/* * Support PCI/PCIe on PowerNV platforms * * Copyright 2011 Benjamin Herrenschmidt, IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "powernv.h" #include "pci.h" int pnv_pci_get_slot_id(struct device_node *np, uint64_t *id) { struct device_node *parent = np; u32 bdfn; u64 phbid; int ret; ret = of_property_read_u32(np, "reg", &bdfn); if (ret) return -ENXIO; bdfn = ((bdfn & 0x00ffff00) >> 8); while ((parent = of_get_parent(parent))) { if (!PCI_DN(parent)) { of_node_put(parent); break; } if (!of_device_is_compatible(parent, "ibm,ioda2-phb")) { of_node_put(parent); continue; } ret = of_property_read_u64(parent, "ibm,opal-phbid", &phbid); if (ret) { of_node_put(parent); return -ENXIO; } *id = PCI_SLOT_ID(phbid, bdfn); return 0; } return -ENODEV; } EXPORT_SYMBOL_GPL(pnv_pci_get_slot_id); int pnv_pci_get_device_tree(uint32_t phandle, void *buf, uint64_t len) { int64_t rc; if (!opal_check_token(OPAL_GET_DEVICE_TREE)) return -ENXIO; rc = opal_get_device_tree(phandle, (uint64_t)buf, len); if (rc < OPAL_SUCCESS) return -EIO; return rc; } EXPORT_SYMBOL_GPL(pnv_pci_get_device_tree); int pnv_pci_get_presence_state(uint64_t id, uint8_t *state) { int64_t rc; if (!opal_check_token(OPAL_PCI_GET_PRESENCE_STATE)) return -ENXIO; rc = opal_pci_get_presence_state(id, (uint64_t)state); if (rc != OPAL_SUCCESS) return -EIO; return 0; } EXPORT_SYMBOL_GPL(pnv_pci_get_presence_state); int pnv_pci_get_power_state(uint64_t id, uint8_t *state) { int64_t rc; if (!opal_check_token(OPAL_PCI_GET_POWER_STATE)) return -ENXIO; rc = opal_pci_get_power_state(id, (uint64_t)state); if (rc != OPAL_SUCCESS) return -EIO; return 0; } EXPORT_SYMBOL_GPL(pnv_pci_get_power_state); int pnv_pci_set_power_state(uint64_t id, uint8_t state, struct opal_msg *msg) { struct opal_msg m; int token, ret; int64_t rc; if (!opal_check_token(OPAL_PCI_SET_POWER_STATE)) return -ENXIO; token = opal_async_get_token_interruptible(); if (unlikely(token < 0)) return token; rc = opal_pci_set_power_state(token, id, (uint64_t)&state); if (rc == OPAL_SUCCESS) { ret = 0; goto exit; } else if (rc != OPAL_ASYNC_COMPLETION) { ret = -EIO; goto exit; } ret = opal_async_wait_response(token, &m); if (ret < 0) goto exit; if (msg) { ret = 1; memcpy(msg, &m, sizeof(m)); } exit: opal_async_release_token(token); return ret; } EXPORT_SYMBOL_GPL(pnv_pci_set_power_state); #ifdef CONFIG_PCI_MSI int pnv_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type) { struct pci_controller *hose = pci_bus_to_host(pdev->bus); struct pnv_phb *phb = hose->private_data; struct msi_desc *entry; struct msi_msg msg; int hwirq; unsigned int virq; int rc; if (WARN_ON(!phb) || !phb->msi_bmp.bitmap) return -ENODEV; if (pdev->no_64bit_msi && !phb->msi32_support) return -ENODEV; for_each_pci_msi_entry(entry, pdev) { if (!entry->msi_attrib.is_64 && !phb->msi32_support) { pr_warn("%s: Supports only 64-bit MSIs\n", pci_name(pdev)); return -ENXIO; } hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, 1); if (hwirq < 0) { pr_warn("%s: Failed to find a free MSI\n", pci_name(pdev)); return -ENOSPC; } virq = irq_create_mapping(NULL, phb->msi_base + hwirq); if (virq == NO_IRQ) { pr_warn("%s: Failed to map MSI to linux irq\n", pci_name(pdev)); msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, 1); return -ENOMEM; } rc = phb->msi_setup(phb, pdev, phb->msi_base + hwirq, virq, entry->msi_attrib.is_64, &msg); if (rc) { pr_warn("%s: Failed to setup MSI\n", pci_name(pdev)); irq_dispose_mapping(virq); msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, 1); return rc; } irq_set_msi_desc(virq, entry); pci_write_msi_msg(virq, &msg); } return 0; } void pnv_teardown_msi_irqs(struct pci_dev *pdev) { struct pci_controller *hose = pci_bus_to_host(pdev->bus); struct pnv_phb *phb = hose->private_data; struct msi_desc *entry; irq_hw_number_t hwirq; if (WARN_ON(!phb)) return; for_each_pci_msi_entry(entry, pdev) { if (entry->irq == NO_IRQ) continue; hwirq = virq_to_hw(entry->irq); irq_set_msi_desc(entry->irq, NULL); irq_dispose_mapping(entry->irq); msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, 1); } } #endif /* CONFIG_PCI_MSI */ static void pnv_pci_dump_p7ioc_diag_data(struct pci_controller *hose, struct OpalIoPhbErrorCommon *common) { struct OpalIoP7IOCPhbErrorData *data; int i; data = (struct OpalIoP7IOCPhbErrorData *)common; pr_info("P7IOC PHB#%d Diag-data (Version: %d)\n", hose->global_number, be32_to_cpu(common->version)); if (data->brdgCtl) pr_info("brdgCtl: %08x\n", be32_to_cpu(data->brdgCtl)); if (data->portStatusReg || data->rootCmplxStatus || data->busAgentStatus) pr_info("UtlSts: %08x %08x %08x\n", be32_to_cpu(data->portStatusReg), be32_to_cpu(data->rootCmplxStatus), be32_to_cpu(data->busAgentStatus)); if (data->deviceStatus || data->slotStatus || data->linkStatus || data->devCmdStatus || data->devSecStatus) pr_info("RootSts: %08x %08x %08x %08x %08x\n", be32_to_cpu(data->deviceStatus), be32_to_cpu(data->slotStatus), be32_to_cpu(data->linkStatus), be32_to_cpu(data->devCmdStatus), be32_to_cpu(data->devSecStatus)); if (data->rootErrorStatus || data->uncorrErrorStatus || data->corrErrorStatus) pr_info("RootErrSts: %08x %08x %08x\n", be32_to_cpu(data->rootErrorStatus), be32_to_cpu(data->uncorrErrorStatus), be32_to_cpu(data->corrErrorStatus)); if (data->tlpHdr1 || data->tlpHdr2 || data->tlpHdr3 || data->tlpHdr4) pr_info("RootErrLog: %08x %08x %08x %08x\n", be32_to_cpu(data->tlpHdr1), be32_to_cpu(data->tlpHdr2), be32_to_cpu(data->tlpHdr3), be32_to_cpu(data->tlpHdr4)); if (data->sourceId || data->errorClass || data->correlator) pr_info("RootErrLog1: %08x %016llx %016llx\n", be32_to_cpu(data->sourceId), be64_to_cpu(data->errorClass), be64_to_cpu(data->correlator)); if (data->p7iocPlssr || data->p7iocCsr) pr_info("PhbSts: %016llx %016llx\n", be64_to_cpu(data->p7iocPlssr), be64_to_cpu(data->p7iocCsr)); if (data->lemFir) pr_info("Lem: %016llx %016llx %016llx\n", be64_to_cpu(data->lemFir), be64_to_cpu(data->lemErrorMask), be64_to_cpu(data->lemWOF)); if (data->phbErrorStatus) pr_info("PhbErr: %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->phbErrorStatus), be64_to_cpu(data->phbFirstErrorStatus), be64_to_cpu(data->phbErrorLog0), be64_to_cpu(data->phbErrorLog1)); if (data->mmioErrorStatus) pr_info("OutErr: %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->mmioErrorStatus), be64_to_cpu(data->mmioFirstErrorStatus), be64_to_cpu(data->mmioErrorLog0), be64_to_cpu(data->mmioErrorLog1)); if (data->dma0ErrorStatus) pr_info("InAErr: %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->dma0ErrorStatus), be64_to_cpu(data->dma0FirstErrorStatus), be64_to_cpu(data->dma0ErrorLog0), be64_to_cpu(data->dma0ErrorLog1)); if (data->dma1ErrorStatus) pr_info("InBErr: %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->dma1ErrorStatus), be64_to_cpu(data->dma1FirstErrorStatus), be64_to_cpu(data->dma1ErrorLog0), be64_to_cpu(data->dma1ErrorLog1)); for (i = 0; i < OPAL_P7IOC_NUM_PEST_REGS; i++) { if ((be64_to_cpu(data->pestA[i]) >> 63) == 0 && (be64_to_cpu(data->pestB[i]) >> 63) == 0) continue; pr_info("PE[%3d] A/B: %016llx %016llx\n", i, be64_to_cpu(data->pestA[i]), be64_to_cpu(data->pestB[i])); } } static void pnv_pci_dump_phb3_diag_data(struct pci_controller *hose, struct OpalIoPhbErrorCommon *common) { struct OpalIoPhb3ErrorData *data; int i; data = (struct OpalIoPhb3ErrorData*)common; pr_info("PHB3 PHB#%d Diag-data (Version: %d)\n", hose->global_number, be32_to_cpu(common->version)); if (data->brdgCtl) pr_info("brdgCtl: %08x\n", be32_to_cpu(data->brdgCtl)); if (data->portStatusReg || data->rootCmplxStatus || data->busAgentStatus) pr_info("UtlSts: %08x %08x %08x\n", be32_to_cpu(data->portStatusReg), be32_to_cpu(data->rootCmplxStatus), be32_to_cpu(data->busAgentStatus)); if (data->deviceStatus || data->slotStatus || data->linkStatus || data->devCmdStatus || data->devSecStatus) pr_info("RootSts: %08x %08x %08x %08x %08x\n", be32_to_cpu(data->deviceStatus), be32_to_cpu(data->slotStatus), be32_to_cpu(data->linkStatus), be32_to_cpu(data->devCmdStatus), be32_to_cpu(data->devSecStatus)); if (data->rootErrorStatus || data->uncorrErrorStatus || data->corrErrorStatus) pr_info("RootErrSts: %08x %08x %08x\n", be32_to_cpu(data->rootErrorStatus), be32_to_cpu(data->uncorrErrorStatus), be32_to_cpu(data->corrErrorStatus)); if (data->tlpHdr1 || data->tlpHdr2 || data->tlpHdr3 || data->tlpHdr4) pr_info("RootErrLog: %08x %08x %08x %08x\n", be32_to_cpu(data->tlpHdr1), be32_to_cpu(data->tlpHdr2), be32_to_cpu(data->tlpHdr3), be32_to_cpu(data->tlpHdr4)); if (data->sourceId || data->errorClass || data->correlator) pr_info("RootErrLog1: %08x %016llx %016llx\n", be32_to_cpu(data->sourceId), be64_to_cpu(data->errorClass), be64_to_cpu(data->correlator)); if (data->nFir) pr_info("nFir: %016llx %016llx %016llx\n", be64_to_cpu(data->nFir), be64_to_cpu(data->nFirMask), be64_to_cpu(data->nFirWOF)); if (data->phbPlssr || data->phbCsr) pr_info("PhbSts: %016llx %016llx\n", be64_to_cpu(data->phbPlssr), be64_to_cpu(data->phbCsr)); if (data->lemFir) pr_info("Lem: %016llx %016llx %016llx\n", be64_to_cpu(data->lemFir), be64_to_cpu(data->lemErrorMask), be64_to_cpu(data->lemWOF)); if (data->phbErrorStatus) pr_info("PhbErr: %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->phbErrorStatus), be64_to_cpu(data->phbFirstErrorStatus), be64_to_cpu(data->phbErrorLog0), be64_to_cpu(data->phbErrorLog1)); if (data->mmioErrorStatus) pr_info("OutErr: %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->mmioErrorStatus), be64_to_cpu(data->mmioFirstErrorStatus), be64_to_cpu(data->mmioErrorLog0), be64_to_cpu(data->mmioErrorLog1)); if (data->dma0ErrorStatus) pr_info("InAErr: %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->dma0ErrorStatus), be64_to_cpu(data->dma0FirstErrorStatus), be64_to_cpu(data->dma0ErrorLog0), be64_to_cpu(data->dma0ErrorLog1)); if (data->dma1ErrorStatus) pr_info("InBErr: %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->dma1ErrorStatus), be64_to_cpu(data->dma1FirstErrorStatus), be64_to_cpu(data->dma1ErrorLog0), be64_to_cpu(data->dma1ErrorLog1)); for (i = 0; i < OPAL_PHB3_NUM_PEST_REGS; i++) { if ((be64_to_cpu(data->pestA[i]) >> 63) == 0 && (be64_to_cpu(data->pestB[i]) >> 63) == 0) continue; pr_info("PE[%3d] A/B: %016llx %016llx\n", i, be64_to_cpu(data->pestA[i]), be64_to_cpu(data->pestB[i])); } } void pnv_pci_dump_phb_diag_data(struct pci_controller *hose, unsigned char *log_buff) { struct OpalIoPhbErrorCommon *common; if (!hose || !log_buff) return; common = (struct OpalIoPhbErrorCommon *)log_buff; switch (be32_to_cpu(common->ioType)) { case OPAL_PHB_ERROR_DATA_TYPE_P7IOC: pnv_pci_dump_p7ioc_diag_data(hose, common); break; case OPAL_PHB_ERROR_DATA_TYPE_PHB3: pnv_pci_dump_phb3_diag_data(hose, common); break; default: pr_warn("%s: Unrecognized ioType %d\n", __func__, be32_to_cpu(common->ioType)); } } static void pnv_pci_handle_eeh_config(struct pnv_phb *phb, u32 pe_no) { unsigned long flags, rc; int has_diag, ret = 0; spin_lock_irqsave(&phb->lock, flags); /* Fetch PHB diag-data */ rc = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE); has_diag = (rc == OPAL_SUCCESS); /* If PHB supports compound PE, to handle it */ if (phb->unfreeze_pe) { ret = phb->unfreeze_pe(phb, pe_no, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); } else { rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); if (rc) { pr_warn("%s: Failure %ld clearing frozen " "PHB#%x-PE#%x\n", __func__, rc, phb->hose->global_number, pe_no); ret = -EIO; } } /* * For now, let's only display the diag buffer when we fail to clear * the EEH status. We'll do more sensible things later when we have * proper EEH support. We need to make sure we don't pollute ourselves * with the normal errors generated when probing empty slots */ if (has_diag && ret) pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob); spin_unlock_irqrestore(&phb->lock, flags); } static void pnv_pci_config_check_eeh(struct pci_dn *pdn) { struct pnv_phb *phb = pdn->phb->private_data; u8 fstate; __be16 pcierr; unsigned int pe_no; s64 rc; /* * Get the PE#. During the PCI probe stage, we might not * setup that yet. So all ER errors should be mapped to * reserved PE. */ pe_no = pdn->pe_number; if (pe_no == IODA_INVALID_PE) { pe_no = phb->ioda.reserved_pe_idx; } /* * Fetch frozen state. If the PHB support compound PE, * we need handle that case. */ if (phb->get_pe_state) { fstate = phb->get_pe_state(phb, pe_no); } else { rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, &fstate, &pcierr, NULL); if (rc) { pr_warn("%s: Failure %lld getting PHB#%x-PE#%x state\n", __func__, rc, phb->hose->global_number, pe_no); return; } } pr_devel(" -> EEH check, bdfn=%04x PE#%d fstate=%x\n", (pdn->busno << 8) | (pdn->devfn), pe_no, fstate); /* Clear the frozen state if applicable */ if (fstate == OPAL_EEH_STOPPED_MMIO_FREEZE || fstate == OPAL_EEH_STOPPED_DMA_FREEZE || fstate == OPAL_EEH_STOPPED_MMIO_DMA_FREEZE) { /* * If PHB supports compound PE, freeze it for * consistency. */ if (phb->freeze_pe) phb->freeze_pe(phb, pe_no); pnv_pci_handle_eeh_config(phb, pe_no); } } int pnv_pci_cfg_read(struct pci_dn *pdn, int where, int size, u32 *val) { struct pnv_phb *phb = pdn->phb->private_data; u32 bdfn = (pdn->busno << 8) | pdn->devfn; s64 rc; switch (size) { case 1: { u8 v8; rc = opal_pci_config_read_byte(phb->opal_id, bdfn, where, &v8); *val = (rc == OPAL_SUCCESS) ? v8 : 0xff; break; } case 2: { __be16 v16; rc = opal_pci_config_read_half_word(phb->opal_id, bdfn, where, &v16); *val = (rc == OPAL_SUCCESS) ? be16_to_cpu(v16) : 0xffff; break; } case 4: { __be32 v32; rc = opal_pci_config_read_word(phb->opal_id, bdfn, where, &v32); *val = (rc == OPAL_SUCCESS) ? be32_to_cpu(v32) : 0xffffffff; break; } default: return PCIBIOS_FUNC_NOT_SUPPORTED; } pr_devel("%s: bus: %x devfn: %x +%x/%x -> %08x\n", __func__, pdn->busno, pdn->devfn, where, size, *val); return PCIBIOS_SUCCESSFUL; } int pnv_pci_cfg_write(struct pci_dn *pdn, int where, int size, u32 val) { struct pnv_phb *phb = pdn->phb->private_data; u32 bdfn = (pdn->busno << 8) | pdn->devfn; pr_devel("%s: bus: %x devfn: %x +%x/%x -> %08x\n", __func__, pdn->busno, pdn->devfn, where, size, val); switch (size) { case 1: opal_pci_config_write_byte(phb->opal_id, bdfn, where, val); break; case 2: opal_pci_config_write_half_word(phb->opal_id, bdfn, where, val); break; case 4: opal_pci_config_write_word(phb->opal_id, bdfn, where, val); break; default: return PCIBIOS_FUNC_NOT_SUPPORTED; } return PCIBIOS_SUCCESSFUL; } #if CONFIG_EEH static bool pnv_pci_cfg_check(struct pci_dn *pdn) { struct eeh_dev *edev = NULL; struct pnv_phb *phb = pdn->phb->private_data; /* EEH not enabled ? */ if (!(phb->flags & PNV_PHB_FLAG_EEH)) return true; /* PE reset or device removed ? */ edev = pdn->edev; if (edev) { if (edev->pe && (edev->pe->state & EEH_PE_CFG_BLOCKED)) return false; if (edev->mode & EEH_DEV_REMOVED) return false; } return true; } #else static inline pnv_pci_cfg_check(struct pci_dn *pdn) { return true; } #endif /* CONFIG_EEH */ static int pnv_pci_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct pci_dn *pdn; struct pnv_phb *phb; int ret; *val = 0xFFFFFFFF; pdn = pci_get_pdn_by_devfn(bus, devfn); if (!pdn) return PCIBIOS_DEVICE_NOT_FOUND; if (!pnv_pci_cfg_check(pdn)) return PCIBIOS_DEVICE_NOT_FOUND; ret = pnv_pci_cfg_read(pdn, where, size, val); phb = pdn->phb->private_data; if (phb->flags & PNV_PHB_FLAG_EEH && pdn->edev) { if (*val == EEH_IO_ERROR_VALUE(size) && eeh_dev_check_failure(pdn->edev)) return PCIBIOS_DEVICE_NOT_FOUND; } else { pnv_pci_config_check_eeh(pdn); } return ret; } static int pnv_pci_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct pci_dn *pdn; struct pnv_phb *phb; int ret; pdn = pci_get_pdn_by_devfn(bus, devfn); if (!pdn) return PCIBIOS_DEVICE_NOT_FOUND; if (!pnv_pci_cfg_check(pdn)) return PCIBIOS_DEVICE_NOT_FOUND; ret = pnv_pci_cfg_write(pdn, where, size, val); phb = pdn->phb->private_data; if (!(phb->flags & PNV_PHB_FLAG_EEH)) pnv_pci_config_check_eeh(pdn); return ret; } struct pci_ops pnv_pci_ops = { .read = pnv_pci_read_config, .write = pnv_pci_write_config, }; static __be64 *pnv_tce(struct iommu_table *tbl, long idx) { __be64 *tmp = ((__be64 *)tbl->it_base); int level = tbl->it_indirect_levels; const long shift = ilog2(tbl->it_level_size); unsigned long mask = (tbl->it_level_size - 1) << (level * shift); while (level) { int n = (idx & mask) >> (level * shift); unsigned long tce = be64_to_cpu(tmp[n]); tmp = __va(tce & ~(TCE_PCI_READ | TCE_PCI_WRITE)); idx &= ~mask; mask >>= shift; --level; } return tmp + idx; } int pnv_tce_build(struct iommu_table *tbl, long index, long npages, unsigned long uaddr, enum dma_data_direction direction, unsigned long attrs) { u64 proto_tce = iommu_direction_to_tce_perm(direction); u64 rpn = __pa(uaddr) >> tbl->it_page_shift; long i; if (proto_tce & TCE_PCI_WRITE) proto_tce |= TCE_PCI_READ; for (i = 0; i < npages; i++) { unsigned long newtce = proto_tce | ((rpn + i) << tbl->it_page_shift); unsigned long idx = index - tbl->it_offset + i; *(pnv_tce(tbl, idx)) = cpu_to_be64(newtce); } return 0; } #ifdef CONFIG_IOMMU_API int pnv_tce_xchg(struct iommu_table *tbl, long index, unsigned long *hpa, enum dma_data_direction *direction) { u64 proto_tce = iommu_direction_to_tce_perm(*direction); unsigned long newtce = *hpa | proto_tce, oldtce; unsigned long idx = index - tbl->it_offset; BUG_ON(*hpa & ~IOMMU_PAGE_MASK(tbl)); if (newtce & TCE_PCI_WRITE) newtce |= TCE_PCI_READ; oldtce = be64_to_cpu(xchg(pnv_tce(tbl, idx), cpu_to_be64(newtce))); *hpa = oldtce & ~(TCE_PCI_READ | TCE_PCI_WRITE); *direction = iommu_tce_direction(oldtce); return 0; } #endif void pnv_tce_free(struct iommu_table *tbl, long index, long npages) { long i; for (i = 0; i < npages; i++) { unsigned long idx = index - tbl->it_offset + i; *(pnv_tce(tbl, idx)) = cpu_to_be64(0); } } unsigned long pnv_tce_get(struct iommu_table *tbl, long index) { return *(pnv_tce(tbl, index - tbl->it_offset)); } struct iommu_table *pnv_pci_table_alloc(int nid) { struct iommu_table *tbl; tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, nid); INIT_LIST_HEAD_RCU(&tbl->it_group_list); return tbl; } long pnv_pci_link_table_and_group(int node, int num, struct iommu_table *tbl, struct iommu_table_group *table_group) { struct iommu_table_group_link *tgl = NULL; if (WARN_ON(!tbl || !table_group)) return -EINVAL; tgl = kzalloc_node(sizeof(struct iommu_table_group_link), GFP_KERNEL, node); if (!tgl) return -ENOMEM; tgl->table_group = table_group; list_add_rcu(&tgl->next, &tbl->it_group_list); table_group->tables[num] = tbl; return 0; } static void pnv_iommu_table_group_link_free(struct rcu_head *head) { struct iommu_table_group_link *tgl = container_of(head, struct iommu_table_group_link, rcu); kfree(tgl); } void pnv_pci_unlink_table_and_group(struct iommu_table *tbl, struct iommu_table_group *table_group) { long i; bool found; struct iommu_table_group_link *tgl; if (!tbl || !table_group) return; /* Remove link to a group from table's list of attached groups */ found = false; list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) { if (tgl->table_group == table_group) { list_del_rcu(&tgl->next); call_rcu(&tgl->rcu, pnv_iommu_table_group_link_free); found = true; break; } } if (WARN_ON(!found)) return; /* Clean a pointer to iommu_table in iommu_table_group::tables[] */ found = false; for (i = 0; i < IOMMU_TABLE_GROUP_MAX_TABLES; ++i) { if (table_group->tables[i] == tbl) { table_group->tables[i] = NULL; found = true; break; } } WARN_ON(!found); } void pnv_pci_setup_iommu_table(struct iommu_table *tbl, void *tce_mem, u64 tce_size, u64 dma_offset, unsigned page_shift) { tbl->it_blocksize = 16; tbl->it_base = (unsigned long)tce_mem; tbl->it_page_shift = page_shift; tbl->it_offset = dma_offset >> tbl->it_page_shift; tbl->it_index = 0; tbl->it_size = tce_size >> 3; tbl->it_busno = 0; tbl->it_type = TCE_PCI; } void pnv_pci_dma_dev_setup(struct pci_dev *pdev) { struct pci_controller *hose = pci_bus_to_host(pdev->bus); struct pnv_phb *phb = hose->private_data; #ifdef CONFIG_PCI_IOV struct pnv_ioda_pe *pe; struct pci_dn *pdn; /* Fix the VF pdn PE number */ if (pdev->is_virtfn) { pdn = pci_get_pdn(pdev); WARN_ON(pdn->pe_number != IODA_INVALID_PE); list_for_each_entry(pe, &phb->ioda.pe_list, list) { if (pe->rid == ((pdev->bus->number << 8) | (pdev->devfn & 0xff))) { pdn->pe_number = pe->pe_number; pe->pdev = pdev; break; } } } #endif /* CONFIG_PCI_IOV */ if (phb && phb->dma_dev_setup) phb->dma_dev_setup(phb, pdev); } void pnv_pci_dma_bus_setup(struct pci_bus *bus) { struct pci_controller *hose = bus->sysdata; struct pnv_phb *phb = hose->private_data; struct pnv_ioda_pe *pe; list_for_each_entry(pe, &phb->ioda.pe_list, list) { if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))) continue; if (!pe->pbus) continue; if (bus->number == ((pe->rid >> 8) & 0xFF)) { pe->pbus = bus; break; } } } void pnv_pci_shutdown(void) { struct pci_controller *hose; list_for_each_entry(hose, &hose_list, list_node) if (hose->controller_ops.shutdown) hose->controller_ops.shutdown(hose); } /* Fixup wrong class code in p7ioc and p8 root complex */ static void pnv_p7ioc_rc_quirk(struct pci_dev *dev) { dev->class = PCI_CLASS_BRIDGE_PCI << 8; } DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_IBM, 0x3b9, pnv_p7ioc_rc_quirk); void __init pnv_pci_init(void) { struct device_node *np; pci_add_flags(PCI_CAN_SKIP_ISA_ALIGN); /* If we don't have OPAL, eg. in sim, just skip PCI probe */ if (!firmware_has_feature(FW_FEATURE_OPAL)) return; /* Look for IODA IO-Hubs. */ for_each_compatible_node(np, NULL, "ibm,ioda-hub") { pnv_pci_init_ioda_hub(np); } /* Look for ioda2 built-in PHB3's */ for_each_compatible_node(np, NULL, "ibm,ioda2-phb") pnv_pci_init_ioda2_phb(np); /* Look for ioda3 built-in PHB4's, we treat them as IODA2 */ for_each_compatible_node(np, NULL, "ibm,ioda3-phb") pnv_pci_init_ioda2_phb(np); /* Look for NPU PHBs */ for_each_compatible_node(np, NULL, "ibm,ioda2-npu-phb") pnv_pci_init_npu_phb(np); /* Configure IOMMU DMA hooks */ set_pci_dma_ops(&dma_iommu_ops); } machine_subsys_initcall_sync(powernv, tce_iommu_bus_notifier_init);