From 57f0f512b273f60d52568b8c6b77e17f5636edc0 Mon Sep 17 00:00:00 2001 From: André Fabian Silva Delgado Date: Wed, 5 Aug 2015 17:04:01 -0300 Subject: Initial import --- mm/memory-failure.c | 1790 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1790 insertions(+) create mode 100644 mm/memory-failure.c (limited to 'mm/memory-failure.c') diff --git a/mm/memory-failure.c b/mm/memory-failure.c new file mode 100644 index 000000000..501820c81 --- /dev/null +++ b/mm/memory-failure.c @@ -0,0 +1,1790 @@ +/* + * Copyright (C) 2008, 2009 Intel Corporation + * Authors: Andi Kleen, Fengguang Wu + * + * This software may be redistributed and/or modified under the terms of + * the GNU General Public License ("GPL") version 2 only as published by the + * Free Software Foundation. + * + * High level machine check handler. Handles pages reported by the + * hardware as being corrupted usually due to a multi-bit ECC memory or cache + * failure. + * + * In addition there is a "soft offline" entry point that allows stop using + * not-yet-corrupted-by-suspicious pages without killing anything. + * + * Handles page cache pages in various states. The tricky part + * here is that we can access any page asynchronously in respect to + * other VM users, because memory failures could happen anytime and + * anywhere. This could violate some of their assumptions. This is why + * this code has to be extremely careful. Generally it tries to use + * normal locking rules, as in get the standard locks, even if that means + * the error handling takes potentially a long time. + * + * There are several operations here with exponential complexity because + * of unsuitable VM data structures. For example the operation to map back + * from RMAP chains to processes has to walk the complete process list and + * has non linear complexity with the number. But since memory corruptions + * are rare we hope to get away with this. This avoids impacting the core + * VM. + */ + +/* + * Notebook: + * - hugetlb needs more code + * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages + * - pass bad pages to kdump next kernel + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "internal.h" + +int sysctl_memory_failure_early_kill __read_mostly = 0; + +int sysctl_memory_failure_recovery __read_mostly = 1; + +atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); + +#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) + +u32 hwpoison_filter_enable = 0; +u32 hwpoison_filter_dev_major = ~0U; +u32 hwpoison_filter_dev_minor = ~0U; +u64 hwpoison_filter_flags_mask; +u64 hwpoison_filter_flags_value; +EXPORT_SYMBOL_GPL(hwpoison_filter_enable); +EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); +EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); +EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); +EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); + +static int hwpoison_filter_dev(struct page *p) +{ + struct address_space *mapping; + dev_t dev; + + if (hwpoison_filter_dev_major == ~0U && + hwpoison_filter_dev_minor == ~0U) + return 0; + + /* + * page_mapping() does not accept slab pages. + */ + if (PageSlab(p)) + return -EINVAL; + + mapping = page_mapping(p); + if (mapping == NULL || mapping->host == NULL) + return -EINVAL; + + dev = mapping->host->i_sb->s_dev; + if (hwpoison_filter_dev_major != ~0U && + hwpoison_filter_dev_major != MAJOR(dev)) + return -EINVAL; + if (hwpoison_filter_dev_minor != ~0U && + hwpoison_filter_dev_minor != MINOR(dev)) + return -EINVAL; + + return 0; +} + +static int hwpoison_filter_flags(struct page *p) +{ + if (!hwpoison_filter_flags_mask) + return 0; + + if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == + hwpoison_filter_flags_value) + return 0; + else + return -EINVAL; +} + +/* + * This allows stress tests to limit test scope to a collection of tasks + * by putting them under some memcg. This prevents killing unrelated/important + * processes such as /sbin/init. Note that the target task may share clean + * pages with init (eg. libc text), which is harmless. If the target task + * share _dirty_ pages with another task B, the test scheme must make sure B + * is also included in the memcg. At last, due to race conditions this filter + * can only guarantee that the page either belongs to the memcg tasks, or is + * a freed page. + */ +#ifdef CONFIG_MEMCG_SWAP +u64 hwpoison_filter_memcg; +EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); +static int hwpoison_filter_task(struct page *p) +{ + struct mem_cgroup *mem; + struct cgroup_subsys_state *css; + unsigned long ino; + + if (!hwpoison_filter_memcg) + return 0; + + mem = try_get_mem_cgroup_from_page(p); + if (!mem) + return -EINVAL; + + css = mem_cgroup_css(mem); + ino = cgroup_ino(css->cgroup); + css_put(css); + + if (ino != hwpoison_filter_memcg) + return -EINVAL; + + return 0; +} +#else +static int hwpoison_filter_task(struct page *p) { return 0; } +#endif + +int hwpoison_filter(struct page *p) +{ + if (!hwpoison_filter_enable) + return 0; + + if (hwpoison_filter_dev(p)) + return -EINVAL; + + if (hwpoison_filter_flags(p)) + return -EINVAL; + + if (hwpoison_filter_task(p)) + return -EINVAL; + + return 0; +} +#else +int hwpoison_filter(struct page *p) +{ + return 0; +} +#endif + +EXPORT_SYMBOL_GPL(hwpoison_filter); + +/* + * Send all the processes who have the page mapped a signal. + * ``action optional'' if they are not immediately affected by the error + * ``action required'' if error happened in current execution context + */ +static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, + unsigned long pfn, struct page *page, int flags) +{ + struct siginfo si; + int ret; + + printk(KERN_ERR + "MCE %#lx: Killing %s:%d due to hardware memory corruption\n", + pfn, t->comm, t->pid); + si.si_signo = SIGBUS; + si.si_errno = 0; + si.si_addr = (void *)addr; +#ifdef __ARCH_SI_TRAPNO + si.si_trapno = trapno; +#endif + si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; + + if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { + si.si_code = BUS_MCEERR_AR; + ret = force_sig_info(SIGBUS, &si, current); + } else { + /* + * Don't use force here, it's convenient if the signal + * can be temporarily blocked. + * This could cause a loop when the user sets SIGBUS + * to SIG_IGN, but hopefully no one will do that? + */ + si.si_code = BUS_MCEERR_AO; + ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ + } + if (ret < 0) + printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", + t->comm, t->pid, ret); + return ret; +} + +/* + * When a unknown page type is encountered drain as many buffers as possible + * in the hope to turn the page into a LRU or free page, which we can handle. + */ +void shake_page(struct page *p, int access) +{ + if (!PageSlab(p)) { + lru_add_drain_all(); + if (PageLRU(p)) + return; + drain_all_pages(page_zone(p)); + if (PageLRU(p) || is_free_buddy_page(p)) + return; + } + + /* + * Only call shrink_node_slabs here (which would also shrink + * other caches) if access is not potentially fatal. + */ + if (access) + drop_slab_node(page_to_nid(p)); +} +EXPORT_SYMBOL_GPL(shake_page); + +/* + * Kill all processes that have a poisoned page mapped and then isolate + * the page. + * + * General strategy: + * Find all processes having the page mapped and kill them. + * But we keep a page reference around so that the page is not + * actually freed yet. + * Then stash the page away + * + * There's no convenient way to get back to mapped processes + * from the VMAs. So do a brute-force search over all + * running processes. + * + * Remember that machine checks are not common (or rather + * if they are common you have other problems), so this shouldn't + * be a performance issue. + * + * Also there are some races possible while we get from the + * error detection to actually handle it. + */ + +struct to_kill { + struct list_head nd; + struct task_struct *tsk; + unsigned long addr; + char addr_valid; +}; + +/* + * Failure handling: if we can't find or can't kill a process there's + * not much we can do. We just print a message and ignore otherwise. + */ + +/* + * Schedule a process for later kill. + * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. + * TBD would GFP_NOIO be enough? + */ +static void add_to_kill(struct task_struct *tsk, struct page *p, + struct vm_area_struct *vma, + struct list_head *to_kill, + struct to_kill **tkc) +{ + struct to_kill *tk; + + if (*tkc) { + tk = *tkc; + *tkc = NULL; + } else { + tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); + if (!tk) { + printk(KERN_ERR + "MCE: Out of memory while machine check handling\n"); + return; + } + } + tk->addr = page_address_in_vma(p, vma); + tk->addr_valid = 1; + + /* + * In theory we don't have to kill when the page was + * munmaped. But it could be also a mremap. Since that's + * likely very rare kill anyways just out of paranoia, but use + * a SIGKILL because the error is not contained anymore. + */ + if (tk->addr == -EFAULT) { + pr_info("MCE: Unable to find user space address %lx in %s\n", + page_to_pfn(p), tsk->comm); + tk->addr_valid = 0; + } + get_task_struct(tsk); + tk->tsk = tsk; + list_add_tail(&tk->nd, to_kill); +} + +/* + * Kill the processes that have been collected earlier. + * + * Only do anything when DOIT is set, otherwise just free the list + * (this is used for clean pages which do not need killing) + * Also when FAIL is set do a force kill because something went + * wrong earlier. + */ +static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, + int fail, struct page *page, unsigned long pfn, + int flags) +{ + struct to_kill *tk, *next; + + list_for_each_entry_safe (tk, next, to_kill, nd) { + if (forcekill) { + /* + * In case something went wrong with munmapping + * make sure the process doesn't catch the + * signal and then access the memory. Just kill it. + */ + if (fail || tk->addr_valid == 0) { + printk(KERN_ERR + "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", + pfn, tk->tsk->comm, tk->tsk->pid); + force_sig(SIGKILL, tk->tsk); + } + + /* + * In theory the process could have mapped + * something else on the address in-between. We could + * check for that, but we need to tell the + * process anyways. + */ + else if (kill_proc(tk->tsk, tk->addr, trapno, + pfn, page, flags) < 0) + printk(KERN_ERR + "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", + pfn, tk->tsk->comm, tk->tsk->pid); + } + put_task_struct(tk->tsk); + kfree(tk); + } +} + +/* + * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) + * on behalf of the thread group. Return task_struct of the (first found) + * dedicated thread if found, and return NULL otherwise. + * + * We already hold read_lock(&tasklist_lock) in the caller, so we don't + * have to call rcu_read_lock/unlock() in this function. + */ +static struct task_struct *find_early_kill_thread(struct task_struct *tsk) +{ + struct task_struct *t; + + for_each_thread(tsk, t) + if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) + return t; + return NULL; +} + +/* + * Determine whether a given process is "early kill" process which expects + * to be signaled when some page under the process is hwpoisoned. + * Return task_struct of the dedicated thread (main thread unless explicitly + * specified) if the process is "early kill," and otherwise returns NULL. + */ +static struct task_struct *task_early_kill(struct task_struct *tsk, + int force_early) +{ + struct task_struct *t; + if (!tsk->mm) + return NULL; + if (force_early) + return tsk; + t = find_early_kill_thread(tsk); + if (t) + return t; + if (sysctl_memory_failure_early_kill) + return tsk; + return NULL; +} + +/* + * Collect processes when the error hit an anonymous page. + */ +static void collect_procs_anon(struct page *page, struct list_head *to_kill, + struct to_kill **tkc, int force_early) +{ + struct vm_area_struct *vma; + struct task_struct *tsk; + struct anon_vma *av; + pgoff_t pgoff; + + av = page_lock_anon_vma_read(page); + if (av == NULL) /* Not actually mapped anymore */ + return; + + pgoff = page_to_pgoff(page); + read_lock(&tasklist_lock); + for_each_process (tsk) { + struct anon_vma_chain *vmac; + struct task_struct *t = task_early_kill(tsk, force_early); + + if (!t) + continue; + anon_vma_interval_tree_foreach(vmac, &av->rb_root, + pgoff, pgoff) { + vma = vmac->vma; + if (!page_mapped_in_vma(page, vma)) + continue; + if (vma->vm_mm == t->mm) + add_to_kill(t, page, vma, to_kill, tkc); + } + } + read_unlock(&tasklist_lock); + page_unlock_anon_vma_read(av); +} + +/* + * Collect processes when the error hit a file mapped page. + */ +static void collect_procs_file(struct page *page, struct list_head *to_kill, + struct to_kill **tkc, int force_early) +{ + struct vm_area_struct *vma; + struct task_struct *tsk; + struct address_space *mapping = page->mapping; + + i_mmap_lock_read(mapping); + read_lock(&tasklist_lock); + for_each_process(tsk) { + pgoff_t pgoff = page_to_pgoff(page); + struct task_struct *t = task_early_kill(tsk, force_early); + + if (!t) + continue; + vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, + pgoff) { + /* + * Send early kill signal to tasks where a vma covers + * the page but the corrupted page is not necessarily + * mapped it in its pte. + * Assume applications who requested early kill want + * to be informed of all such data corruptions. + */ + if (vma->vm_mm == t->mm) + add_to_kill(t, page, vma, to_kill, tkc); + } + } + read_unlock(&tasklist_lock); + i_mmap_unlock_read(mapping); +} + +/* + * Collect the processes who have the corrupted page mapped to kill. + * This is done in two steps for locking reasons. + * First preallocate one tokill structure outside the spin locks, + * so that we can kill at least one process reasonably reliable. + */ +static void collect_procs(struct page *page, struct list_head *tokill, + int force_early) +{ + struct to_kill *tk; + + if (!page->mapping) + return; + + tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); + if (!tk) + return; + if (PageAnon(page)) + collect_procs_anon(page, tokill, &tk, force_early); + else + collect_procs_file(page, tokill, &tk, force_early); + kfree(tk); +} + +/* + * Error handlers for various types of pages. + */ + +enum outcome { + IGNORED, /* Error: cannot be handled */ + FAILED, /* Error: handling failed */ + DELAYED, /* Will be handled later */ + RECOVERED, /* Successfully recovered */ +}; + +static const char *action_name[] = { + [IGNORED] = "Ignored", + [FAILED] = "Failed", + [DELAYED] = "Delayed", + [RECOVERED] = "Recovered", +}; + +enum action_page_type { + MSG_KERNEL, + MSG_KERNEL_HIGH_ORDER, + MSG_SLAB, + MSG_DIFFERENT_COMPOUND, + MSG_POISONED_HUGE, + MSG_HUGE, + MSG_FREE_HUGE, + MSG_UNMAP_FAILED, + MSG_DIRTY_SWAPCACHE, + MSG_CLEAN_SWAPCACHE, + MSG_DIRTY_MLOCKED_LRU, + MSG_CLEAN_MLOCKED_LRU, + MSG_DIRTY_UNEVICTABLE_LRU, + MSG_CLEAN_UNEVICTABLE_LRU, + MSG_DIRTY_LRU, + MSG_CLEAN_LRU, + MSG_TRUNCATED_LRU, + MSG_BUDDY, + MSG_BUDDY_2ND, + MSG_UNKNOWN, +}; + +static const char * const action_page_types[] = { + [MSG_KERNEL] = "reserved kernel page", + [MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", + [MSG_SLAB] = "kernel slab page", + [MSG_DIFFERENT_COMPOUND] = "different compound page after locking", + [MSG_POISONED_HUGE] = "huge page already hardware poisoned", + [MSG_HUGE] = "huge page", + [MSG_FREE_HUGE] = "free huge page", + [MSG_UNMAP_FAILED] = "unmapping failed page", + [MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", + [MSG_CLEAN_SWAPCACHE] = "clean swapcache page", + [MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", + [MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", + [MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", + [MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", + [MSG_DIRTY_LRU] = "dirty LRU page", + [MSG_CLEAN_LRU] = "clean LRU page", + [MSG_TRUNCATED_LRU] = "already truncated LRU page", + [MSG_BUDDY] = "free buddy page", + [MSG_BUDDY_2ND] = "free buddy page (2nd try)", + [MSG_UNKNOWN] = "unknown page", +}; + +/* + * XXX: It is possible that a page is isolated from LRU cache, + * and then kept in swap cache or failed to remove from page cache. + * The page count will stop it from being freed by unpoison. + * Stress tests should be aware of this memory leak problem. + */ +static int delete_from_lru_cache(struct page *p) +{ + if (!isolate_lru_page(p)) { + /* + * Clear sensible page flags, so that the buddy system won't + * complain when the page is unpoison-and-freed. + */ + ClearPageActive(p); + ClearPageUnevictable(p); + /* + * drop the page count elevated by isolate_lru_page() + */ + page_cache_release(p); + return 0; + } + return -EIO; +} + +/* + * Error hit kernel page. + * Do nothing, try to be lucky and not touch this instead. For a few cases we + * could be more sophisticated. + */ +static int me_kernel(struct page *p, unsigned long pfn) +{ + return IGNORED; +} + +/* + * Page in unknown state. Do nothing. + */ +static int me_unknown(struct page *p, unsigned long pfn) +{ + printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); + return FAILED; +} + +/* + * Clean (or cleaned) page cache page. + */ +static int me_pagecache_clean(struct page *p, unsigned long pfn) +{ + int err; + int ret = FAILED; + struct address_space *mapping; + + delete_from_lru_cache(p); + + /* + * For anonymous pages we're done the only reference left + * should be the one m_f() holds. + */ + if (PageAnon(p)) + return RECOVERED; + + /* + * Now truncate the page in the page cache. This is really + * more like a "temporary hole punch" + * Don't do this for block devices when someone else + * has a reference, because it could be file system metadata + * and that's not safe to truncate. + */ + mapping = page_mapping(p); + if (!mapping) { + /* + * Page has been teared down in the meanwhile + */ + return FAILED; + } + + /* + * Truncation is a bit tricky. Enable it per file system for now. + * + * Open: to take i_mutex or not for this? Right now we don't. + */ + if (mapping->a_ops->error_remove_page) { + err = mapping->a_ops->error_remove_page(mapping, p); + if (err != 0) { + printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", + pfn, err); + } else if (page_has_private(p) && + !try_to_release_page(p, GFP_NOIO)) { + pr_info("MCE %#lx: failed to release buffers\n", pfn); + } else { + ret = RECOVERED; + } + } else { + /* + * If the file system doesn't support it just invalidate + * This fails on dirty or anything with private pages + */ + if (invalidate_inode_page(p)) + ret = RECOVERED; + else + printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", + pfn); + } + return ret; +} + +/* + * Dirty pagecache page + * Issues: when the error hit a hole page the error is not properly + * propagated. + */ +static int me_pagecache_dirty(struct page *p, unsigned long pfn) +{ + struct address_space *mapping = page_mapping(p); + + SetPageError(p); + /* TBD: print more information about the file. */ + if (mapping) { + /* + * IO error will be reported by write(), fsync(), etc. + * who check the mapping. + * This way the application knows that something went + * wrong with its dirty file data. + * + * There's one open issue: + * + * The EIO will be only reported on the next IO + * operation and then cleared through the IO map. + * Normally Linux has two mechanisms to pass IO error + * first through the AS_EIO flag in the address space + * and then through the PageError flag in the page. + * Since we drop pages on memory failure handling the + * only mechanism open to use is through AS_AIO. + * + * This has the disadvantage that it gets cleared on + * the first operation that returns an error, while + * the PageError bit is more sticky and only cleared + * when the page is reread or dropped. If an + * application assumes it will always get error on + * fsync, but does other operations on the fd before + * and the page is dropped between then the error + * will not be properly reported. + * + * This can already happen even without hwpoisoned + * pages: first on metadata IO errors (which only + * report through AS_EIO) or when the page is dropped + * at the wrong time. + * + * So right now we assume that the application DTRT on + * the first EIO, but we're not worse than other parts + * of the kernel. + */ + mapping_set_error(mapping, EIO); + } + + return me_pagecache_clean(p, pfn); +} + +/* + * Clean and dirty swap cache. + * + * Dirty swap cache page is tricky to handle. The page could live both in page + * cache and swap cache(ie. page is freshly swapped in). So it could be + * referenced concurrently by 2 types of PTEs: + * normal PTEs and swap PTEs. We try to handle them consistently by calling + * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, + * and then + * - clear dirty bit to prevent IO + * - remove from LRU + * - but keep in the swap cache, so that when we return to it on + * a later page fault, we know the application is accessing + * corrupted data and shall be killed (we installed simple + * interception code in do_swap_page to catch it). + * + * Clean swap cache pages can be directly isolated. A later page fault will + * bring in the known good data from disk. + */ +static int me_swapcache_dirty(struct page *p, unsigned long pfn) +{ + ClearPageDirty(p); + /* Trigger EIO in shmem: */ + ClearPageUptodate(p); + + if (!delete_from_lru_cache(p)) + return DELAYED; + else + return FAILED; +} + +static int me_swapcache_clean(struct page *p, unsigned long pfn) +{ + delete_from_swap_cache(p); + + if (!delete_from_lru_cache(p)) + return RECOVERED; + else + return FAILED; +} + +/* + * Huge pages. Needs work. + * Issues: + * - Error on hugepage is contained in hugepage unit (not in raw page unit.) + * To narrow down kill region to one page, we need to break up pmd. + */ +static int me_huge_page(struct page *p, unsigned long pfn) +{ + int res = 0; + struct page *hpage = compound_head(p); + /* + * We can safely recover from error on free or reserved (i.e. + * not in-use) hugepage by dequeuing it from freelist. + * To check whether a hugepage is in-use or not, we can't use + * page->lru because it can be used in other hugepage operations, + * such as __unmap_hugepage_range() and gather_surplus_pages(). + * So instead we use page_mapping() and PageAnon(). + * We assume that this function is called with page lock held, + * so there is no race between isolation and mapping/unmapping. + */ + if (!(page_mapping(hpage) || PageAnon(hpage))) { + res = dequeue_hwpoisoned_huge_page(hpage); + if (!res) + return RECOVERED; + } + return DELAYED; +} + +/* + * Various page states we can handle. + * + * A page state is defined by its current page->flags bits. + * The table matches them in order and calls the right handler. + * + * This is quite tricky because we can access page at any time + * in its live cycle, so all accesses have to be extremely careful. + * + * This is not complete. More states could be added. + * For any missing state don't attempt recovery. + */ + +#define dirty (1UL << PG_dirty) +#define sc (1UL << PG_swapcache) +#define unevict (1UL << PG_unevictable) +#define mlock (1UL << PG_mlocked) +#define writeback (1UL << PG_writeback) +#define lru (1UL << PG_lru) +#define swapbacked (1UL << PG_swapbacked) +#define head (1UL << PG_head) +#define tail (1UL << PG_tail) +#define compound (1UL << PG_compound) +#define slab (1UL << PG_slab) +#define reserved (1UL << PG_reserved) + +static struct page_state { + unsigned long mask; + unsigned long res; + enum action_page_type type; + int (*action)(struct page *p, unsigned long pfn); +} error_states[] = { + { reserved, reserved, MSG_KERNEL, me_kernel }, + /* + * free pages are specially detected outside this table: + * PG_buddy pages only make a small fraction of all free pages. + */ + + /* + * Could in theory check if slab page is free or if we can drop + * currently unused objects without touching them. But just + * treat it as standard kernel for now. + */ + { slab, slab, MSG_SLAB, me_kernel }, + +#ifdef CONFIG_PAGEFLAGS_EXTENDED + { head, head, MSG_HUGE, me_huge_page }, + { tail, tail, MSG_HUGE, me_huge_page }, +#else + { compound, compound, MSG_HUGE, me_huge_page }, +#endif + + { sc|dirty, sc|dirty, MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, + { sc|dirty, sc, MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, + + { mlock|dirty, mlock|dirty, MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, + { mlock|dirty, mlock, MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, + + { unevict|dirty, unevict|dirty, MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, + { unevict|dirty, unevict, MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, + + { lru|dirty, lru|dirty, MSG_DIRTY_LRU, me_pagecache_dirty }, + { lru|dirty, lru, MSG_CLEAN_LRU, me_pagecache_clean }, + + /* + * Catchall entry: must be at end. + */ + { 0, 0, MSG_UNKNOWN, me_unknown }, +}; + +#undef dirty +#undef sc +#undef unevict +#undef mlock +#undef writeback +#undef lru +#undef swapbacked +#undef head +#undef tail +#undef compound +#undef slab +#undef reserved + +/* + * "Dirty/Clean" indication is not 100% accurate due to the possibility of + * setting PG_dirty outside page lock. See also comment above set_page_dirty(). + */ +static void action_result(unsigned long pfn, enum action_page_type type, int result) +{ + pr_err("MCE %#lx: recovery action for %s: %s\n", + pfn, action_page_types[type], action_name[result]); +} + +static int page_action(struct page_state *ps, struct page *p, + unsigned long pfn) +{ + int result; + int count; + + result = ps->action(p, pfn); + + count = page_count(p) - 1; + if (ps->action == me_swapcache_dirty && result == DELAYED) + count--; + if (count != 0) { + printk(KERN_ERR + "MCE %#lx: %s still referenced by %d users\n", + pfn, action_page_types[ps->type], count); + result = FAILED; + } + action_result(pfn, ps->type, result); + + /* Could do more checks here if page looks ok */ + /* + * Could adjust zone counters here to correct for the missing page. + */ + + return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; +} + +/* + * Do all that is necessary to remove user space mappings. Unmap + * the pages and send SIGBUS to the processes if the data was dirty. + */ +static int hwpoison_user_mappings(struct page *p, unsigned long pfn, + int trapno, int flags, struct page **hpagep) +{ + enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; + struct address_space *mapping; + LIST_HEAD(tokill); + int ret; + int kill = 1, forcekill; + struct page *hpage = *hpagep; + struct page *ppage; + + /* + * Here we are interested only in user-mapped pages, so skip any + * other types of pages. + */ + if (PageReserved(p) || PageSlab(p)) + return SWAP_SUCCESS; + if (!(PageLRU(hpage) || PageHuge(p))) + return SWAP_SUCCESS; + + /* + * This check implies we don't kill processes if their pages + * are in the swap cache early. Those are always late kills. + */ + if (!page_mapped(hpage)) + return SWAP_SUCCESS; + + if (PageKsm(p)) { + pr_err("MCE %#lx: can't handle KSM pages.\n", pfn); + return SWAP_FAIL; + } + + if (PageSwapCache(p)) { + printk(KERN_ERR + "MCE %#lx: keeping poisoned page in swap cache\n", pfn); + ttu |= TTU_IGNORE_HWPOISON; + } + + /* + * Propagate the dirty bit from PTEs to struct page first, because we + * need this to decide if we should kill or just drop the page. + * XXX: the dirty test could be racy: set_page_dirty() may not always + * be called inside page lock (it's recommended but not enforced). + */ + mapping = page_mapping(hpage); + if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && + mapping_cap_writeback_dirty(mapping)) { + if (page_mkclean(hpage)) { + SetPageDirty(hpage); + } else { + kill = 0; + ttu |= TTU_IGNORE_HWPOISON; + printk(KERN_INFO + "MCE %#lx: corrupted page was clean: dropped without side effects\n", + pfn); + } + } + + /* + * ppage: poisoned page + * if p is regular page(4k page) + * ppage == real poisoned page; + * else p is hugetlb or THP, ppage == head page. + */ + ppage = hpage; + + if (PageTransHuge(hpage)) { + /* + * Verify that this isn't a hugetlbfs head page, the check for + * PageAnon is just for avoid tripping a split_huge_page + * internal debug check, as split_huge_page refuses to deal with + * anything that isn't an anon page. PageAnon can't go away fro + * under us because we hold a refcount on the hpage, without a + * refcount on the hpage. split_huge_page can't be safely called + * in the first place, having a refcount on the tail isn't + * enough * to be safe. + */ + if (!PageHuge(hpage) && PageAnon(hpage)) { + if (unlikely(split_huge_page(hpage))) { + /* + * FIXME: if splitting THP is failed, it is + * better to stop the following operation rather + * than causing panic by unmapping. System might + * survive if the page is freed later. + */ + printk(KERN_INFO + "MCE %#lx: failed to split THP\n", pfn); + + BUG_ON(!PageHWPoison(p)); + return SWAP_FAIL; + } + /* + * We pinned the head page for hwpoison handling, + * now we split the thp and we are interested in + * the hwpoisoned raw page, so move the refcount + * to it. Similarly, page lock is shifted. + */ + if (hpage != p) { + if (!(flags & MF_COUNT_INCREASED)) { + put_page(hpage); + get_page(p); + } + lock_page(p); + unlock_page(hpage); + *hpagep = p; + } + /* THP is split, so ppage should be the real poisoned page. */ + ppage = p; + } + } + + /* + * First collect all the processes that have the page + * mapped in dirty form. This has to be done before try_to_unmap, + * because ttu takes the rmap data structures down. + * + * Error handling: We ignore errors here because + * there's nothing that can be done. + */ + if (kill) + collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED); + + ret = try_to_unmap(ppage, ttu); + if (ret != SWAP_SUCCESS) + printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", + pfn, page_mapcount(ppage)); + + /* + * Now that the dirty bit has been propagated to the + * struct page and all unmaps done we can decide if + * killing is needed or not. Only kill when the page + * was dirty or the process is not restartable, + * otherwise the tokill list is merely + * freed. When there was a problem unmapping earlier + * use a more force-full uncatchable kill to prevent + * any accesses to the poisoned memory. + */ + forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL); + kill_procs(&tokill, forcekill, trapno, + ret != SWAP_SUCCESS, p, pfn, flags); + + return ret; +} + +static void set_page_hwpoison_huge_page(struct page *hpage) +{ + int i; + int nr_pages = 1 << compound_order(hpage); + for (i = 0; i < nr_pages; i++) + SetPageHWPoison(hpage + i); +} + +static void clear_page_hwpoison_huge_page(struct page *hpage) +{ + int i; + int nr_pages = 1 << compound_order(hpage); + for (i = 0; i < nr_pages; i++) + ClearPageHWPoison(hpage + i); +} + +/** + * memory_failure - Handle memory failure of a page. + * @pfn: Page Number of the corrupted page + * @trapno: Trap number reported in the signal to user space. + * @flags: fine tune action taken + * + * This function is called by the low level machine check code + * of an architecture when it detects hardware memory corruption + * of a page. It tries its best to recover, which includes + * dropping pages, killing processes etc. + * + * The function is primarily of use for corruptions that + * happen outside the current execution context (e.g. when + * detected by a background scrubber) + * + * Must run in process context (e.g. a work queue) with interrupts + * enabled and no spinlocks hold. + */ +int memory_failure(unsigned long pfn, int trapno, int flags) +{ + struct page_state *ps; + struct page *p; + struct page *hpage; + int res; + unsigned int nr_pages; + unsigned long page_flags; + + if (!sysctl_memory_failure_recovery) + panic("Memory failure from trap %d on page %lx", trapno, pfn); + + if (!pfn_valid(pfn)) { + printk(KERN_ERR + "MCE %#lx: memory outside kernel control\n", + pfn); + return -ENXIO; + } + + p = pfn_to_page(pfn); + hpage = compound_head(p); + if (TestSetPageHWPoison(p)) { + printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); + return 0; + } + + /* + * Currently errors on hugetlbfs pages are measured in hugepage units, + * so nr_pages should be 1 << compound_order. OTOH when errors are on + * transparent hugepages, they are supposed to be split and error + * measurement is done in normal page units. So nr_pages should be one + * in this case. + */ + if (PageHuge(p)) + nr_pages = 1 << compound_order(hpage); + else /* normal page or thp */ + nr_pages = 1; + atomic_long_add(nr_pages, &num_poisoned_pages); + + /* + * We need/can do nothing about count=0 pages. + * 1) it's a free page, and therefore in safe hand: + * prep_new_page() will be the gate keeper. + * 2) it's a free hugepage, which is also safe: + * an affected hugepage will be dequeued from hugepage freelist, + * so there's no concern about reusing it ever after. + * 3) it's part of a non-compound high order page. + * Implies some kernel user: cannot stop them from + * R/W the page; let's pray that the page has been + * used and will be freed some time later. + * In fact it's dangerous to directly bump up page count from 0, + * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. + */ + if (!(flags & MF_COUNT_INCREASED) && + !get_page_unless_zero(hpage)) { + if (is_free_buddy_page(p)) { + action_result(pfn, MSG_BUDDY, DELAYED); + return 0; + } else if (PageHuge(hpage)) { + /* + * Check "filter hit" and "race with other subpage." + */ + lock_page(hpage); + if (PageHWPoison(hpage)) { + if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) + || (p != hpage && TestSetPageHWPoison(hpage))) { + atomic_long_sub(nr_pages, &num_poisoned_pages); + unlock_page(hpage); + return 0; + } + } + set_page_hwpoison_huge_page(hpage); + res = dequeue_hwpoisoned_huge_page(hpage); + action_result(pfn, MSG_FREE_HUGE, + res ? IGNORED : DELAYED); + unlock_page(hpage); + return res; + } else { + action_result(pfn, MSG_KERNEL_HIGH_ORDER, IGNORED); + return -EBUSY; + } + } + + /* + * We ignore non-LRU pages for good reasons. + * - PG_locked is only well defined for LRU pages and a few others + * - to avoid races with __set_page_locked() + * - to avoid races with __SetPageSlab*() (and more non-atomic ops) + * The check (unnecessarily) ignores LRU pages being isolated and + * walked by the page reclaim code, however that's not a big loss. + */ + if (!PageHuge(p)) { + if (!PageLRU(hpage)) + shake_page(hpage, 0); + if (!PageLRU(hpage)) { + /* + * shake_page could have turned it free. + */ + if (is_free_buddy_page(p)) { + if (flags & MF_COUNT_INCREASED) + action_result(pfn, MSG_BUDDY, DELAYED); + else + action_result(pfn, MSG_BUDDY_2ND, + DELAYED); + return 0; + } + } + } + + lock_page(hpage); + + /* + * The page could have changed compound pages during the locking. + * If this happens just bail out. + */ + if (compound_head(p) != hpage) { + action_result(pfn, MSG_DIFFERENT_COMPOUND, IGNORED); + res = -EBUSY; + goto out; + } + + /* + * We use page flags to determine what action should be taken, but + * the flags can be modified by the error containment action. One + * example is an mlocked page, where PG_mlocked is cleared by + * page_remove_rmap() in try_to_unmap_one(). So to determine page status + * correctly, we save a copy of the page flags at this time. + */ + page_flags = p->flags; + + /* + * unpoison always clear PG_hwpoison inside page lock + */ + if (!PageHWPoison(p)) { + printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); + atomic_long_sub(nr_pages, &num_poisoned_pages); + put_page(hpage); + res = 0; + goto out; + } + if (hwpoison_filter(p)) { + if (TestClearPageHWPoison(p)) + atomic_long_sub(nr_pages, &num_poisoned_pages); + unlock_page(hpage); + put_page(hpage); + return 0; + } + + if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p)) + goto identify_page_state; + + /* + * For error on the tail page, we should set PG_hwpoison + * on the head page to show that the hugepage is hwpoisoned + */ + if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { + action_result(pfn, MSG_POISONED_HUGE, IGNORED); + unlock_page(hpage); + put_page(hpage); + return 0; + } + /* + * Set PG_hwpoison on all pages in an error hugepage, + * because containment is done in hugepage unit for now. + * Since we have done TestSetPageHWPoison() for the head page with + * page lock held, we can safely set PG_hwpoison bits on tail pages. + */ + if (PageHuge(p)) + set_page_hwpoison_huge_page(hpage); + + /* + * It's very difficult to mess with pages currently under IO + * and in many cases impossible, so we just avoid it here. + */ + wait_on_page_writeback(p); + + /* + * Now take care of user space mappings. + * Abort on fail: __delete_from_page_cache() assumes unmapped page. + * + * When the raw error page is thp tail page, hpage points to the raw + * page after thp split. + */ + if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage) + != SWAP_SUCCESS) { + action_result(pfn, MSG_UNMAP_FAILED, IGNORED); + res = -EBUSY; + goto out; + } + + /* + * Torn down by someone else? + */ + if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { + action_result(pfn, MSG_TRUNCATED_LRU, IGNORED); + res = -EBUSY; + goto out; + } + +identify_page_state: + res = -EBUSY; + /* + * The first check uses the current page flags which may not have any + * relevant information. The second check with the saved page flagss is + * carried out only if the first check can't determine the page status. + */ + for (ps = error_states;; ps++) + if ((p->flags & ps->mask) == ps->res) + break; + + page_flags |= (p->flags & (1UL << PG_dirty)); + + if (!ps->mask) + for (ps = error_states;; ps++) + if ((page_flags & ps->mask) == ps->res) + break; + res = page_action(ps, p, pfn); +out: + unlock_page(hpage); + return res; +} +EXPORT_SYMBOL_GPL(memory_failure); + +#define MEMORY_FAILURE_FIFO_ORDER 4 +#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) + +struct memory_failure_entry { + unsigned long pfn; + int trapno; + int flags; +}; + +struct memory_failure_cpu { + DECLARE_KFIFO(fifo, struct memory_failure_entry, + MEMORY_FAILURE_FIFO_SIZE); + spinlock_t lock; + struct work_struct work; +}; + +static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); + +/** + * memory_failure_queue - Schedule handling memory failure of a page. + * @pfn: Page Number of the corrupted page + * @trapno: Trap number reported in the signal to user space. + * @flags: Flags for memory failure handling + * + * This function is called by the low level hardware error handler + * when it detects hardware memory corruption of a page. It schedules + * the recovering of error page, including dropping pages, killing + * processes etc. + * + * The function is primarily of use for corruptions that + * happen outside the current execution context (e.g. when + * detected by a background scrubber) + * + * Can run in IRQ context. + */ +void memory_failure_queue(unsigned long pfn, int trapno, int flags) +{ + struct memory_failure_cpu *mf_cpu; + unsigned long proc_flags; + struct memory_failure_entry entry = { + .pfn = pfn, + .trapno = trapno, + .flags = flags, + }; + + mf_cpu = &get_cpu_var(memory_failure_cpu); + spin_lock_irqsave(&mf_cpu->lock, proc_flags); + if (kfifo_put(&mf_cpu->fifo, entry)) + schedule_work_on(smp_processor_id(), &mf_cpu->work); + else + pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", + pfn); + spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); + put_cpu_var(memory_failure_cpu); +} +EXPORT_SYMBOL_GPL(memory_failure_queue); + +static void memory_failure_work_func(struct work_struct *work) +{ + struct memory_failure_cpu *mf_cpu; + struct memory_failure_entry entry = { 0, }; + unsigned long proc_flags; + int gotten; + + mf_cpu = this_cpu_ptr(&memory_failure_cpu); + for (;;) { + spin_lock_irqsave(&mf_cpu->lock, proc_flags); + gotten = kfifo_get(&mf_cpu->fifo, &entry); + spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); + if (!gotten) + break; + if (entry.flags & MF_SOFT_OFFLINE) + soft_offline_page(pfn_to_page(entry.pfn), entry.flags); + else + memory_failure(entry.pfn, entry.trapno, entry.flags); + } +} + +static int __init memory_failure_init(void) +{ + struct memory_failure_cpu *mf_cpu; + int cpu; + + for_each_possible_cpu(cpu) { + mf_cpu = &per_cpu(memory_failure_cpu, cpu); + spin_lock_init(&mf_cpu->lock); + INIT_KFIFO(mf_cpu->fifo); + INIT_WORK(&mf_cpu->work, memory_failure_work_func); + } + + return 0; +} +core_initcall(memory_failure_init); + +/** + * unpoison_memory - Unpoison a previously poisoned page + * @pfn: Page number of the to be unpoisoned page + * + * Software-unpoison a page that has been poisoned by + * memory_failure() earlier. + * + * This is only done on the software-level, so it only works + * for linux injected failures, not real hardware failures + * + * Returns 0 for success, otherwise -errno. + */ +int unpoison_memory(unsigned long pfn) +{ + struct page *page; + struct page *p; + int freeit = 0; + unsigned int nr_pages; + + if (!pfn_valid(pfn)) + return -ENXIO; + + p = pfn_to_page(pfn); + page = compound_head(p); + + if (!PageHWPoison(p)) { + pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); + return 0; + } + + /* + * unpoison_memory() can encounter thp only when the thp is being + * worked by memory_failure() and the page lock is not held yet. + * In such case, we yield to memory_failure() and make unpoison fail. + */ + if (!PageHuge(page) && PageTransHuge(page)) { + pr_info("MCE: Memory failure is now running on %#lx\n", pfn); + return 0; + } + + nr_pages = 1 << compound_order(page); + + if (!get_page_unless_zero(page)) { + /* + * Since HWPoisoned hugepage should have non-zero refcount, + * race between memory failure and unpoison seems to happen. + * In such case unpoison fails and memory failure runs + * to the end. + */ + if (PageHuge(page)) { + pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); + return 0; + } + if (TestClearPageHWPoison(p)) + atomic_long_dec(&num_poisoned_pages); + pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); + return 0; + } + + lock_page(page); + /* + * This test is racy because PG_hwpoison is set outside of page lock. + * That's acceptable because that won't trigger kernel panic. Instead, + * the PG_hwpoison page will be caught and isolated on the entrance to + * the free buddy page pool. + */ + if (TestClearPageHWPoison(page)) { + pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); + atomic_long_sub(nr_pages, &num_poisoned_pages); + freeit = 1; + if (PageHuge(page)) + clear_page_hwpoison_huge_page(page); + } + unlock_page(page); + + put_page(page); + if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) + put_page(page); + + return 0; +} +EXPORT_SYMBOL(unpoison_memory); + +static struct page *new_page(struct page *p, unsigned long private, int **x) +{ + int nid = page_to_nid(p); + if (PageHuge(p)) + return alloc_huge_page_node(page_hstate(compound_head(p)), + nid); + else + return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); +} + +/* + * Safely get reference count of an arbitrary page. + * Returns 0 for a free page, -EIO for a zero refcount page + * that is not free, and 1 for any other page type. + * For 1 the page is returned with increased page count, otherwise not. + */ +static int __get_any_page(struct page *p, unsigned long pfn, int flags) +{ + int ret; + + if (flags & MF_COUNT_INCREASED) + return 1; + + /* + * When the target page is a free hugepage, just remove it + * from free hugepage list. + */ + if (!get_page_unless_zero(compound_head(p))) { + if (PageHuge(p)) { + pr_info("%s: %#lx free huge page\n", __func__, pfn); + ret = 0; + } else if (is_free_buddy_page(p)) { + pr_info("%s: %#lx free buddy page\n", __func__, pfn); + ret = 0; + } else { + pr_info("%s: %#lx: unknown zero refcount page type %lx\n", + __func__, pfn, p->flags); + ret = -EIO; + } + } else { + /* Not a free page */ + ret = 1; + } + return ret; +} + +static int get_any_page(struct page *page, unsigned long pfn, int flags) +{ + int ret = __get_any_page(page, pfn, flags); + + if (ret == 1 && !PageHuge(page) && !PageLRU(page)) { + /* + * Try to free it. + */ + put_page(page); + shake_page(page, 1); + + /* + * Did it turn free? + */ + ret = __get_any_page(page, pfn, 0); + if (!PageLRU(page)) { + pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", + pfn, page->flags); + return -EIO; + } + } + return ret; +} + +static int soft_offline_huge_page(struct page *page, int flags) +{ + int ret; + unsigned long pfn = page_to_pfn(page); + struct page *hpage = compound_head(page); + LIST_HEAD(pagelist); + + /* + * This double-check of PageHWPoison is to avoid the race with + * memory_failure(). See also comment in __soft_offline_page(). + */ + lock_page(hpage); + if (PageHWPoison(hpage)) { + unlock_page(hpage); + put_page(hpage); + pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); + return -EBUSY; + } + unlock_page(hpage); + + ret = isolate_huge_page(hpage, &pagelist); + if (ret) { + /* + * get_any_page() and isolate_huge_page() takes a refcount each, + * so need to drop one here. + */ + put_page(hpage); + } else { + pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); + return -EBUSY; + } + + ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, + MIGRATE_SYNC, MR_MEMORY_FAILURE); + if (ret) { + pr_info("soft offline: %#lx: migration failed %d, type %lx\n", + pfn, ret, page->flags); + /* + * We know that soft_offline_huge_page() tries to migrate + * only one hugepage pointed to by hpage, so we need not + * run through the pagelist here. + */ + putback_active_hugepage(hpage); + if (ret > 0) + ret = -EIO; + } else { + /* overcommit hugetlb page will be freed to buddy */ + if (PageHuge(page)) { + set_page_hwpoison_huge_page(hpage); + dequeue_hwpoisoned_huge_page(hpage); + atomic_long_add(1 << compound_order(hpage), + &num_poisoned_pages); + } else { + SetPageHWPoison(page); + atomic_long_inc(&num_poisoned_pages); + } + } + return ret; +} + +static int __soft_offline_page(struct page *page, int flags) +{ + int ret; + unsigned long pfn = page_to_pfn(page); + + /* + * Check PageHWPoison again inside page lock because PageHWPoison + * is set by memory_failure() outside page lock. Note that + * memory_failure() also double-checks PageHWPoison inside page lock, + * so there's no race between soft_offline_page() and memory_failure(). + */ + lock_page(page); + wait_on_page_writeback(page); + if (PageHWPoison(page)) { + unlock_page(page); + put_page(page); + pr_info("soft offline: %#lx page already poisoned\n", pfn); + return -EBUSY; + } + /* + * Try to invalidate first. This should work for + * non dirty unmapped page cache pages. + */ + ret = invalidate_inode_page(page); + unlock_page(page); + /* + * RED-PEN would be better to keep it isolated here, but we + * would need to fix isolation locking first. + */ + if (ret == 1) { + put_page(page); + pr_info("soft_offline: %#lx: invalidated\n", pfn); + SetPageHWPoison(page); + atomic_long_inc(&num_poisoned_pages); + return 0; + } + + /* + * Simple invalidation didn't work. + * Try to migrate to a new page instead. migrate.c + * handles a large number of cases for us. + */ + ret = isolate_lru_page(page); + /* + * Drop page reference which is came from get_any_page() + * successful isolate_lru_page() already took another one. + */ + put_page(page); + if (!ret) { + LIST_HEAD(pagelist); + inc_zone_page_state(page, NR_ISOLATED_ANON + + page_is_file_cache(page)); + list_add(&page->lru, &pagelist); + ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, + MIGRATE_SYNC, MR_MEMORY_FAILURE); + if (ret) { + if (!list_empty(&pagelist)) { + list_del(&page->lru); + dec_zone_page_state(page, NR_ISOLATED_ANON + + page_is_file_cache(page)); + putback_lru_page(page); + } + + pr_info("soft offline: %#lx: migration failed %d, type %lx\n", + pfn, ret, page->flags); + if (ret > 0) + ret = -EIO; + } else { + /* + * After page migration succeeds, the source page can + * be trapped in pagevec and actual freeing is delayed. + * Freeing code works differently based on PG_hwpoison, + * so there's a race. We need to make sure that the + * source page should be freed back to buddy before + * setting PG_hwpoison. + */ + if (!is_free_buddy_page(page)) + drain_all_pages(page_zone(page)); + SetPageHWPoison(page); + if (!is_free_buddy_page(page)) + pr_info("soft offline: %#lx: page leaked\n", + pfn); + atomic_long_inc(&num_poisoned_pages); + } + } else { + pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", + pfn, ret, page_count(page), page->flags); + } + return ret; +} + +/** + * soft_offline_page - Soft offline a page. + * @page: page to offline + * @flags: flags. Same as memory_failure(). + * + * Returns 0 on success, otherwise negated errno. + * + * Soft offline a page, by migration or invalidation, + * without killing anything. This is for the case when + * a page is not corrupted yet (so it's still valid to access), + * but has had a number of corrected errors and is better taken + * out. + * + * The actual policy on when to do that is maintained by + * user space. + * + * This should never impact any application or cause data loss, + * however it might take some time. + * + * This is not a 100% solution for all memory, but tries to be + * ``good enough'' for the majority of memory. + */ +int soft_offline_page(struct page *page, int flags) +{ + int ret; + unsigned long pfn = page_to_pfn(page); + struct page *hpage = compound_head(page); + + if (PageHWPoison(page)) { + pr_info("soft offline: %#lx page already poisoned\n", pfn); + return -EBUSY; + } + if (!PageHuge(page) && PageTransHuge(hpage)) { + if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) { + pr_info("soft offline: %#lx: failed to split THP\n", + pfn); + return -EBUSY; + } + } + + get_online_mems(); + + /* + * Isolate the page, so that it doesn't get reallocated if it + * was free. This flag should be kept set until the source page + * is freed and PG_hwpoison on it is set. + */ + if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) + set_migratetype_isolate(page, true); + + ret = get_any_page(page, pfn, flags); + put_online_mems(); + if (ret > 0) { /* for in-use pages */ + if (PageHuge(page)) + ret = soft_offline_huge_page(page, flags); + else + ret = __soft_offline_page(page, flags); + } else if (ret == 0) { /* for free pages */ + if (PageHuge(page)) { + set_page_hwpoison_huge_page(hpage); + if (!dequeue_hwpoisoned_huge_page(hpage)) + atomic_long_add(1 << compound_order(hpage), + &num_poisoned_pages); + } else { + if (!TestSetPageHWPoison(page)) + atomic_long_inc(&num_poisoned_pages); + } + } + unset_migratetype_isolate(page, MIGRATE_MOVABLE); + return ret; +} -- cgit v1.2.3-54-g00ecf