d\n", cpu); - } - - printk(KERN_CONT "\n"); - - if (!cpumask_equal(sched_domain_span(sd), groupmask)) - printk(KERN_ERR "ERROR: groups don't span domain->span\n"); - - if (sd->parent && - !cpumask_subset(groupmask, sched_domain_span(sd->parent))) - printk(KERN_ERR "ERROR: parent span is not a superset " - "of domain->span\n"); - return 0; -} - -static void sched_domain_debug(struct sched_domain *sd, int cpu) -{ - int level = 0; - - if (!sched_debug_enabled) - return; - - if (!sd) { - printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); - return; - } - - printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); - - for (;;) { - if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) - break; - level++; - sd = sd->parent; - if (!sd) - break; - } -} -#else /* !CONFIG_SCHED_DEBUG */ -# define sched_domain_debug(sd, cpu) do { } while (0) -static inline bool sched_debug(void) -{ - return false; -} -#endif /* CONFIG_SCHED_DEBUG */ - -static int sd_degenerate(struct sched_domain *sd) -{ - if (cpumask_weight(sched_domain_span(sd)) == 1) - return 1; - - /* Following flags don't use groups */ - if (sd->flags & (SD_WAKE_AFFINE)) - return 0; - - return 1; -} - -static int -sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) -{ - unsigned long cflags = sd->flags, pflags = parent->flags; - - if (sd_degenerate(parent)) - return 1; - - if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) - return 0; - - if (~cflags & pflags) - return 0; - - return 1; -} - -static void free_rootdomain(struct rcu_head *rcu) -{ - struct root_domain *rd = container_of(rcu, struct root_domain, rcu); - - cpupri_cleanup(&rd->cpupri); - free_cpumask_var(rd->rto_mask); - free_cpumask_var(rd->online); - free_cpumask_var(rd->span); - kfree(rd); -} - -static void rq_attach_root(struct rq *rq, struct root_domain *rd) -{ - struct root_domain *old_rd = NULL; - unsigned long flags; - - grq_lock_irqsave(&flags); - - if (rq->rd) { - old_rd = rq->rd; - - if (cpumask_test_cpu(rq->cpu, old_rd->online)) - set_rq_offline(rq); - - cpumask_clear_cpu(rq->cpu, old_rd->span); - - /* - * If we dont want to free the old_rd yet then - * set old_rd to NULL to skip the freeing later - * in this function: - */ - if (!atomic_dec_and_test(&old_rd->refcount)) - old_rd = NULL; - } - - atomic_inc(&rd->refcount); - rq->rd = rd; - - cpumask_set_cpu(rq->cpu, rd->span); - if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) - set_rq_online(rq); - - grq_unlock_irqrestore(&flags); - - if (old_rd) - call_rcu_sched(&old_rd->rcu, free_rootdomain); -} - -static int init_rootdomain(struct root_domain *rd) -{ - memset(rd, 0, sizeof(*rd)); - - if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) - goto out; - if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) - goto free_span; - if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) - goto free_online; - - if (cpupri_init(&rd->cpupri) != 0) - goto free_rto_mask; - return 0; - -free_rto_mask: - free_cpumask_var(rd->rto_mask); -free_online: - free_cpumask_var(rd->online); -free_span: - free_cpumask_var(rd->span); -out: - return -ENOMEM; -} - -static void init_defrootdomain(void) -{ - init_rootdomain(&def_root_domain); - - atomic_set(&def_root_domain.refcount, 1); -} - -static struct root_domain *alloc_rootdomain(void) -{ - struct root_domain *rd; - - rd = kmalloc(sizeof(*rd), GFP_KERNEL); - if (!rd) - return NULL; - - if (init_rootdomain(rd) != 0) { - kfree(rd); - return NULL; - } - - return rd; -} - -static void free_sched_domain(struct rcu_head *rcu) -{ - struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); - - kfree(sd); -} - -static void destroy_sched_domain(struct sched_domain *sd, int cpu) -{ - call_rcu(&sd->rcu, free_sched_domain); -} - -static void destroy_sched_domains(struct sched_domain *sd, int cpu) -{ - for (; sd; sd = sd->parent) - destroy_sched_domain(sd, cpu); -} - -/* - * Attach the domain 'sd' to 'cpu' as its base domain. Callers must - * hold the hotplug lock. - */ -static void -cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) -{ - struct rq *rq = cpu_rq(cpu); - struct sched_domain *tmp; - - /* Remove the sched domains which do not contribute to scheduling. */ - for (tmp = sd; tmp; ) { - struct sched_domain *parent = tmp->parent; - if (!parent) - break; - - if (sd_parent_degenerate(tmp, parent)) { - tmp->parent = parent->parent; - if (parent->parent) - parent->parent->child = tmp; - /* - * Transfer SD_PREFER_SIBLING down in case of a - * degenerate parent; the spans match for this - * so the property transfers. - */ - if (parent->flags & SD_PREFER_SIBLING) - tmp->flags |= SD_PREFER_SIBLING; - destroy_sched_domain(parent, cpu); - } else - tmp = tmp->parent; - } - - if (sd && sd_degenerate(sd)) { - tmp = sd; - sd = sd->parent; - destroy_sched_domain(tmp, cpu); - if (sd) - sd->child = NULL; - } - - sched_domain_debug(sd, cpu); - - rq_attach_root(rq, rd); - tmp = rq->sd; - rcu_assign_pointer(rq->sd, sd); - destroy_sched_domains(tmp, cpu); -} - -/* Setup the mask of cpus configured for isolated domains */ -static int __init isolated_cpu_setup(char *str) -{ - alloc_bootmem_cpumask_var(&cpu_isolated_map); - cpulist_parse(str, cpu_isolated_map); - return 1; -} - -__setup("isolcpus=", isolated_cpu_setup); - -struct s_data { - struct sched_domain ** __percpu sd; - struct root_domain *rd; -}; - -enum s_alloc { - sa_rootdomain, - sa_sd, - sa_sd_storage, - sa_none, -}; - -/* - * Initializers for schedule domains - * Non-inlined to reduce accumulated stack pressure in build_sched_domains() - */ - -static int default_relax_domain_level = -1; -int sched_domain_level_max; - -static int __init setup_relax_domain_level(char *str) -{ - if (kstrtoint(str, 0, &default_relax_domain_level)) - pr_warn("Unable to set relax_domain_level\n"); - - return 1; -} -__setup("relax_domain_level=", setup_relax_domain_level); - -static void set_domain_attribute(struct sched_domain *sd, - struct sched_domain_attr *attr) -{ - int request; - - if (!attr || attr->relax_domain_level < 0) { - if (default_relax_domain_level < 0) - return; - else - request = default_relax_domain_level; - } else - request = attr->relax_domain_level; - if (request < sd->level) { - /* turn off idle balance on this domain */ - sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); - } else { - /* turn on idle balance on this domain */ - sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); - } -} - -static void __sdt_free(const struct cpumask *cpu_map); -static int __sdt_alloc(const struct cpumask *cpu_map); - -static void __free_domain_allocs(struct s_data *d, enum s_alloc what, - const struct cpumask *cpu_map) -{ - switch (what) { - case sa_rootdomain: - if (!atomic_read(&d->rd->refcount)) - free_rootdomain(&d->rd->rcu); /* fall through */ - case sa_sd: - free_percpu(d->sd); /* fall through */ - case sa_sd_storage: - __sdt_free(cpu_map); /* fall through */ - case sa_none: - break; - } -} - -static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, - const struct cpumask *cpu_map) -{ - memset(d, 0, sizeof(*d)); - - if (__sdt_alloc(cpu_map)) - return sa_sd_storage; - d->sd = alloc_percpu(struct sched_domain *); - if (!d->sd) - return sa_sd_storage; - d->rd = alloc_rootdomain(); - if (!d->rd) - return sa_sd; - return sa_rootdomain; -} - -/* - * NULL the sd_data elements we've used to build the sched_domain - * structure so that the subsequent __free_domain_allocs() - * will not free the data we're using. - */ -static void claim_allocations(int cpu, struct sched_domain *sd) -{ - struct sd_data *sdd = sd->private; - - WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); - *per_cpu_ptr(sdd->sd, cpu) = NULL; -} - -#ifdef CONFIG_NUMA -static int sched_domains_numa_levels; -static int *sched_domains_numa_distance; -static struct cpumask ***sched_domains_numa_masks; -static int sched_domains_curr_level; -#endif - -/* - * SD_flags allowed in topology descriptions. - * - * SD_SHARE_CPUCAPACITY - describes SMT topologies - * SD_SHARE_PKG_RESOURCES - describes shared caches - * SD_NUMA - describes NUMA topologies - * SD_SHARE_POWERDOMAIN - describes shared power domain - * - * Odd one out: - * SD_ASYM_PACKING - describes SMT quirks - */ -#define TOPOLOGY_SD_FLAGS \ - (SD_SHARE_CPUCAPACITY | \ - SD_SHARE_PKG_RESOURCES | \ - SD_NUMA | \ - SD_ASYM_PACKING | \ - SD_SHARE_POWERDOMAIN) - -static struct sched_domain * -sd_init(struct sched_domain_topology_level *tl, int cpu) -{ - struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); - int sd_weight, sd_flags = 0; - -#ifdef CONFIG_NUMA - /* - * Ugly hack to pass state to sd_numa_mask()... - */ - sched_domains_curr_level = tl->numa_level; -#endif - - sd_weight = cpumask_weight(tl->mask(cpu)); - - if (tl->sd_flags) - sd_flags = (*tl->sd_flags)(); - if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, - "wrong sd_flags in topology description\n")) - sd_flags &= ~TOPOLOGY_SD_FLAGS; - - *sd = (struct sched_domain){ - .min_interval = sd_weight, - .max_interval = 2*sd_weight, - .busy_factor = 32, - .imbalance_pct = 125, - - .cache_nice_tries = 0, - .busy_idx = 0, - .idle_idx = 0, - .newidle_idx = 0, - .wake_idx = 0, - .forkexec_idx = 0, - - .flags = 1*SD_LOAD_BALANCE - | 1*SD_BALANCE_NEWIDLE - | 1*SD_BALANCE_EXEC - | 1*SD_BALANCE_FORK - | 0*SD_BALANCE_WAKE - | 1*SD_WAKE_AFFINE - | 0*SD_SHARE_CPUCAPACITY - | 0*SD_SHARE_PKG_RESOURCES - | 0*SD_SERIALIZE - | 0*SD_PREFER_SIBLING - | 0*SD_NUMA - | sd_flags - , - - .last_balance = jiffies, - .balance_interval = sd_weight, - .smt_gain = 0, - .max_newidle_lb_cost = 0, - .next_decay_max_lb_cost = jiffies, -#ifdef CONFIG_SCHED_DEBUG - .name = tl->name, -#endif - }; - - /* - * Convert topological properties into behaviour. - */ - - if (sd->flags & SD_SHARE_CPUCAPACITY) { - sd->flags |= SD_PREFER_SIBLING; - sd->imbalance_pct = 110; - sd->smt_gain = 1178; /* ~15% */ - - } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { - sd->imbalance_pct = 117; - sd->cache_nice_tries = 1; - sd->busy_idx = 2; - -#ifdef CONFIG_NUMA - } else if (sd->flags & SD_NUMA) { - sd->cache_nice_tries = 2; - sd->busy_idx = 3; - sd->idle_idx = 2; - - sd->flags |= SD_SERIALIZE; - if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { - sd->flags &= ~(SD_BALANCE_EXEC | - SD_BALANCE_FORK | - SD_WAKE_AFFINE); - } - -#endif - } else { - sd->flags |= SD_PREFER_SIBLING; - sd->cache_nice_tries = 1; - sd->busy_idx = 2; - sd->idle_idx = 1; - } - - sd->private = &tl->data; - - return sd; -} - -/* - * Topology list, bottom-up. - */ -static struct sched_domain_topology_level default_topology[] = { -#ifdef CONFIG_SCHED_SMT - { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, -#endif -#ifdef CONFIG_SCHED_MC - { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, -#endif - { cpu_cpu_mask, SD_INIT_NAME(DIE) }, - { NULL, }, -}; - -struct sched_domain_topology_level *sched_domain_topology = default_topology; - -#define for_each_sd_topology(tl) \ - for (tl = sched_domain_topology; tl->mask; tl++) - -void set_sched_topology(struct sched_domain_topology_level *tl) -{ - sched_domain_topology = tl; -} - -#ifdef CONFIG_NUMA - -static const struct cpumask *sd_numa_mask(int cpu) -{ - return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; -} - -static void sched_numa_warn(const char *str) -{ - static int done = false; - int i,j; - - if (done) - return; - - done = true; - - printk(KERN_WARNING "ERROR: %s\n\n", str); - - for (i = 0; i < nr_node_ids; i++) { - printk(KERN_WARNING " "); - for (j = 0; j < nr_node_ids; j++) - printk(KERN_CONT "%02d ", node_distance(i,j)); - printk(KERN_CONT "\n"); - } - printk(KERN_WARNING "\n"); -} - -static bool find_numa_distance(int distance) -{ - int i; - - if (distance == node_distance(0, 0)) - return true; - - for (i = 0; i < sched_domains_numa_levels; i++) { - if (sched_domains_numa_distance[i] == distance) - return true; - } - - return false; -} - -static void sched_init_numa(void) -{ - int next_distance, curr_distance = node_distance(0, 0); - struct sched_domain_topology_level *tl; - int level = 0; - int i, j, k; - - sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); - if (!sched_domains_numa_distance) - return; - - /* - * O(nr_nodes^2) deduplicating selection sort -- in order to find the - * unique distances in the node_distance() table. - * - * Assumes node_distance(0,j) includes all distances in - * node_distance(i,j) in order to avoid cubic time. - */ - next_distance = curr_distance; - for (i = 0; i < nr_node_ids; i++) { - for (j = 0; j < nr_node_ids; j++) { - for (k = 0; k < nr_node_ids; k++) { - int distance = node_distance(i, k); - - if (distance > curr_distance && - (distance < next_distance || - next_distance == curr_distance)) - next_distance = distance; - - /* - * While not a strong assumption it would be nice to know - * about cases where if node A is connected to B, B is not - * equally connected to A. - */ - if (sched_debug() && node_distance(k, i) != distance) - sched_numa_warn("Node-distance not symmetric"); - - if (sched_debug() && i && !find_numa_distance(distance)) - sched_numa_warn("Node-0 not representative"); - } - if (next_distance != curr_distance) { - sched_domains_numa_distance[level++] = next_distance; - sched_domains_numa_levels = level; - curr_distance = next_distance; - } else break; - } - - /* - * In case of sched_debug() we verify the above assumption. - */ - if (!sched_debug()) - break; - } - /* - * 'level' contains the number of unique distances, excluding the - * identity distance node_distance(i,i). - * - * The sched_domains_numa_distance[] array includes the actual distance - * numbers. - */ - - /* - * Here, we should temporarily reset sched_domains_numa_levels to 0. - * If it fails to allocate memory for array sched_domains_numa_masks[][], - * the array will contain less then 'level' members. This could be - * dangerous when we use it to iterate array sched_domains_numa_masks[][] - * in other functions. - * - * We reset it to 'level' at the end of this function. - */ - sched_domains_numa_levels = 0; - - sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); - if (!sched_domains_numa_masks) - return; - - /* - * Now for each level, construct a mask per node which contains all - * cpus of nodes that are that many hops away from us. - */ - for (i = 0; i < level; i++) { - sched_domains_numa_masks[i] = - kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); - if (!sched_domains_numa_masks[i]) - return; - - for (j = 0; j < nr_node_ids; j++) { - struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); - if (!mask) - return; - - sched_domains_numa_masks[i][j] = mask; - - for (k = 0; k < nr_node_ids; k++) { - if (node_distance(j, k) > sched_domains_numa_distance[i]) - continue; - - cpumask_or(mask, mask, cpumask_of_node(k)); - } - } - } - - /* Compute default topology size */ - for (i = 0; sched_domain_topology[i].mask; i++); - - tl = kzalloc((i + level + 1) * - sizeof(struct sched_domain_topology_level), GFP_KERNEL); - if (!tl) - return; - - /* - * Copy the default topology bits.. - */ - for (i = 0; sched_domain_topology[i].mask; i++) - tl[i] = sched_domain_topology[i]; - - /* - * .. and append 'j' levels of NUMA goodness. - */ - for (j = 0; j < level; i++, j++) { - tl[i] = (struct sched_domain_topology_level){ - .mask = sd_numa_mask, - .sd_flags = cpu_numa_flags, - .flags = SDTL_OVERLAP, - .numa_level = j, - SD_INIT_NAME(NUMA) - }; - } - - sched_domain_topology = tl; - - sched_domains_numa_levels = level; -} - -static void sched_domains_numa_masks_set(int cpu) -{ - int i, j; - int node = cpu_to_node(cpu); - - for (i = 0; i < sched_domains_numa_levels; i++) { - for (j = 0; j < nr_node_ids; j++) { - if (node_distance(j, node) <= sched_domains_numa_distance[i]) - cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); - } - } -} - -static void sched_domains_numa_masks_clear(int cpu) -{ - int i, j; - for (i = 0; i < sched_domains_numa_levels; i++) { - for (j = 0; j < nr_node_ids; j++) - cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); - } -} - -/* - * Update sched_domains_numa_masks[level][node] array when new cpus - * are onlined. - */ -static int sched_domains_numa_masks_update(struct notifier_block *nfb, - unsigned long action, - void *hcpu) -{ - int cpu = (long)hcpu; - - switch (action & ~CPU_TASKS_FROZEN) { - case CPU_ONLINE: - sched_domains_numa_masks_set(cpu); - break; - - case CPU_DEAD: - sched_domains_numa_masks_clear(cpu); - break; - - default: - return NOTIFY_DONE; - } - - return NOTIFY_OK; -} -#else -static inline void sched_init_numa(void) -{ -} - -static int sched_domains_numa_masks_update(struct notifier_block *nfb, - unsigned long action, - void *hcpu) -{ - return 0; -} -#endif /* CONFIG_NUMA */ - -static int __sdt_alloc(const struct cpumask *cpu_map) -{ - struct sched_domain_topology_level *tl; - int j; - - for_each_sd_topology(tl) { - struct sd_data *sdd = &tl->data; - - sdd->sd = alloc_percpu(struct sched_domain *); - if (!sdd->sd) - return -ENOMEM; - - for_each_cpu(j, cpu_map) { - struct sched_domain *sd; - - sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), - GFP_KERNEL, cpu_to_node(j)); - if (!sd) - return -ENOMEM; - - *per_cpu_ptr(sdd->sd, j) = sd; - } - } - - return 0; -} - -static void __sdt_free(const struct cpumask *cpu_map) -{ - struct sched_domain_topology_level *tl; - int j; - - for_each_sd_topology(tl) { - struct sd_data *sdd = &tl->data; - - for_each_cpu(j, cpu_map) { - struct sched_domain *sd; - - if (sdd->sd) { - sd = *per_cpu_ptr(sdd->sd, j); - kfree(*per_cpu_ptr(sdd->sd, j)); - } - } - free_percpu(sdd->sd); - sdd->sd = NULL; - } -} - -struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, - const struct cpumask *cpu_map, struct sched_domain_attr *attr, - struct sched_domain *child, int cpu) -{ - struct sched_domain *sd = sd_init(tl, cpu); - if (!sd) - return child; - - cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); - if (child) { - sd->level = child->level + 1; - sched_domain_level_max = max(sched_domain_level_max, sd->level); - child->parent = sd; - sd->child = child; - - if (!cpumask_subset(sched_domain_span(child), - sched_domain_span(sd))) { - pr_err("BUG: arch topology borken\n"); -#ifdef CONFIG_SCHED_DEBUG - pr_err(" the %s domain not a subset of the %s domain\n", - child->name, sd->name); -#endif - /* Fixup, ensure @sd has at least @child cpus. */ - cpumask_or(sched_domain_span(sd), - sched_domain_span(sd), - sched_domain_span(child)); - } - - } - set_domain_attribute(sd, attr); - - return sd; -} - -/* - * Build sched domains for a given set of cpus and attach the sched domains - * to the individual cpus - */ -static int build_sched_domains(const struct cpumask *cpu_map, - struct sched_domain_attr *attr) -{ - enum s_alloc alloc_state; - struct sched_domain *sd; - struct s_data d; - int i, ret = -ENOMEM; - - alloc_state = __visit_domain_allocation_hell(&d, cpu_map); - if (alloc_state != sa_rootdomain) - goto error; - - /* Set up domains for cpus specified by the cpu_map. */ - for_each_cpu(i, cpu_map) { - struct sched_domain_topology_level *tl; - - sd = NULL; - for_each_sd_topology(tl) { - sd = build_sched_domain(tl, cpu_map, attr, sd, i); - if (tl == sched_domain_topology) - *per_cpu_ptr(d.sd, i) = sd; - if (tl->flags & SDTL_OVERLAP) - sd->flags |= SD_OVERLAP; - if (cpumask_equal(cpu_map, sched_domain_span(sd))) - break; - } - } - - /* Calculate CPU capacity for physical packages and nodes */ - for (i = nr_cpumask_bits-1; i >= 0; i--) { - if (!cpumask_test_cpu(i, cpu_map)) - continue; - - for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { - claim_allocations(i, sd); - } - } - - /* Attach the domains */ - rcu_read_lock(); - for_each_cpu(i, cpu_map) { - sd = *per_cpu_ptr(d.sd, i); - cpu_attach_domain(sd, d.rd, i); - } - rcu_read_unlock(); - - ret = 0; -error: - __free_domain_allocs(&d, alloc_state, cpu_map); - return ret; -} - -static cpumask_var_t *doms_cur; /* current sched domains */ -static int ndoms_cur; /* number of sched domains in 'doms_cur' */ -static struct sched_domain_attr *dattr_cur; - /* attribues of custom domains in 'doms_cur' */ - -/* - * Special case: If a kmalloc of a doms_cur partition (array of - * cpumask) fails, then fallback to a single sched domain, - * as determined by the single cpumask fallback_doms. - */ -static cpumask_var_t fallback_doms; - -/* - * arch_update_cpu_topology lets virtualized architectures update the - * cpu core maps. It is supposed to return 1 if the topology changed - * or 0 if it stayed the same. - */ -int __weak arch_update_cpu_topology(void) -{ - return 0; -} - -cpumask_var_t *alloc_sched_domains(unsigned int ndoms) -{ - int i; - cpumask_var_t *doms; - - doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); - if (!doms) - return NULL; - for (i = 0; i < ndoms; i++) { - if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { - free_sched_domains(doms, i); - return NULL; - } - } - return doms; -} - -void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) -{ - unsigned int i; - for (i = 0; i < ndoms; i++) - free_cpumask_var(doms[i]); - kfree(doms); -} - -/* - * Set up scheduler domains and groups. Callers must hold the hotplug lock. - * For now this just excludes isolated cpus, but could be used to - * exclude other special cases in the future. - */ -static int init_sched_domains(const struct cpumask *cpu_map) -{ - int err; - - arch_update_cpu_topology(); - ndoms_cur = 1; - doms_cur = alloc_sched_domains(ndoms_cur); - if (!doms_cur) - doms_cur = &fallback_doms; - cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); - err = build_sched_domains(doms_cur[0], NULL); - register_sched_domain_sysctl(); - - return err; -} - -/* - * Detach sched domains from a group of cpus specified in cpu_map - * These cpus will now be attached to the NULL domain - */ -static void detach_destroy_domains(const struct cpumask *cpu_map) -{ - int i; - - rcu_read_lock(); - for_each_cpu(i, cpu_map) - cpu_attach_domain(NULL, &def_root_domain, i); - rcu_read_unlock(); -} - -/* handle null as "default" */ -static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, - struct sched_domain_attr *new, int idx_new) -{ - struct sched_domain_attr tmp; - - /* fast path */ - if (!new && !cur) - return 1; - - tmp = SD_ATTR_INIT; - return !memcmp(cur ? (cur + idx_cur) : &tmp, - new ? (new + idx_new) : &tmp, - sizeof(struct sched_domain_attr)); -} - -/* - * Partition sched domains as specified by the 'ndoms_new' - * cpumasks in the array doms_new[] of cpumasks. This compares - * doms_new[] to the current sched domain partitioning, doms_cur[]. - * It destroys each deleted domain and builds each new domain. - * - * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. - * The masks don't intersect (don't overlap.) We should setup one - * sched domain for each mask. CPUs not in any of the cpumasks will - * not be load balanced. If the same cpumask appears both in the - * current 'doms_cur' domains and in the new 'doms_new', we can leave - * it as it is. - * - * The passed in 'doms_new' should be allocated using - * alloc_sched_domains. This routine takes ownership of it and will - * free_sched_domains it when done with it. If the caller failed the - * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, - * and partition_sched_domains() will fallback to the single partition - * 'fallback_doms', it also forces the domains to be rebuilt. - * - * If doms_new == NULL it will be replaced with cpu_online_mask. - * ndoms_new == 0 is a special case for destroying existing domains, - * and it will not create the default domain. - * - * Call with hotplug lock held - */ -void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], - struct sched_domain_attr *dattr_new) -{ - int i, j, n; - int new_topology; - - mutex_lock(&sched_domains_mutex); - - /* always unregister in case we don't destroy any domains */ - unregister_sched_domain_sysctl(); - - /* Let architecture update cpu core mappings. */ - new_topology = arch_update_cpu_topology(); - - n = doms_new ? ndoms_new : 0; - - /* Destroy deleted domains */ - for (i = 0; i < ndoms_cur; i++) { - for (j = 0; j < n && !new_topology; j++) { - if (cpumask_equal(doms_cur[i], doms_new[j]) - && dattrs_equal(dattr_cur, i, dattr_new, j)) - goto match1; - } - /* no match - a current sched domain not in new doms_new[] */ - detach_destroy_domains(doms_cur[i]); -match1: - ; - } - - n = ndoms_cur; - if (doms_new == NULL) { - n = 0; - doms_new = &fallback_doms; - cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); - WARN_ON_ONCE(dattr_new); - } - - /* Build new domains */ - for (i = 0; i < ndoms_new; i++) { - for (j = 0; j < n && !new_topology; j++) { - if (cpumask_equal(doms_new[i], doms_cur[j]) - && dattrs_equal(dattr_new, i, dattr_cur, j)) - goto match2; - } - /* no match - add a new doms_new */ - build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); -match2: - ; - } - - /* Remember the new sched domains */ - if (doms_cur != &fallback_doms) - free_sched_domains(doms_cur, ndoms_cur); - kfree(dattr_cur); /* kfree(NULL) is safe */ - doms_cur = doms_new; - dattr_cur = dattr_new; - ndoms_cur = ndoms_new; - - register_sched_domain_sysctl(); - - mutex_unlock(&sched_domains_mutex); -} - -static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ - -/* - * Update cpusets according to cpu_active mask. If cpusets are - * disabled, cpuset_update_active_cpus() becomes a simple wrapper - * around partition_sched_domains(). - * - * If we come here as part of a suspend/resume, don't touch cpusets because we - * want to restore it back to its original state upon resume anyway. - */ -static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, - void *hcpu) -{ - switch (action) { - case CPU_ONLINE_FROZEN: - case CPU_DOWN_FAILED_FROZEN: - - /* - * num_cpus_frozen tracks how many CPUs are involved in suspend - * resume sequence. As long as this is not the last online - * operation in the resume sequence, just build a single sched - * domain, ignoring cpusets. - */ - num_cpus_frozen--; - if (likely(num_cpus_frozen)) { - partition_sched_domains(1, NULL, NULL); - break; - } - - /* - * This is the last CPU online operation. So fall through and - * restore the original sched domains by considering the - * cpuset configurations. - */ - - case CPU_ONLINE: - cpuset_update_active_cpus(true); - break; - default: - return NOTIFY_DONE; - } - return NOTIFY_OK; -} - -static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, - void *hcpu) -{ - switch (action) { - case CPU_DOWN_PREPARE: - cpuset_update_active_cpus(false); - break; - case CPU_DOWN_PREPARE_FROZEN: - num_cpus_frozen++; - partition_sched_domains(1, NULL, NULL); - break; - default: - return NOTIFY_DONE; - } - return NOTIFY_OK; -} - -#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC) -/* - * Cheaper version of the below functions in case support for SMT and MC is - * compiled in but CPUs have no siblings. - */ -static bool sole_cpu_idle(int cpu) -{ - return rq_idle(cpu_rq(cpu)); -} -#endif -#ifdef CONFIG_SCHED_SMT -static const cpumask_t *thread_cpumask(int cpu) -{ - return topology_sibling_cpumask(cpu); -} -/* All this CPU's SMT siblings are idle */ -static bool siblings_cpu_idle(int cpu) -{ - return cpumask_subset(thread_cpumask(cpu), &grq.cpu_idle_map); -} -#endif -#ifdef CONFIG_SCHED_MC -static const cpumask_t *core_cpumask(int cpu) -{ - return topology_core_cpumask(cpu); -} -/* All this CPU's shared cache siblings are idle */ -static bool cache_cpu_idle(int cpu) -{ - return cpumask_subset(core_cpumask(cpu), &grq.cpu_idle_map); -} -#endif - -enum sched_domain_level { - SD_LV_NONE = 0, - SD_LV_SIBLING, - SD_LV_MC, - SD_LV_BOOK, - SD_LV_CPU, - SD_LV_NODE, - SD_LV_ALLNODES, - SD_LV_MAX -}; - -void __init sched_init_smp(void) -{ - struct sched_domain *sd; - int cpu, other_cpu; - - cpumask_var_t non_isolated_cpus; - - alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); - alloc_cpumask_var(&fallback_doms, GFP_KERNEL); - - sched_init_numa(); - - /* - * There's no userspace yet to cause hotplug operations; hence all the - * cpu masks are stable and all blatant races in the below code cannot - * happen. - */ - mutex_lock(&sched_domains_mutex); - init_sched_domains(cpu_active_mask); - cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); - if (cpumask_empty(non_isolated_cpus)) - cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); - mutex_unlock(&sched_domains_mutex); - - hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); - hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); - hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); - - /* Move init over to a non-isolated CPU */ - if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) - BUG(); - free_cpumask_var(non_isolated_cpus); - - mutex_lock(&sched_domains_mutex); - grq_lock_irq(); - /* - * Set up the relative cache distance of each online cpu from each - * other in a simple array for quick lookup. Locality is determined - * by the closest sched_domain that CPUs are separated by. CPUs with - * shared cache in SMT and MC are treated as local. Separate CPUs - * (within the same package or physically) within the same node are - * treated as not local. CPUs not even in the same domain (different - * nodes) are treated as very distant. - */ - for_each_online_cpu(cpu) { - struct rq *rq = cpu_rq(cpu); - - /* First check if this cpu is in the same node */ - for_each_domain(cpu, sd) { - if (sd->level > SD_LV_NODE) - continue; - /* Set locality to local node if not already found lower */ - for_each_cpu(other_cpu, sched_domain_span(sd)) { - if (rq->cpu_locality[other_cpu] > 3) - rq->cpu_locality[other_cpu] = 3; - } - } - - /* - * Each runqueue has its own function in case it doesn't have - * siblings of its own allowing mixed topologies. - */ -#ifdef CONFIG_SCHED_MC - for_each_cpu(other_cpu, core_cpumask(cpu)) { - if (rq->cpu_locality[other_cpu] > 2) - rq->cpu_locality[other_cpu] = 2; - } - if (cpumask_weight(core_cpumask(cpu)) > 1) - rq->cache_idle = cache_cpu_idle; -#endif -#ifdef CONFIG_SCHED_SMT - for_each_cpu(other_cpu, thread_cpumask(cpu)) - rq->cpu_locality[other_cpu] = 1; - if (cpumask_weight(thread_cpumask(cpu)) > 1) - rq->siblings_idle = siblings_cpu_idle; -#endif - } - grq_unlock_irq(); - mutex_unlock(&sched_domains_mutex); - - for_each_online_cpu(cpu) { - struct rq *rq = cpu_rq(cpu); - for_each_online_cpu(other_cpu) { - if (other_cpu <= cpu) - continue; - printk(KERN_DEBUG "BFS LOCALITY CPU %d to %d: %d\n", cpu, other_cpu, rq->cpu_locality[other_cpu]); - } - } -} -#else -void __init sched_init_smp(void) -{ -} -#endif /* CONFIG_SMP */ - -int in_sched_functions(unsigned long addr) -{ - return in_lock_functions(addr) || - (addr >= (unsigned long)__sched_text_start - && addr < (unsigned long)__sched_text_end); -} - -void __init sched_init(void) -{ -#ifdef CONFIG_SMP - int cpu_ids; -#endif - int i; - struct rq *rq; - - prio_ratios[0] = 128; - for (i = 1 ; i < NICE_WIDTH ; i++) - prio_ratios[i] = prio_ratios[i - 1] * 11 / 10; - - raw_spin_lock_init(&grq.lock); - grq.nr_running = grq.nr_uninterruptible = grq.nr_switches = 0; - grq.niffies = 0; - grq.last_jiffy = jiffies; - raw_spin_lock_init(&grq.iso_lock); - grq.iso_ticks = 0; - grq.iso_refractory = false; - grq.noc = 1; -#ifdef CONFIG_SMP - init_defrootdomain(); - grq.qnr = grq.idle_cpus = 0; - cpumask_clear(&grq.cpu_idle_map); -#else - uprq = &per_cpu(runqueues, 0); -#endif - for_each_possible_cpu(i) { - rq = cpu_rq(i); - rq->grq_lock = &grq.lock; - rq->user_pc = rq->nice_pc = rq->softirq_pc = rq->system_pc = - rq->iowait_pc = rq->idle_pc = 0; - rq->dither = false; -#ifdef CONFIG_SMP - rq->sticky_task = NULL; - rq->last_niffy = 0; - rq->sd = NULL; - rq->rd = NULL; - rq->online = false; - rq->cpu = i; - rq_attach_root(rq, &def_root_domain); -#endif - atomic_set(&rq->nr_iowait, 0); - } - -#ifdef CONFIG_SMP - cpu_ids = i; - /* - * Set the base locality for cpu cache distance calculation to - * "distant" (3). Make sure the distance from a CPU to itself is 0. - */ - for_each_possible_cpu(i) { - int j; - - rq = cpu_rq(i); -#ifdef CONFIG_SCHED_SMT - rq->siblings_idle = sole_cpu_idle; -#endif -#ifdef CONFIG_SCHED_MC - rq->cache_idle = sole_cpu_idle; -#endif - rq->cpu_locality = kmalloc(cpu_ids * sizeof(int *), GFP_ATOMIC); - for_each_possible_cpu(j) { - if (i == j) - rq->cpu_locality[j] = 0; - else - rq->cpu_locality[j] = 4; - } - } -#endif - - for (i = 0; i < PRIO_LIMIT; i++) - INIT_LIST_HEAD(grq.queue + i); - /* delimiter for bitsearch */ - __set_bit(PRIO_LIMIT, grq.prio_bitmap); - -#ifdef CONFIG_PREEMPT_NOTIFIERS - INIT_HLIST_HEAD(&init_task.preempt_notifiers); -#endif - - /* - * The boot idle thread does lazy MMU switching as well: - */ - atomic_inc(&init_mm.mm_count); - enter_lazy_tlb(&init_mm, current); - - /* - * Make us the idle thread. Technically, schedule() should not be - * called from this thread, however somewhere below it might be, - * but because we are the idle thread, we just pick up running again - * when this runqueue becomes "idle". - */ - init_idle(current, smp_processor_id()); - -#ifdef CONFIG_SMP - zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); - /* May be allocated at isolcpus cmdline parse time */ - if (cpu_isolated_map == NULL) - zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); - idle_thread_set_boot_cpu(); -#endif /* SMP */ -} - -#ifdef CONFIG_DEBUG_ATOMIC_SLEEP -static inline int preempt_count_equals(int preempt_offset) -{ - int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); - - return (nested == preempt_offset); -} - -void __might_sleep(const char *file, int line, int preempt_offset) -{ - /* - * Blocking primitives will set (and therefore destroy) current->state, - * since we will exit with TASK_RUNNING make sure we enter with it, - * otherwise we will destroy state. - */ - WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, - "do not call blocking ops when !TASK_RUNNING; " - "state=%lx set at [<%p>] %pS\n", - current->state, - (void *)current->task_state_change, - (void *)current->task_state_change); - - ___might_sleep(file, line, preempt_offset); -} -EXPORT_SYMBOL(__might_sleep); - -void ___might_sleep(const char *file, int line, int preempt_offset) -{ - static unsigned long prev_jiffy; /* ratelimiting */ - - rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ - if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && - !is_idle_task(current)) || - system_state != SYSTEM_RUNNING || oops_in_progress) - return; - if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) - return; - prev_jiffy = jiffies; - - printk(KERN_ERR - "BUG: sleeping function called from invalid context at %s:%d\n", - file, line); - printk(KERN_ERR - "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", - in_atomic(), irqs_disabled(), - current->pid, current->comm); - - if (task_stack_end_corrupted(current)) - printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); - - debug_show_held_locks(current); - if (irqs_disabled()) - print_irqtrace_events(current); -#ifdef CONFIG_DEBUG_PREEMPT - if (!preempt_count_equals(preempt_offset)) { - pr_err("Preemption disabled at:"); - print_ip_sym(current->preempt_disable_ip); - pr_cont("\n"); - } -#endif - dump_stack(); -} -EXPORT_SYMBOL(___might_sleep); -#endif - -#ifdef CONFIG_MAGIC_SYSRQ -static inline void normalise_rt_tasks(void) -{ - struct task_struct *g, *p; - unsigned long flags; - struct rq *rq; - int queued; - - read_lock(&tasklist_lock); - for_each_process_thread(g, p) { - /* - * Only normalize user tasks: - */ - if (p->flags & PF_KTHREAD) - continue; - - if (!rt_task(p) && !iso_task(p)) - continue; - - rq = task_grq_lock(p, &flags); - queued = task_queued(p); - if (queued) - dequeue_task(p); - __setscheduler(p, rq, SCHED_NORMAL, 0, false); - if (queued) { - enqueue_task(p, rq); - try_preempt(p, rq); - } - - task_grq_unlock(&flags); - } - read_unlock(&tasklist_lock); -} - -void normalize_rt_tasks(void) -{ - normalise_rt_tasks(); -} -#endif /* CONFIG_MAGIC_SYSRQ */ - -#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) -/* - * These functions are only useful for the IA64 MCA handling, or kdb. - * - * They can only be called when the whole system has been - * stopped - every CPU needs to be quiescent, and no scheduling - * activity can take place. Using them for anything else would - * be a serious bug, and as a result, they aren't even visible - * under any other configuration. - */ - -/** - * curr_task - return the current task for a given cpu. - * @cpu: the processor in question. - * - * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! - * - * Return: The current task for @cpu. - */ -struct task_struct *curr_task(int cpu) -{ - return cpu_curr(cpu); -} - -#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ - -#ifdef CONFIG_IA64 -/** - * set_curr_task - set the current task for a given cpu. - * @cpu: the processor in question. - * @p: the task pointer to set. - * - * Description: This function must only be used when non-maskable interrupts - * are serviced on a separate stack. It allows the architecture to switch the - * notion of the current task on a cpu in a non-blocking manner. This function - * must be called with all CPU's synchronised, and interrupts disabled, the - * and caller must save the original value of the current task (see - * curr_task() above) and restore that value before reenabling interrupts and - * re-starting the system. - * - * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! - */ -void set_curr_task(int cpu, struct task_struct *p) -{ - cpu_curr(cpu) = p; -} - -#endif - -/* - * Use precise platform statistics if available: - */ -#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE -void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ - *ut = p->utime; - *st = p->stime; -} - -void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ - struct task_cputime cputime; - - thread_group_cputime(p, &cputime); - - *ut = cputime.utime; - *st = cputime.stime; -} - -void vtime_account_system_irqsafe(struct task_struct *tsk) -{ - unsigned long flags; - - local_irq_save(flags); - vtime_account_system(tsk); - local_irq_restore(flags); -} -EXPORT_SYMBOL_GPL(vtime_account_system_irqsafe); - -#ifndef __ARCH_HAS_VTIME_TASK_SWITCH -void vtime_task_switch(struct task_struct *prev) -{ - if (is_idle_task(prev)) - vtime_account_idle(prev); - else - vtime_account_system(prev); - - vtime_account_user(prev); - arch_vtime_task_switch(prev); -} -#endif - -#else -/* - * Perform (stime * rtime) / total, but avoid multiplication overflow by - * losing precision when the numbers are big. - */ -static cputime_t scale_stime(u64 stime, u64 rtime, u64 total) -{ - u64 scaled; - - for (;;) { - /* Make sure "rtime" is the bigger of stime/rtime */ - if (stime > rtime) { - u64 tmp = rtime; rtime = stime; stime = tmp; - } - - /* Make sure 'total' fits in 32 bits */ - if (total >> 32) - goto drop_precision; - - /* Does rtime (and thus stime) fit in 32 bits? */ - if (!(rtime >> 32)) - break; - - /* Can we just balance rtime/stime rather than dropping bits? */ - if (stime >> 31) - goto drop_precision; - - /* We can grow stime and shrink rtime and try to make them both fit */ - stime <<= 1; - rtime >>= 1; - continue; - -drop_precision: - /* We drop from rtime, it has more bits than stime */ - rtime >>= 1; - total >>= 1; - } - - /* - * Make sure gcc understands that this is a 32x32->64 multiply, - * followed by a 64/32->64 divide. - */ - scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); - return (__force cputime_t) scaled; -} - -/* - * Adjust tick based cputime random precision against scheduler - * runtime accounting. - */ -static void cputime_adjust(struct task_cputime *curr, - struct prev_cputime *prev, - cputime_t *ut, cputime_t *st) -{ - cputime_t rtime, stime, utime, total; - - stime = curr->stime; - total = stime + curr->utime; - - /* - * Tick based cputime accounting depend on random scheduling - * timeslices of a task to be interrupted or not by the timer. - * Depending on these circumstances, the number of these interrupts - * may be over or under-optimistic, matching the real user and system - * cputime with a variable precision. - * - * Fix this by scaling these tick based values against the total - * runtime accounted by the CFS scheduler. - */ - rtime = nsecs_to_cputime(curr->sum_exec_runtime); - - /* - * Update userspace visible utime/stime values only if actual execution - * time is bigger than already exported. Note that can happen, that we - * provided bigger values due to scaling inaccuracy on big numbers. - */ - if (prev->stime + prev->utime >= rtime) - goto out; - - if (total) { - stime = scale_stime((__force u64)stime, - (__force u64)rtime, (__force u64)total); - utime = rtime - stime; - } else { - stime = rtime; - utime = 0; - } - - /* - * If the tick based count grows faster than the scheduler one, - * the result of the scaling may go backward. - * Let's enforce monotonicity. - */ - prev->stime = max(prev->stime, stime); - prev->utime = max(prev->utime, utime); - -out: - *ut = prev->utime; - *st = prev->stime; -} - -void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ - struct task_cputime cputime = { - .sum_exec_runtime = tsk_seruntime(p), - }; - - task_cputime(p, &cputime.utime, &cputime.stime); - cputime_adjust(&cputime, &p->prev_cputime, ut, st); -} - -/* - * Must be called with siglock held. - */ -void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) -{ - struct task_cputime cputime; - - thread_group_cputime(p, &cputime); - cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); -} -#endif - -void init_idle_bootup_task(struct task_struct *idle) -{} - -#ifdef CONFIG_SCHED_DEBUG -void proc_sched_show_task(struct task_struct *p, struct seq_file *m) -{} - -void proc_sched_set_task(struct task_struct *p) -{} -#endif - -#ifdef CONFIG_SMP -#define SCHED_LOAD_SHIFT (10) -#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) - -unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) -{ - return SCHED_LOAD_SCALE; -} - -unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) -{ - unsigned long weight = cpumask_weight(sched_domain_span(sd)); - unsigned long smt_gain = sd->smt_gain; - - smt_gain /= weight; - - return smt_gain; -} -#endif diff --git a/kernel/sched/bfs_sched.h b/kernel/sched/bfs_sched.h deleted file mode 100644 index d744d39e3..000000000 --- a/kernel/sched/bfs_sched.h +++ /dev/null @@ -1,180 +0,0 @@ -#include -#include - -#ifndef BFS_SCHED_H -#define BFS_SCHED_H - -/* - * This is the main, per-CPU runqueue data structure. - * This data should only be modified by the local cpu. - */ -struct rq { - struct task_struct *curr, *idle, *stop; - struct mm_struct *prev_mm; - - /* Pointer to grq spinlock */ - raw_spinlock_t *grq_lock; - - /* Stored data about rq->curr to work outside grq lock */ - u64 rq_deadline; - unsigned int rq_policy; - int rq_time_slice; - u64 rq_last_ran; - int rq_prio; - bool rq_running; /* There is a task running */ - int soft_affined; /* Running or queued tasks with this set as their rq */ -#ifdef CONFIG_SMT_NICE - struct mm_struct *rq_mm; - int rq_smt_bias; /* Policy/nice level bias across smt siblings */ -#endif - /* Accurate timekeeping data */ - u64 timekeep_clock; - unsigned long user_pc, nice_pc, irq_pc, softirq_pc, system_pc, - iowait_pc, idle_pc; - atomic_t nr_iowait; - -#ifdef CONFIG_SMP - int cpu; /* cpu of this runqueue */ - bool online; - bool scaling; /* This CPU is managed by a scaling CPU freq governor */ - struct task_struct *sticky_task; - - struct root_domain *rd; - struct sched_domain *sd; - int *cpu_locality; /* CPU relative cache distance */ -#ifdef CONFIG_SCHED_SMT - bool (*siblings_idle)(int cpu); - /* See if all smt siblings are idle */ -#endif /* CONFIG_SCHED_SMT */ -#ifdef CONFIG_SCHED_MC - bool (*cache_idle)(int cpu); - /* See if all cache siblings are idle */ -#endif /* CONFIG_SCHED_MC */ - u64 last_niffy; /* Last time this RQ updated grq.niffies */ -#endif /* CONFIG_SMP */ -#ifdef CONFIG_IRQ_TIME_ACCOUNTING - u64 prev_irq_time; -#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ -#ifdef CONFIG_PARAVIRT - u64 prev_steal_time; -#endif /* CONFIG_PARAVIRT */ -#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING - u64 prev_steal_time_rq; -#endif /* CONFIG_PARAVIRT_TIME_ACCOUNTING */ - - u64 clock, old_clock, last_tick; - u64 clock_task; - bool dither; - -#ifdef CONFIG_SCHEDSTATS - - /* latency stats */ - struct sched_info rq_sched_info; - unsigned long long rq_cpu_time; - /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ - - /* sys_sched_yield() stats */ - unsigned int yld_count; - - /* schedule() stats */ - unsigned int sched_switch; - unsigned int sched_count; - unsigned int sched_goidle; - - /* try_to_wake_up() stats */ - unsigned int ttwu_count; - unsigned int ttwu_local; -#endif /* CONFIG_SCHEDSTATS */ -#ifdef CONFIG_CPU_IDLE - /* Must be inspected within a rcu lock section */ - struct cpuidle_state *idle_state; -#endif -}; - -#ifdef CONFIG_SMP -struct rq *cpu_rq(int cpu); -#endif - -#ifndef CONFIG_SMP -extern struct rq *uprq; -#define cpu_rq(cpu) (uprq) -#define this_rq() (uprq) -#define raw_rq() (uprq) -#define task_rq(p) (uprq) -#define cpu_curr(cpu) ((uprq)->curr) -#else /* CONFIG_SMP */ -DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); -#define this_rq() this_cpu_ptr(&runqueues) -#define raw_rq() raw_cpu_ptr(&runqueues) -#endif /* CONFIG_SMP */ - -static inline u64 __rq_clock_broken(struct rq *rq) -{ - return READ_ONCE(rq->clock); -} - -static inline u64 rq_clock(struct rq *rq) -{ - lockdep_assert_held(rq->grq_lock); - return rq->clock; -} - -static inline u64 rq_clock_task(struct rq *rq) -{ - lockdep_assert_held(rq->grq_lock); - return rq->clock_task; -} - -extern struct mutex sched_domains_mutex; - -#define rcu_dereference_check_sched_domain(p) \ - rcu_dereference_check((p), \ - lockdep_is_held(&sched_domains_mutex)) - -/* - * The domain tree (rq->sd) is protected by RCU's quiescent state transition. - * See detach_destroy_domains: synchronize_sched for details. - * - * The domain tree of any CPU may only be accessed from within - * preempt-disabled sections. - */ -#define for_each_domain(cpu, __sd) \ - for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) - -static inline void sched_ttwu_pending(void) { } - -static inline int task_on_rq_queued(struct task_struct *p) -{ - return p->on_rq; -} - -#ifdef CONFIG_SMP - -extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); - -#endif - -#ifdef CONFIG_CPU_IDLE -static inline void idle_set_state(struct rq *rq, - struct cpuidle_state *idle_state) -{ - rq->idle_state = idle_state; -} - -static inline struct cpuidle_state *idle_get_state(struct rq *rq) -{ - WARN_ON(!rcu_read_lock_held()); - return rq->idle_state; -} -#else -static inline void idle_set_state(struct rq *rq, - struct cpuidle_state *idle_state) -{ -} - -static inline struct cpuidle_state *idle_get_state(struct rq *rq) -{ - return NULL; -} -#endif -#endif /* BFS_SCHED_H */ diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c index c89643d60..4a2ef5a02 100644 --- a/kernel/sched/idle.c +++ b/kernel/sched/idle.c @@ -13,11 +13,7 @@ #include -#ifdef CONFIG_SCHED_BFS -#include "bfs_sched.h" -#else #include "sched.h" -#endif /** * sched_idle_set_state - Record idle state for the current CPU. diff --git a/kernel/sched/stats.c b/kernel/sched/stats.c index 7466a0bb2..87e2c9f0c 100644 --- a/kernel/sched/stats.c +++ b/kernel/sched/stats.c @@ -4,11 +4,7 @@ #include #include -#ifndef CONFIG_SCHED_BFS #include "sched.h" -#else -#include "bfs_sched.h" -#endif /* * bump this up when changing the output format or the meaning of an existing -- cgit v1.2.3-54-g00ecf