/* * BFQ: Hierarchical B-WF2Q+ scheduler. * * Based on ideas and code from CFQ: * Copyright (C) 2003 Jens Axboe * * Copyright (C) 2008 Fabio Checconi * Paolo Valente * * Copyright (C) 2015 Paolo Valente * * Copyright (C) 2016 Paolo Valente */ static struct bfq_group *bfqq_group(struct bfq_queue *bfqq); #ifdef CONFIG_BFQ_GROUP_IOSCHED #define for_each_entity(entity) \ for (; entity ; entity = entity->parent) #define for_each_entity_safe(entity, parent) \ for (; entity && ({ parent = entity->parent; 1; }); entity = parent) static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd, int extract, struct bfq_data *bfqd); static void bfq_update_budget(struct bfq_entity *next_in_service) { struct bfq_entity *bfqg_entity; struct bfq_group *bfqg; struct bfq_sched_data *group_sd; BUG_ON(!next_in_service); group_sd = next_in_service->sched_data; bfqg = container_of(group_sd, struct bfq_group, sched_data); /* * bfq_group's my_entity field is not NULL only if the group * is not the root group. We must not touch the root entity * as it must never become an in-service entity. */ bfqg_entity = bfqg->my_entity; if (bfqg_entity) bfqg_entity->budget = next_in_service->budget; } static int bfq_update_next_in_service(struct bfq_sched_data *sd) { struct bfq_entity *next_in_service; struct bfq_queue *bfqq; if (sd->in_service_entity) /* will update/requeue at the end of service */ return 0; /* * NOTE: this can be improved in many ways, such as returning * 1 (and thus propagating upwards the update) only when the * budget changes, or caching the bfqq that will be scheduled * next from this subtree. By now we worry more about * correctness than about performance... */ next_in_service = bfq_lookup_next_entity(sd, 0, NULL); sd->next_in_service = next_in_service; if (next_in_service) bfq_update_budget(next_in_service); else goto exit; bfqq = bfq_entity_to_bfqq(next_in_service); if (bfqq) bfq_log_bfqq(bfqq->bfqd, bfqq, "update_next_in_service: chosen this queue"); else { struct bfq_group *bfqg = container_of(next_in_service, struct bfq_group, entity); bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg, "update_next_in_service: chosen this entity"); } exit: return 1; } static void bfq_check_next_in_service(struct bfq_sched_data *sd, struct bfq_entity *entity) { WARN_ON(sd->next_in_service != entity); } #else #define for_each_entity(entity) \ for (; entity ; entity = NULL) #define for_each_entity_safe(entity, parent) \ for (parent = NULL; entity ; entity = parent) static int bfq_update_next_in_service(struct bfq_sched_data *sd) { return 0; } static void bfq_check_next_in_service(struct bfq_sched_data *sd, struct bfq_entity *entity) { } static void bfq_update_budget(struct bfq_entity *next_in_service) { } #endif /* * Shift for timestamp calculations. This actually limits the maximum * service allowed in one timestamp delta (small shift values increase it), * the maximum total weight that can be used for the queues in the system * (big shift values increase it), and the period of virtual time * wraparounds. */ #define WFQ_SERVICE_SHIFT 22 /** * bfq_gt - compare two timestamps. * @a: first ts. * @b: second ts. * * Return @a > @b, dealing with wrapping correctly. */ static int bfq_gt(u64 a, u64 b) { return (s64)(a - b) > 0; } static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity) { struct bfq_queue *bfqq = NULL; BUG_ON(!entity); if (!entity->my_sched_data) bfqq = container_of(entity, struct bfq_queue, entity); return bfqq; } /** * bfq_delta - map service into the virtual time domain. * @service: amount of service. * @weight: scale factor (weight of an entity or weight sum). */ static u64 bfq_delta(unsigned long service, unsigned long weight) { u64 d = (u64)service << WFQ_SERVICE_SHIFT; do_div(d, weight); return d; } /** * bfq_calc_finish - assign the finish time to an entity. * @entity: the entity to act upon. * @service: the service to be charged to the entity. */ static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); unsigned long long start, finish, delta; BUG_ON(entity->weight == 0); entity->finish = entity->start + bfq_delta(service, entity->weight); start = ((entity->start>>10)*1000)>>12; finish = ((entity->finish>>10)*1000)>>12; delta = ((bfq_delta(service, entity->weight)>>10)*1000)>>12; if (bfqq) { bfq_log_bfqq(bfqq->bfqd, bfqq, "calc_finish: serv %lu, w %d", service, entity->weight); bfq_log_bfqq(bfqq->bfqd, bfqq, "calc_finish: start %llu, finish %llu, delta %llu", start, finish, delta); #ifdef CONFIG_BFQ_GROUP_IOSCHED } else { struct bfq_group *bfqg = container_of(entity, struct bfq_group, entity); bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg, "calc_finish group: serv %lu, w %d", service, entity->weight); bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg, "calc_finish group: start %llu, finish %llu, delta %llu", start, finish, delta); #endif } } /** * bfq_entity_of - get an entity from a node. * @node: the node field of the entity. * * Convert a node pointer to the relative entity. This is used only * to simplify the logic of some functions and not as the generic * conversion mechanism because, e.g., in the tree walking functions, * the check for a %NULL value would be redundant. */ static struct bfq_entity *bfq_entity_of(struct rb_node *node) { struct bfq_entity *entity = NULL; if (node) entity = rb_entry(node, struct bfq_entity, rb_node); return entity; } /** * bfq_extract - remove an entity from a tree. * @root: the tree root. * @entity: the entity to remove. */ static void bfq_extract(struct rb_root *root, struct bfq_entity *entity) { BUG_ON(entity->tree != root); entity->tree = NULL; rb_erase(&entity->rb_node, root); } /** * bfq_idle_extract - extract an entity from the idle tree. * @st: the service tree of the owning @entity. * @entity: the entity being removed. */ static void bfq_idle_extract(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct rb_node *next; BUG_ON(entity->tree != &st->idle); if (entity == st->first_idle) { next = rb_next(&entity->rb_node); st->first_idle = bfq_entity_of(next); } if (entity == st->last_idle) { next = rb_prev(&entity->rb_node); st->last_idle = bfq_entity_of(next); } bfq_extract(&st->idle, entity); if (bfqq) list_del(&bfqq->bfqq_list); } /** * bfq_insert - generic tree insertion. * @root: tree root. * @entity: entity to insert. * * This is used for the idle and the active tree, since they are both * ordered by finish time. */ static void bfq_insert(struct rb_root *root, struct bfq_entity *entity) { struct bfq_entity *entry; struct rb_node **node = &root->rb_node; struct rb_node *parent = NULL; BUG_ON(entity->tree); while (*node) { parent = *node; entry = rb_entry(parent, struct bfq_entity, rb_node); if (bfq_gt(entry->finish, entity->finish)) node = &parent->rb_left; else node = &parent->rb_right; } rb_link_node(&entity->rb_node, parent, node); rb_insert_color(&entity->rb_node, root); entity->tree = root; } /** * bfq_update_min - update the min_start field of a entity. * @entity: the entity to update. * @node: one of its children. * * This function is called when @entity may store an invalid value for * min_start due to updates to the active tree. The function assumes * that the subtree rooted at @node (which may be its left or its right * child) has a valid min_start value. */ static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node) { struct bfq_entity *child; if (node) { child = rb_entry(node, struct bfq_entity, rb_node); if (bfq_gt(entity->min_start, child->min_start)) entity->min_start = child->min_start; } } /** * bfq_update_active_node - recalculate min_start. * @node: the node to update. * * @node may have changed position or one of its children may have moved, * this function updates its min_start value. The left and right subtrees * are assumed to hold a correct min_start value. */ static void bfq_update_active_node(struct rb_node *node) { struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node); entity->min_start = entity->start; bfq_update_min(entity, node->rb_right); bfq_update_min(entity, node->rb_left); } /** * bfq_update_active_tree - update min_start for the whole active tree. * @node: the starting node. * * @node must be the deepest modified node after an update. This function * updates its min_start using the values held by its children, assuming * that they did not change, and then updates all the nodes that may have * changed in the path to the root. The only nodes that may have changed * are the ones in the path or their siblings. */ static void bfq_update_active_tree(struct rb_node *node) { struct rb_node *parent; up: bfq_update_active_node(node); parent = rb_parent(node); if (!parent) return; if (node == parent->rb_left && parent->rb_right) bfq_update_active_node(parent->rb_right); else if (parent->rb_left) bfq_update_active_node(parent->rb_left); node = parent; goto up; } static void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity, struct rb_root *root); static void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity, struct rb_root *root); /** * bfq_active_insert - insert an entity in the active tree of its * group/device. * @st: the service tree of the entity. * @entity: the entity being inserted. * * The active tree is ordered by finish time, but an extra key is kept * per each node, containing the minimum value for the start times of * its children (and the node itself), so it's possible to search for * the eligible node with the lowest finish time in logarithmic time. */ static void bfq_active_insert(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct rb_node *node = &entity->rb_node; #ifdef CONFIG_BFQ_GROUP_IOSCHED struct bfq_sched_data *sd = NULL; struct bfq_group *bfqg = NULL; struct bfq_data *bfqd = NULL; #endif bfq_insert(&st->active, entity); if (node->rb_left) node = node->rb_left; else if (node->rb_right) node = node->rb_right; bfq_update_active_tree(node); #ifdef CONFIG_BFQ_GROUP_IOSCHED sd = entity->sched_data; bfqg = container_of(sd, struct bfq_group, sched_data); BUG_ON(!bfqg); bfqd = (struct bfq_data *)bfqg->bfqd; #endif if (bfqq) list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list); #ifdef CONFIG_BFQ_GROUP_IOSCHED else { /* bfq_group */ BUG_ON(!bfqd); bfq_weights_tree_add(bfqd, entity, &bfqd->group_weights_tree); } if (bfqg != bfqd->root_group) { BUG_ON(!bfqg); BUG_ON(!bfqd); bfqg->active_entities++; } #endif } /** * bfq_ioprio_to_weight - calc a weight from an ioprio. * @ioprio: the ioprio value to convert. */ static unsigned short bfq_ioprio_to_weight(int ioprio) { BUG_ON(ioprio < 0 || ioprio >= IOPRIO_BE_NR); return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF; } /** * bfq_weight_to_ioprio - calc an ioprio from a weight. * @weight: the weight value to convert. * * To preserve as much as possible the old only-ioprio user interface, * 0 is used as an escape ioprio value for weights (numerically) equal or * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF. */ static unsigned short bfq_weight_to_ioprio(int weight) { BUG_ON(weight < BFQ_MIN_WEIGHT || weight > BFQ_MAX_WEIGHT); return IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight < 0 ? 0 : IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight; } static void bfq_get_entity(struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); if (bfqq) { bfqq->ref++; bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d", bfqq, bfqq->ref); } } /** * bfq_find_deepest - find the deepest node that an extraction can modify. * @node: the node being removed. * * Do the first step of an extraction in an rb tree, looking for the * node that will replace @node, and returning the deepest node that * the following modifications to the tree can touch. If @node is the * last node in the tree return %NULL. */ static struct rb_node *bfq_find_deepest(struct rb_node *node) { struct rb_node *deepest; if (!node->rb_right && !node->rb_left) deepest = rb_parent(node); else if (!node->rb_right) deepest = node->rb_left; else if (!node->rb_left) deepest = node->rb_right; else { deepest = rb_next(node); if (deepest->rb_right) deepest = deepest->rb_right; else if (rb_parent(deepest) != node) deepest = rb_parent(deepest); } return deepest; } /** * bfq_active_extract - remove an entity from the active tree. * @st: the service_tree containing the tree. * @entity: the entity being removed. */ static void bfq_active_extract(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct rb_node *node; #ifdef CONFIG_BFQ_GROUP_IOSCHED struct bfq_sched_data *sd = NULL; struct bfq_group *bfqg = NULL; struct bfq_data *bfqd = NULL; #endif node = bfq_find_deepest(&entity->rb_node); bfq_extract(&st->active, entity); if (node) bfq_update_active_tree(node); #ifdef CONFIG_BFQ_GROUP_IOSCHED sd = entity->sched_data; bfqg = container_of(sd, struct bfq_group, sched_data); BUG_ON(!bfqg); bfqd = (struct bfq_data *)bfqg->bfqd; #endif if (bfqq) list_del(&bfqq->bfqq_list); #ifdef CONFIG_BFQ_GROUP_IOSCHED else { /* bfq_group */ BUG_ON(!bfqd); bfq_weights_tree_remove(bfqd, entity, &bfqd->group_weights_tree); } if (bfqg != bfqd->root_group) { BUG_ON(!bfqg); BUG_ON(!bfqd); BUG_ON(!bfqg->active_entities); bfqg->active_entities--; } #endif } /** * bfq_idle_insert - insert an entity into the idle tree. * @st: the service tree containing the tree. * @entity: the entity to insert. */ static void bfq_idle_insert(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct bfq_entity *first_idle = st->first_idle; struct bfq_entity *last_idle = st->last_idle; if (!first_idle || bfq_gt(first_idle->finish, entity->finish)) st->first_idle = entity; if (!last_idle || bfq_gt(entity->finish, last_idle->finish)) st->last_idle = entity; bfq_insert(&st->idle, entity); if (bfqq) list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list); } /** * bfq_forget_entity - remove an entity from the wfq trees. * @st: the service tree. * @entity: the entity being removed. * * Update the device status and forget everything about @entity, putting * the device reference to it, if it is a queue. Entities belonging to * groups are not refcounted. */ static void bfq_forget_entity(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct bfq_sched_data *sd; BUG_ON(!entity->on_st); entity->on_st = 0; st->wsum -= entity->weight; if (bfqq) { sd = entity->sched_data; bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity: %p %d", bfqq, bfqq->ref); bfq_put_queue(bfqq); } } /** * bfq_put_idle_entity - release the idle tree ref of an entity. * @st: service tree for the entity. * @entity: the entity being released. */ static void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity) { bfq_idle_extract(st, entity); bfq_forget_entity(st, entity); } /** * bfq_forget_idle - update the idle tree if necessary. * @st: the service tree to act upon. * * To preserve the global O(log N) complexity we only remove one entry here; * as the idle tree will not grow indefinitely this can be done safely. */ static void bfq_forget_idle(struct bfq_service_tree *st) { struct bfq_entity *first_idle = st->first_idle; struct bfq_entity *last_idle = st->last_idle; if (RB_EMPTY_ROOT(&st->active) && last_idle && !bfq_gt(last_idle->finish, st->vtime)) { /* * Forget the whole idle tree, increasing the vtime past * the last finish time of idle entities. */ st->vtime = last_idle->finish; } if (first_idle && !bfq_gt(first_idle->finish, st->vtime)) bfq_put_idle_entity(st, first_idle); } static struct bfq_service_tree * __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st, struct bfq_entity *entity) { struct bfq_service_tree *new_st = old_st; if (entity->prio_changed) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); unsigned int prev_weight, new_weight; struct bfq_data *bfqd = NULL; struct rb_root *root; #ifdef CONFIG_BFQ_GROUP_IOSCHED struct bfq_sched_data *sd; struct bfq_group *bfqg; #endif if (bfqq) bfqd = bfqq->bfqd; #ifdef CONFIG_BFQ_GROUP_IOSCHED else { sd = entity->my_sched_data; bfqg = container_of(sd, struct bfq_group, sched_data); BUG_ON(!bfqg); bfqd = (struct bfq_data *)bfqg->bfqd; BUG_ON(!bfqd); } #endif BUG_ON(old_st->wsum < entity->weight); old_st->wsum -= entity->weight; if (entity->new_weight != entity->orig_weight) { if (entity->new_weight < BFQ_MIN_WEIGHT || entity->new_weight > BFQ_MAX_WEIGHT) { pr_crit("update_weight_prio: new_weight %d\n", entity->new_weight); if (entity->new_weight < BFQ_MIN_WEIGHT) entity->new_weight = BFQ_MIN_WEIGHT; else entity->new_weight = BFQ_MAX_WEIGHT; } entity->orig_weight = entity->new_weight; if (bfqq) bfqq->ioprio = bfq_weight_to_ioprio(entity->orig_weight); } if (bfqq) bfqq->ioprio_class = bfqq->new_ioprio_class; entity->prio_changed = 0; /* * NOTE: here we may be changing the weight too early, * this will cause unfairness. The correct approach * would have required additional complexity to defer * weight changes to the proper time instants (i.e., * when entity->finish <= old_st->vtime). */ new_st = bfq_entity_service_tree(entity); prev_weight = entity->weight; new_weight = entity->orig_weight * (bfqq ? bfqq->wr_coeff : 1); /* * If the weight of the entity changes, remove the entity * from its old weight counter (if there is a counter * associated with the entity), and add it to the counter * associated with its new weight. */ if (prev_weight != new_weight) { if (bfqq) bfq_log_bfqq(bfqq->bfqd, bfqq, "weight changed %d %d(%d %d)", prev_weight, new_weight, entity->orig_weight, bfqq->wr_coeff); root = bfqq ? &bfqd->queue_weights_tree : &bfqd->group_weights_tree; bfq_weights_tree_remove(bfqd, entity, root); } entity->weight = new_weight; /* * Add the entity to its weights tree only if it is * not associated with a weight-raised queue. */ if (prev_weight != new_weight && (bfqq ? bfqq->wr_coeff == 1 : 1)) /* If we get here, root has been initialized. */ bfq_weights_tree_add(bfqd, entity, root); new_st->wsum += entity->weight; if (new_st != old_st) entity->start = new_st->vtime; } return new_st; } #ifdef CONFIG_BFQ_GROUP_IOSCHED static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg); #endif /** * bfq_bfqq_served - update the scheduler status after selection for * service. * @bfqq: the queue being served. * @served: bytes to transfer. * * NOTE: this can be optimized, as the timestamps of upper level entities * are synchronized every time a new bfqq is selected for service. By now, * we keep it to better check consistency. */ static void bfq_bfqq_served(struct bfq_queue *bfqq, int served) { struct bfq_entity *entity = &bfqq->entity; struct bfq_service_tree *st; for_each_entity(entity) { st = bfq_entity_service_tree(entity); entity->service += served; BUG_ON(st->wsum == 0); st->vtime += bfq_delta(served, st->wsum); bfq_forget_idle(st); } #ifdef CONFIG_BFQ_GROUP_IOSCHED bfqg_stats_set_start_empty_time(bfqq_group(bfqq)); #endif st = bfq_entity_service_tree(&bfqq->entity); bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs, vtime %llu on %p", served, ((st->vtime>>10)*1000)>>12, st); } /** * bfq_bfqq_charge_time - charge an amount of service equivalent to the length * of the time interval during which bfqq has been in * service. * @bfqd: the device * @bfqq: the queue that needs a service update. * @time_ms: the amount of time during which the queue has received service * * If a queue does not consume its budget fast enough, then providing * the queue with service fairness may impair throughput, more or less * severely. For this reason, queues that consume their budget slowly * are provided with time fairness instead of service fairness. This * goal is achieved through the BFQ scheduling engine, even if such an * engine works in the service, and not in the time domain. The trick * is charging these queues with an inflated amount of service, equal * to the amount of service that they would have received during their * service slot if they had been fast, i.e., if their requests had * been dispatched at a rate equal to the estimated peak rate. * * It is worth noting that time fairness can cause important * distortions in terms of bandwidth distribution, on devices with * internal queueing. The reason is that I/O requests dispatched * during the service slot of a queue may be served after that service * slot is finished, and may have a total processing time loosely * correlated with the duration of the service slot. This is * especially true for short service slots. */ static void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq, unsigned long time_ms) { struct bfq_entity *entity = &bfqq->entity; int tot_serv_to_charge = entity->service; unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout); if (time_ms > 0 && time_ms < timeout_ms) tot_serv_to_charge = (bfqd->bfq_max_budget * time_ms) / timeout_ms; if (tot_serv_to_charge < entity->service) tot_serv_to_charge = entity->service; bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_time: %lu/%u ms, %d/%d/%d sectors", time_ms, timeout_ms, entity->service, tot_serv_to_charge, entity->budget); /* Increase budget to avoid inconsistencies */ if (tot_serv_to_charge > entity->budget) entity->budget = tot_serv_to_charge; bfq_bfqq_served(bfqq, max_t(int, 0, tot_serv_to_charge - entity->service)); } /** * __bfq_activate_entity - activate an entity. * @entity: the entity being activated. * @non_blocking_wait_rq: true if this entity was waiting for a request * * Called whenever an entity is activated, i.e., it is not active and one * of its children receives a new request, or has to be reactivated due to * budget exhaustion. It uses the current budget of the entity (and the * service received if @entity is active) of the queue to calculate its * timestamps. */ static void __bfq_activate_entity(struct bfq_entity *entity, bool non_blocking_wait_rq) { struct bfq_sched_data *sd = entity->sched_data; struct bfq_service_tree *st = bfq_entity_service_tree(entity); struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); bool backshifted = false; BUG_ON(!sd); BUG_ON(!st); if (entity == sd->in_service_entity) { BUG_ON(entity->tree); /* * If we are requeueing the current entity we have * to take care of not charging to it service it has * not received. */ bfq_calc_finish(entity, entity->service); entity->start = entity->finish; sd->in_service_entity = NULL; } else if (entity->tree == &st->active) { /* * Requeueing an entity due to a change of some * next_in_service entity below it. We reuse the * old start time. */ bfq_active_extract(st, entity); } else { unsigned long long min_vstart; /* See comments on bfq_fqq_update_budg_for_activation */ if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) { backshifted = true; min_vstart = entity->finish; } else min_vstart = st->vtime; if (entity->tree == &st->idle) { /* * Must be on the idle tree, bfq_idle_extract() will * check for that. */ bfq_idle_extract(st, entity); entity->start = bfq_gt(min_vstart, entity->finish) ? min_vstart : entity->finish; } else { /* * The finish time of the entity may be invalid, and * it is in the past for sure, otherwise the queue * would have been on the idle tree. */ entity->start = min_vstart; st->wsum += entity->weight; bfq_get_entity(entity); BUG_ON(entity->on_st); entity->on_st = 1; } } st = __bfq_entity_update_weight_prio(st, entity); bfq_calc_finish(entity, entity->budget); /* * If some queues enjoy backshifting for a while, then their * (virtual) finish timestamps may happen to become lower and * lower than the system virtual time. In particular, if * these queues often happen to be idle for short time * periods, and during such time periods other queues with * higher timestamps happen to be busy, then the backshifted * timestamps of the former queues can become much lower than * the system virtual time. In fact, to serve the queues with * higher timestamps while the ones with lower timestamps are * idle, the system virtual time may be pushed-up to much * higher values than the finish timestamps of the idle * queues. As a consequence, the finish timestamps of all new * or newly activated queues may end up being much larger than * those of lucky queues with backshifted timestamps. The * latter queues may then monopolize the device for a lot of * time. This would simply break service guarantees. * * To reduce this problem, push up a little bit the * backshifted timestamps of the queue associated with this * entity (only a queue can happen to have the backshifted * flag set): just enough to let the finish timestamp of the * queue be equal to the current value of the system virtual * time. This may introduce a little unfairness among queues * with backshifted timestamps, but it does not break * worst-case fairness guarantees. * * As a special case, if bfqq is weight-raised, push up * timestamps much less, to keep very low the probability that * this push up causes the backshifted finish timestamps of * weight-raised queues to become higher than the backshifted * finish timestamps of non weight-raised queues. */ if (backshifted && bfq_gt(st->vtime, entity->finish)) { unsigned long delta = st->vtime - entity->finish; if (bfqq) delta /= bfqq->wr_coeff; entity->start += delta; entity->finish += delta; if (bfqq) { bfq_log_bfqq(bfqq->bfqd, bfqq, "__activate_entity: new queue finish %llu", ((entity->finish>>10)*1000)>>12); #ifdef CONFIG_BFQ_GROUP_IOSCHED } else { struct bfq_group *bfqg = container_of(entity, struct bfq_group, entity); bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg, "__activate_entity: new group finish %llu", ((entity->finish>>10)*1000)>>12); #endif } } bfq_active_insert(st, entity); if (bfqq) { bfq_log_bfqq(bfqq->bfqd, bfqq, "__activate_entity: queue %seligible in st %p", entity->start <= st->vtime ? "" : "non ", st); #ifdef CONFIG_BFQ_GROUP_IOSCHED } else { struct bfq_group *bfqg = container_of(entity, struct bfq_group, entity); bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg, "__activate_entity: group %seligible in st %p", entity->start <= st->vtime ? "" : "non ", st); #endif } } /** * bfq_activate_entity - activate an entity and its ancestors if necessary. * @entity: the entity to activate. * @non_blocking_wait_rq: true if this entity was waiting for a request * * Activate @entity and all the entities on the path from it to the root. */ static void bfq_activate_entity(struct bfq_entity *entity, bool non_blocking_wait_rq) { struct bfq_sched_data *sd; for_each_entity(entity) { BUG_ON(!entity); __bfq_activate_entity(entity, non_blocking_wait_rq); sd = entity->sched_data; if (!bfq_update_next_in_service(sd)) /* * No need to propagate the activation to the * upper entities, as they will be updated when * the in-service entity is rescheduled. */ break; } } /** * __bfq_deactivate_entity - deactivate an entity from its service tree. * @entity: the entity to deactivate. * @requeue: if false, the entity will not be put into the idle tree. * * Deactivate an entity, independently from its previous state. If the * entity was not on a service tree just return, otherwise if it is on * any scheduler tree, extract it from that tree, and if necessary * and if the caller did not specify @requeue, put it on the idle tree. * * Return %1 if the caller should update the entity hierarchy, i.e., * if the entity was in service or if it was the next_in_service for * its sched_data; return %0 otherwise. */ static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue) { struct bfq_sched_data *sd = entity->sched_data; struct bfq_service_tree *st; int was_in_service; int ret = 0; if (sd == NULL || !entity->on_st) /* never activated, or inactive */ return 0; st = bfq_entity_service_tree(entity); was_in_service = entity == sd->in_service_entity; BUG_ON(was_in_service && entity->tree); if (was_in_service) { bfq_calc_finish(entity, entity->service); sd->in_service_entity = NULL; } else if (entity->tree == &st->active) bfq_active_extract(st, entity); else if (entity->tree == &st->idle) bfq_idle_extract(st, entity); else if (entity->tree) BUG(); if (was_in_service || sd->next_in_service == entity) ret = bfq_update_next_in_service(sd); if (!requeue || !bfq_gt(entity->finish, st->vtime)) bfq_forget_entity(st, entity); else bfq_idle_insert(st, entity); BUG_ON(sd->in_service_entity == entity); BUG_ON(sd->next_in_service == entity); return ret; } /** * bfq_deactivate_entity - deactivate an entity. * @entity: the entity to deactivate. * @requeue: true if the entity can be put on the idle tree */ static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue) { struct bfq_sched_data *sd; struct bfq_entity *parent; for_each_entity_safe(entity, parent) { sd = entity->sched_data; if (!__bfq_deactivate_entity(entity, requeue)) /* * next_in_service has not been changed, so * no upwards update is needed */ break; if (sd->next_in_service) /* * The parent entity is still backlogged, * because next_in_service is not NULL, and * next_in_service has been updated (see * comment on the body of the above if): * upwards update of the schedule is needed. */ goto update; /* * If we get here, then the parent is no more backlogged and * we want to propagate the deactivation upwards. */ requeue = 1; } return; update: entity = parent; for_each_entity(entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); __bfq_activate_entity(entity, false); sd = entity->sched_data; if (bfqq) bfq_log_bfqq(bfqq->bfqd, bfqq, "invoking udpdate_next for this queue"); #ifdef CONFIG_BFQ_GROUP_IOSCHED else { struct bfq_group *bfqg = container_of(entity, struct bfq_group, entity); bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg, "invoking udpdate_next for this entity"); } #endif if (!bfq_update_next_in_service(sd)) break; } } /** * bfq_update_vtime - update vtime if necessary. * @st: the service tree to act upon. * * If necessary update the service tree vtime to have at least one * eligible entity, skipping to its start time. Assumes that the * active tree of the device is not empty. * * NOTE: this hierarchical implementation updates vtimes quite often, * we may end up with reactivated processes getting timestamps after a * vtime skip done because we needed a ->first_active entity on some * intermediate node. */ static void bfq_update_vtime(struct bfq_service_tree *st) { struct bfq_entity *entry; struct rb_node *node = st->active.rb_node; entry = rb_entry(node, struct bfq_entity, rb_node); if (bfq_gt(entry->min_start, st->vtime)) { st->vtime = entry->min_start; bfq_forget_idle(st); } } /** * bfq_first_active_entity - find the eligible entity with * the smallest finish time * @st: the service tree to select from. * * This function searches the first schedulable entity, starting from the * root of the tree and going on the left every time on this side there is * a subtree with at least one eligible (start >= vtime) entity. The path on * the right is followed only if a) the left subtree contains no eligible * entities and b) no eligible entity has been found yet. */ static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st) { struct bfq_entity *entry, *first = NULL; struct rb_node *node = st->active.rb_node; while (node) { entry = rb_entry(node, struct bfq_entity, rb_node); left: if (!bfq_gt(entry->start, st->vtime)) first = entry; BUG_ON(bfq_gt(entry->min_start, st->vtime)); if (node->rb_left) { entry = rb_entry(node->rb_left, struct bfq_entity, rb_node); if (!bfq_gt(entry->min_start, st->vtime)) { node = node->rb_left; goto left; } } if (first) break; node = node->rb_right; } BUG_ON(!first && !RB_EMPTY_ROOT(&st->active)); return first; } /** * __bfq_lookup_next_entity - return the first eligible entity in @st. * @st: the service tree. * * Update the virtual time in @st and return the first eligible entity * it contains. */ static struct bfq_entity * __bfq_lookup_next_entity(struct bfq_service_tree *st, bool force) { struct bfq_entity *entity, *new_next_in_service = NULL; struct bfq_queue *bfqq; if (RB_EMPTY_ROOT(&st->active)) return NULL; bfq_update_vtime(st); entity = bfq_first_active_entity(st); BUG_ON(bfq_gt(entity->start, st->vtime)); bfqq = bfq_entity_to_bfqq(entity); if (bfqq) bfq_log_bfqq(bfqq->bfqd, bfqq, "__lookup_next: start %llu vtime %llu st %p", ((entity->start>>10)*1000)>>12, ((st->vtime>>10)*1000)>>12, st); #ifdef CONFIG_BFQ_GROUP_IOSCHED else { struct bfq_group *bfqg = container_of(entity, struct bfq_group, entity); bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg, "__lookup_next: start %llu vtime %llu st %p", ((entity->start>>10)*1000)>>12, ((st->vtime>>10)*1000)>>12, st); } #endif /* * If the chosen entity does not match with the sched_data's * next_in_service and we are forcedly serving the IDLE priority * class tree, bubble up budget update. */ if (unlikely(force && entity != entity->sched_data->next_in_service)) { new_next_in_service = entity; for_each_entity(new_next_in_service) bfq_update_budget(new_next_in_service); } return entity; } /** * bfq_lookup_next_entity - return the first eligible entity in @sd. * @sd: the sched_data. * @extract: if true the returned entity will be also extracted from @sd. * * NOTE: since we cache the next_in_service entity at each level of the * hierarchy, the complexity of the lookup can be decreased with * absolutely no effort just returning the cached next_in_service value; * we prefer to do full lookups to test the consistency of * the data * structures. */ static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd, int extract, struct bfq_data *bfqd) { struct bfq_service_tree *st = sd->service_tree; struct bfq_entity *entity; int i = 0; BUG_ON(sd->in_service_entity); /* * Choose from idle class, if needed to guarantee a minimum * bandwidth to this class. This should also mitigate * priority-inversion problems in case a low priority task is * holding file system resources. */ if (bfqd && jiffies - bfqd->bfq_class_idle_last_service > BFQ_CL_IDLE_TIMEOUT) { entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1, true); if (entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); if (bfqq) bfq_log_bfqq(bfqd, bfqq, "idle chosen from st %p %d", st + BFQ_IOPRIO_CLASSES - 1, BFQ_IOPRIO_CLASSES - 1); #ifdef CONFIG_BFQ_GROUP_IOSCHED else { struct bfq_group *bfqg = container_of(entity, struct bfq_group, entity); bfq_log_bfqg(bfqd, bfqg, "idle chosen from st %p %d", st + BFQ_IOPRIO_CLASSES - 1, BFQ_IOPRIO_CLASSES - 1); } #endif i = BFQ_IOPRIO_CLASSES - 1; bfqd->bfq_class_idle_last_service = jiffies; sd->next_in_service = entity; } } for (; i < BFQ_IOPRIO_CLASSES; i++) { entity = __bfq_lookup_next_entity(st + i, false); if (entity) { if (bfqd != NULL) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); if (bfqq) bfq_log_bfqq(bfqd, bfqq, "chosen from st %p %d", st + i, i); #ifdef CONFIG_BFQ_GROUP_IOSCHED else { struct bfq_group *bfqg = container_of(entity, struct bfq_group, entity); bfq_log_bfqg(bfqd, bfqg, "chosen from st %p %d", st + i, i); } #endif } if (extract) { bfq_check_next_in_service(sd, entity); bfq_active_extract(st + i, entity); sd->in_service_entity = entity; sd->next_in_service = NULL; } break; } } return entity; } static bool next_queue_may_preempt(struct bfq_data *bfqd) { struct bfq_sched_data *sd = &bfqd->root_group->sched_data; return sd->next_in_service != sd->in_service_entity; } /* * Get next queue for service. */ static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd) { struct bfq_entity *entity = NULL; struct bfq_sched_data *sd; struct bfq_queue *bfqq; BUG_ON(bfqd->in_service_queue); if (bfqd->busy_queues == 0) return NULL; sd = &bfqd->root_group->sched_data; for (; sd ; sd = entity->my_sched_data) { #ifdef CONFIG_BFQ_GROUP_IOSCHED if (entity) { struct bfq_group *bfqg = container_of(entity, struct bfq_group, entity); bfq_log_bfqg(bfqd, bfqg, "get_next_queue: lookup in this group"); } else bfq_log_bfqg(bfqd, bfqd->root_group, "get_next_queue: lookup in root group"); #endif entity = bfq_lookup_next_entity(sd, 1, bfqd); bfqq = bfq_entity_to_bfqq(entity); if (bfqq) bfq_log_bfqq(bfqd, bfqq, "get_next_queue: this queue, finish %llu", (((entity->finish>>10)*1000)>>10)>>2); #ifdef CONFIG_BFQ_GROUP_IOSCHED else { struct bfq_group *bfqg = container_of(entity, struct bfq_group, entity); bfq_log_bfqg(bfqd, bfqg, "get_next_queue: this entity, finish %llu", (((entity->finish>>10)*1000)>>10)>>2); } #endif BUG_ON(!entity); entity->service = 0; } bfqq = bfq_entity_to_bfqq(entity); BUG_ON(!bfqq); return bfqq; } static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd) { if (bfqd->in_service_bic) { put_io_context(bfqd->in_service_bic->icq.ioc); bfqd->in_service_bic = NULL; } bfq_clear_bfqq_wait_request(bfqd->in_service_queue); hrtimer_try_to_cancel(&bfqd->idle_slice_timer); bfqd->in_service_queue = NULL; } static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, int requeue) { struct bfq_entity *entity = &bfqq->entity; BUG_ON(bfqq == bfqd->in_service_queue); bfq_deactivate_entity(entity, requeue); } static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) { struct bfq_entity *entity = &bfqq->entity; bfq_activate_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq)); bfq_clear_bfqq_non_blocking_wait_rq(bfqq); } static void bfqg_stats_update_dequeue(struct bfq_group *bfqg); /* * Called when the bfqq no longer has requests pending, remove it from * the service tree. */ static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq, int requeue) { BUG_ON(!bfq_bfqq_busy(bfqq)); BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list)); BUG_ON(bfqq == bfqd->in_service_queue); bfq_log_bfqq(bfqd, bfqq, "del from busy"); bfq_clear_bfqq_busy(bfqq); BUG_ON(bfqd->busy_queues == 0); bfqd->busy_queues--; if (!bfqq->dispatched) bfq_weights_tree_remove(bfqd, &bfqq->entity, &bfqd->queue_weights_tree); if (bfqq->wr_coeff > 1) bfqd->wr_busy_queues--; bfqg_stats_update_dequeue(bfqq_group(bfqq)); BUG_ON(bfqq->entity.budget < 0); bfq_deactivate_bfqq(bfqd, bfqq, requeue); BUG_ON(bfqq->entity.budget < 0); } /* * Called when an inactive queue receives a new request. */ static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq) { BUG_ON(bfq_bfqq_busy(bfqq)); BUG_ON(bfqq == bfqd->in_service_queue); bfq_log_bfqq(bfqd, bfqq, "add to busy"); bfq_activate_bfqq(bfqd, bfqq); bfq_mark_bfqq_busy(bfqq); bfqd->busy_queues++; if (!bfqq->dispatched) if (bfqq->wr_coeff == 1) bfq_weights_tree_add(bfqd, &bfqq->entity, &bfqd->queue_weights_tree); if (bfqq->wr_coeff > 1) bfqd->wr_busy_queues++; }