/* * lm80.c - From lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl> * and Philip Edelbrock <phil@netroedge.com> * * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END }; /* Many LM80 constants specified below */ /* The LM80 registers */ #define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2) #define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2) #define LM80_REG_IN(nr) (0x20 + (nr)) #define LM80_REG_FAN1 0x28 #define LM80_REG_FAN2 0x29 #define LM80_REG_FAN_MIN(nr) (0x3b + (nr)) #define LM80_REG_TEMP 0x27 #define LM80_REG_TEMP_HOT_MAX 0x38 #define LM80_REG_TEMP_HOT_HYST 0x39 #define LM80_REG_TEMP_OS_MAX 0x3a #define LM80_REG_TEMP_OS_HYST 0x3b #define LM80_REG_CONFIG 0x00 #define LM80_REG_ALARM1 0x01 #define LM80_REG_ALARM2 0x02 #define LM80_REG_MASK1 0x03 #define LM80_REG_MASK2 0x04 #define LM80_REG_FANDIV 0x05 #define LM80_REG_RES 0x06 #define LM96080_REG_CONV_RATE 0x07 #define LM96080_REG_MAN_ID 0x3e #define LM96080_REG_DEV_ID 0x3f /* * Conversions. Rounding and limit checking is only done on the TO_REG * variants. Note that you should be a bit careful with which arguments * these macros are called: arguments may be evaluated more than once. * Fixing this is just not worth it. */ #define IN_TO_REG(val) (clamp_val(((val) + 5) / 10, 0, 255)) #define IN_FROM_REG(val) ((val) * 10) static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div) { if (rpm == 0) return 255; rpm = clamp_val(rpm, 1, 1000000); return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); } #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \ (val) == 255 ? 0 : 1350000/((div) * (val))) #define TEMP_FROM_REG(reg) ((reg) * 125 / 32) #define TEMP_TO_REG(temp) (DIV_ROUND_CLOSEST(clamp_val((temp), \ -128000, 127000), 1000) << 8) #define DIV_FROM_REG(val) (1 << (val)) enum temp_index { t_input = 0, t_hot_max, t_hot_hyst, t_os_max, t_os_hyst, t_num_temp }; static const u8 temp_regs[t_num_temp] = { [t_input] = LM80_REG_TEMP, [t_hot_max] = LM80_REG_TEMP_HOT_MAX, [t_hot_hyst] = LM80_REG_TEMP_HOT_HYST, [t_os_max] = LM80_REG_TEMP_OS_MAX, [t_os_hyst] = LM80_REG_TEMP_OS_HYST, }; enum in_index { i_input = 0, i_max, i_min, i_num_in }; enum fan_index { f_input, f_min, f_num_fan }; /* * Client data (each client gets its own) */ struct lm80_data { struct i2c_client *client; struct mutex update_lock; char error; /* !=0 if error occurred during last update */ char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ u8 in[i_num_in][7]; /* Register value, 1st index is enum in_index */ u8 fan[f_num_fan][2]; /* Register value, 1st index enum fan_index */ u8 fan_div[2]; /* Register encoding, shifted right */ s16 temp[t_num_temp]; /* Register values, normalized to 16 bit */ u16 alarms; /* Register encoding, combined */ }; static int lm80_read_value(struct i2c_client *client, u8 reg) { return i2c_smbus_read_byte_data(client, reg); } static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value) { return i2c_smbus_write_byte_data(client, reg, value); } /* Called when we have found a new LM80 and after read errors */ static void lm80_init_client(struct i2c_client *client) { /* * Reset all except Watchdog values and last conversion values * This sets fan-divs to 2, among others. This makes most other * initializations unnecessary */ lm80_write_value(client, LM80_REG_CONFIG, 0x80); /* Set 11-bit temperature resolution */ lm80_write_value(client, LM80_REG_RES, 0x08); /* Start monitoring */ lm80_write_value(client, LM80_REG_CONFIG, 0x01); } static struct lm80_data *lm80_update_device(struct device *dev) { struct lm80_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int i; int rv; int prev_rv; struct lm80_data *ret = data; mutex_lock(&data->update_lock); if (data->error) lm80_init_client(client); if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) { dev_dbg(dev, "Starting lm80 update\n"); for (i = 0; i <= 6; i++) { rv = lm80_read_value(client, LM80_REG_IN(i)); if (rv < 0) goto abort; data->in[i_input][i] = rv; rv = lm80_read_value(client, LM80_REG_IN_MIN(i)); if (rv < 0) goto abort; data->in[i_min][i] = rv; rv = lm80_read_value(client, LM80_REG_IN_MAX(i)); if (rv < 0) goto abort; data->in[i_max][i] = rv; } rv = lm80_read_value(client, LM80_REG_FAN1); if (rv < 0) goto abort; data->fan[f_input][0] = rv; rv = lm80_read_value(client, LM80_REG_FAN_MIN(1)); if (rv < 0) goto abort; data->fan[f_min][0] = rv; rv = lm80_read_value(client, LM80_REG_FAN2); if (rv < 0) goto abort; data->fan[f_input][1] = rv; rv = lm80_read_value(client, LM80_REG_FAN_MIN(2)); if (rv < 0) goto abort; data->fan[f_min][1] = rv; prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP); if (rv < 0) goto abort; rv = lm80_read_value(client, LM80_REG_RES); if (rv < 0) goto abort; data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0); for (i = t_input + 1; i < t_num_temp; i++) { rv = lm80_read_value(client, temp_regs[i]); if (rv < 0) goto abort; data->temp[i] = rv << 8; } rv = lm80_read_value(client, LM80_REG_FANDIV); if (rv < 0) goto abort; data->fan_div[0] = (rv >> 2) & 0x03; data->fan_div[1] = (rv >> 4) & 0x03; prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1); if (rv < 0) goto abort; rv = lm80_read_value(client, LM80_REG_ALARM2); if (rv < 0) goto abort; data->alarms = prev_rv + (rv << 8); data->last_updated = jiffies; data->valid = 1; data->error = 0; } goto done; abort: ret = ERR_PTR(rv); data->valid = 0; data->error = 1; done: mutex_unlock(&data->update_lock); return ret; } /* * Sysfs stuff */ static ssize_t show_in(struct device *dev, struct device_attribute *attr, char *buf) { struct lm80_data *data = lm80_update_device(dev); int index = to_sensor_dev_attr_2(attr)->index; int nr = to_sensor_dev_attr_2(attr)->nr; if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index])); } static ssize_t set_in(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct lm80_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int index = to_sensor_dev_attr_2(attr)->index; int nr = to_sensor_dev_attr_2(attr)->nr; long val; u8 reg; int err = kstrtol(buf, 10, &val); if (err < 0) return err; reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index); mutex_lock(&data->update_lock); data->in[nr][index] = IN_TO_REG(val); lm80_write_value(client, reg, data->in[nr][index]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan(struct device *dev, struct device_attribute *attr, char *buf) { int index = to_sensor_dev_attr_2(attr)->index; int nr = to_sensor_dev_attr_2(attr)->nr; struct lm80_data *data = lm80_update_device(dev); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index], DIV_FROM_REG(data->fan_div[index]))); } static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct lm80_data *data = lm80_update_device(dev); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr])); } static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int index = to_sensor_dev_attr_2(attr)->index; int nr = to_sensor_dev_attr_2(attr)->nr; struct lm80_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long val; int err = kstrtoul(buf, 10, &val); if (err < 0) return err; mutex_lock(&data->update_lock); data->fan[nr][index] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[index])); lm80_write_value(client, LM80_REG_FAN_MIN(index + 1), data->fan[nr][index]); mutex_unlock(&data->update_lock); return count; } /* * Note: we save and restore the fan minimum here, because its value is * determined in part by the fan divisor. This follows the principle of * least surprise; the user doesn't expect the fan minimum to change just * because the divisor changed. */ static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct lm80_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long min, val; u8 reg; int err = kstrtoul(buf, 10, &val); if (err < 0) return err; /* Save fan_min */ mutex_lock(&data->update_lock); min = FAN_FROM_REG(data->fan[f_min][nr], DIV_FROM_REG(data->fan_div[nr])); switch (val) { case 1: data->fan_div[nr] = 0; break; case 2: data->fan_div[nr] = 1; break; case 4: data->fan_div[nr] = 2; break; case 8: data->fan_div[nr] = 3; break; default: dev_err(dev, "fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n", val); mutex_unlock(&data->update_lock); return -EINVAL; } reg = (lm80_read_value(client, LM80_REG_FANDIV) & ~(3 << (2 * (nr + 1)))) | (data->fan_div[nr] << (2 * (nr + 1))); lm80_write_value(client, LM80_REG_FANDIV, reg); /* Restore fan_min */ data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan[f_min][nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm80_data *data = lm80_update_device(dev); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index])); } static ssize_t set_temp(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm80_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int nr = attr->index; long val; int err = kstrtol(buf, 10, &val); if (err < 0) return err; mutex_lock(&data->update_lock); data->temp[nr] = TEMP_TO_REG(val); lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8); mutex_unlock(&data->update_lock); return count; } static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { struct lm80_data *data = lm80_update_device(dev); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%u\n", data->alarms); } static ssize_t show_alarm(struct device *dev, struct device_attribute *attr, char *buf) { int bitnr = to_sensor_dev_attr(attr)->index; struct lm80_data *data = lm80_update_device(dev); if (IS_ERR(data)) return PTR_ERR(data); return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR_2(in0_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 0); static SENSOR_DEVICE_ATTR_2(in1_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 1); static SENSOR_DEVICE_ATTR_2(in2_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 2); static SENSOR_DEVICE_ATTR_2(in3_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 3); static SENSOR_DEVICE_ATTR_2(in4_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 4); static SENSOR_DEVICE_ATTR_2(in5_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 5); static SENSOR_DEVICE_ATTR_2(in6_min, S_IWUSR | S_IRUGO, show_in, set_in, i_min, 6); static SENSOR_DEVICE_ATTR_2(in0_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 0); static SENSOR_DEVICE_ATTR_2(in1_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 1); static SENSOR_DEVICE_ATTR_2(in2_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 2); static SENSOR_DEVICE_ATTR_2(in3_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 3); static SENSOR_DEVICE_ATTR_2(in4_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 4); static SENSOR_DEVICE_ATTR_2(in5_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 5); static SENSOR_DEVICE_ATTR_2(in6_max, S_IWUSR | S_IRUGO, show_in, set_in, i_max, 6); static SENSOR_DEVICE_ATTR_2(in0_input, S_IRUGO, show_in, NULL, i_input, 0); static SENSOR_DEVICE_ATTR_2(in1_input, S_IRUGO, show_in, NULL, i_input, 1); static SENSOR_DEVICE_ATTR_2(in2_input, S_IRUGO, show_in, NULL, i_input, 2); static SENSOR_DEVICE_ATTR_2(in3_input, S_IRUGO, show_in, NULL, i_input, 3); static SENSOR_DEVICE_ATTR_2(in4_input, S_IRUGO, show_in, NULL, i_input, 4); static SENSOR_DEVICE_ATTR_2(in5_input, S_IRUGO, show_in, NULL, i_input, 5); static SENSOR_DEVICE_ATTR_2(in6_input, S_IRUGO, show_in, NULL, i_input, 6); static SENSOR_DEVICE_ATTR_2(fan1_min, S_IWUSR | S_IRUGO, show_fan, set_fan_min, f_min, 0); static SENSOR_DEVICE_ATTR_2(fan2_min, S_IWUSR | S_IRUGO, show_fan, set_fan_min, f_min, 1); static SENSOR_DEVICE_ATTR_2(fan1_input, S_IRUGO, show_fan, NULL, f_input, 0); static SENSOR_DEVICE_ATTR_2(fan2_input, S_IRUGO, show_fan, NULL, f_input, 1); static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO, show_fan_div, set_fan_div, 0); static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO, show_fan_div, set_fan_div, 1); static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, t_input); static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp, set_temp, t_hot_max); static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp, set_temp, t_hot_hyst); static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp, set_temp, t_os_max); static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp, set_temp, t_os_hyst); static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5); static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6); static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10); static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8); static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13); /* * Real code */ static struct attribute *lm80_attrs[] = { &sensor_dev_attr_in0_min.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in0_max.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, &dev_attr_alarms.attr, &sensor_dev_attr_in0_alarm.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, &sensor_dev_attr_in6_alarm.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, NULL }; ATTRIBUTE_GROUPS(lm80); /* Return 0 if detection is successful, -ENODEV otherwise */ static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int i, cur, man_id, dev_id; const char *name = NULL; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; /* First check for unused bits, common to both chip types */ if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0) || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80)) return -ENODEV; /* * The LM96080 has manufacturer and stepping/die rev registers so we * can just check that. The LM80 does not have such registers so we * have to use a more expensive trick. */ man_id = lm80_read_value(client, LM96080_REG_MAN_ID); dev_id = lm80_read_value(client, LM96080_REG_DEV_ID); if (man_id == 0x01 && dev_id == 0x08) { /* Check more unused bits for confirmation */ if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe) return -ENODEV; name = "lm96080"; } else { /* Check 6-bit addressing */ for (i = 0x2a; i <= 0x3d; i++) { cur = i2c_smbus_read_byte_data(client, i); if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur) || (i2c_smbus_read_byte_data(client, i + 0x80) != cur) || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur)) return -ENODEV; } name = "lm80"; } strlcpy(info->type, name, I2C_NAME_SIZE); return 0; } static int lm80_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct device *hwmon_dev; struct lm80_data *data; data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; mutex_init(&data->update_lock); /* Initialize the LM80 chip */ lm80_init_client(client); /* A few vars need to be filled upon startup */ data->fan[f_min][0] = lm80_read_value(client, LM80_REG_FAN_MIN(1)); data->fan[f_min][1] = lm80_read_value(client, LM80_REG_FAN_MIN(2)); hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, lm80_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } /* * Driver data (common to all clients) */ static const struct i2c_device_id lm80_id[] = { { "lm80", 0 }, { "lm96080", 1 }, { } }; MODULE_DEVICE_TABLE(i2c, lm80_id); static struct i2c_driver lm80_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "lm80", }, .probe = lm80_probe, .id_table = lm80_id, .detect = lm80_detect, .address_list = normal_i2c, }; module_i2c_driver(lm80_driver); MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and " "Philip Edelbrock <phil@netroedge.com>"); MODULE_DESCRIPTION("LM80 driver"); MODULE_LICENSE("GPL");