/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2015 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * BSD LICENSE * * Copyright(c) 2015 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copy * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * PCIe NTB Perf Linux driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "ntb_perf" #define DRIVER_DESCRIPTION "PCIe NTB Performance Measurement Tool" #define DRIVER_LICENSE "Dual BSD/GPL" #define DRIVER_VERSION "1.0" #define DRIVER_AUTHOR "Dave Jiang " #define PERF_LINK_DOWN_TIMEOUT 10 #define PERF_VERSION 0xffff0001 #define MAX_THREADS 32 #define MAX_TEST_SIZE SZ_1M #define MAX_SRCS 32 #define DMA_OUT_RESOURCE_TO 50 #define DMA_RETRIES 20 #define SZ_4G (1ULL << 32) #define MAX_SEG_ORDER 20 /* no larger than 1M for kmalloc buffer */ MODULE_LICENSE(DRIVER_LICENSE); MODULE_VERSION(DRIVER_VERSION); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESCRIPTION); static struct dentry *perf_debugfs_dir; static unsigned int seg_order = 19; /* 512K */ module_param(seg_order, uint, 0644); MODULE_PARM_DESC(seg_order, "size order [n^2] of buffer segment for testing"); static unsigned int run_order = 32; /* 4G */ module_param(run_order, uint, 0644); MODULE_PARM_DESC(run_order, "size order [n^2] of total data to transfer"); static bool use_dma; /* default to 0 */ module_param(use_dma, bool, 0644); MODULE_PARM_DESC(use_dma, "Using DMA engine to measure performance"); struct perf_mw { phys_addr_t phys_addr; resource_size_t phys_size; resource_size_t xlat_align; resource_size_t xlat_align_size; void __iomem *vbase; size_t xlat_size; size_t buf_size; void *virt_addr; dma_addr_t dma_addr; }; struct perf_ctx; struct pthr_ctx { struct task_struct *thread; struct perf_ctx *perf; atomic_t dma_sync; struct dma_chan *dma_chan; int dma_prep_err; int src_idx; void *srcs[MAX_SRCS]; }; struct perf_ctx { struct ntb_dev *ntb; spinlock_t db_lock; struct perf_mw mw; bool link_is_up; struct work_struct link_cleanup; struct delayed_work link_work; struct dentry *debugfs_node_dir; struct dentry *debugfs_run; struct dentry *debugfs_threads; u8 perf_threads; bool run; struct pthr_ctx pthr_ctx[MAX_THREADS]; atomic_t tsync; }; enum { VERSION = 0, MW_SZ_HIGH, MW_SZ_LOW, SPAD_MSG, SPAD_ACK, MAX_SPAD }; static void perf_link_event(void *ctx) { struct perf_ctx *perf = ctx; if (ntb_link_is_up(perf->ntb, NULL, NULL) == 1) schedule_delayed_work(&perf->link_work, 2*HZ); else schedule_work(&perf->link_cleanup); } static void perf_db_event(void *ctx, int vec) { struct perf_ctx *perf = ctx; u64 db_bits, db_mask; db_mask = ntb_db_vector_mask(perf->ntb, vec); db_bits = ntb_db_read(perf->ntb); dev_dbg(&perf->ntb->dev, "doorbell vec %d mask %#llx bits %#llx\n", vec, db_mask, db_bits); } static const struct ntb_ctx_ops perf_ops = { .link_event = perf_link_event, .db_event = perf_db_event, }; static void perf_copy_callback(void *data) { struct pthr_ctx *pctx = data; atomic_dec(&pctx->dma_sync); } static ssize_t perf_copy(struct pthr_ctx *pctx, char *dst, char *src, size_t size) { struct perf_ctx *perf = pctx->perf; struct dma_async_tx_descriptor *txd; struct dma_chan *chan = pctx->dma_chan; struct dma_device *device; struct dmaengine_unmap_data *unmap; dma_cookie_t cookie; size_t src_off, dst_off; struct perf_mw *mw = &perf->mw; u64 vbase, dst_vaddr; dma_addr_t dst_phys; int retries = 0; if (!use_dma) { memcpy_toio(dst, src, size); return size; } if (!chan) { dev_err(&perf->ntb->dev, "DMA engine does not exist\n"); return -EINVAL; } device = chan->device; src_off = (size_t)src & ~PAGE_MASK; dst_off = (size_t)dst & ~PAGE_MASK; if (!is_dma_copy_aligned(device, src_off, dst_off, size)) return -ENODEV; vbase = (u64)(u64 *)mw->vbase; dst_vaddr = (u64)(u64 *)dst; dst_phys = mw->phys_addr + (dst_vaddr - vbase); unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT); if (!unmap) return -ENOMEM; unmap->len = size; unmap->addr[0] = dma_map_page(device->dev, virt_to_page(src), src_off, size, DMA_TO_DEVICE); if (dma_mapping_error(device->dev, unmap->addr[0])) goto err_get_unmap; unmap->to_cnt = 1; do { txd = device->device_prep_dma_memcpy(chan, dst_phys, unmap->addr[0], size, DMA_PREP_INTERRUPT); if (!txd) { set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(DMA_OUT_RESOURCE_TO); } } while (!txd && (++retries < DMA_RETRIES)); if (!txd) { pctx->dma_prep_err++; goto err_get_unmap; } txd->callback = perf_copy_callback; txd->callback_param = pctx; dma_set_unmap(txd, unmap); cookie = dmaengine_submit(txd); if (dma_submit_error(cookie)) goto err_set_unmap; atomic_inc(&pctx->dma_sync); dma_async_issue_pending(chan); return size; err_set_unmap: dmaengine_unmap_put(unmap); err_get_unmap: dmaengine_unmap_put(unmap); return 0; } static int perf_move_data(struct pthr_ctx *pctx, char *dst, char *src, u64 buf_size, u64 win_size, u64 total) { int chunks, total_chunks, i; int copied_chunks = 0; u64 copied = 0, result; char *tmp = dst; u64 perf, diff_us; ktime_t kstart, kstop, kdiff; chunks = div64_u64(win_size, buf_size); total_chunks = div64_u64(total, buf_size); kstart = ktime_get(); for (i = 0; i < total_chunks; i++) { result = perf_copy(pctx, tmp, src, buf_size); copied += result; copied_chunks++; if (copied_chunks == chunks) { tmp = dst; copied_chunks = 0; } else tmp += buf_size; /* Probably should schedule every 4GB to prevent soft hang. */ if (((copied % SZ_4G) == 0) && !use_dma) { set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(1); } } if (use_dma) { pr_info("%s: All DMA descriptors submitted\n", current->comm); while (atomic_read(&pctx->dma_sync) != 0) msleep(20); } kstop = ktime_get(); kdiff = ktime_sub(kstop, kstart); diff_us = ktime_to_us(kdiff); pr_info("%s: copied %llu bytes\n", current->comm, copied); pr_info("%s: lasted %llu usecs\n", current->comm, diff_us); perf = div64_u64(copied, diff_us); pr_info("%s: MBytes/s: %llu\n", current->comm, perf); return 0; } static bool perf_dma_filter_fn(struct dma_chan *chan, void *node) { return dev_to_node(&chan->dev->device) == (int)(unsigned long)node; } static int ntb_perf_thread(void *data) { struct pthr_ctx *pctx = data; struct perf_ctx *perf = pctx->perf; struct pci_dev *pdev = perf->ntb->pdev; struct perf_mw *mw = &perf->mw; char *dst; u64 win_size, buf_size, total; void *src; int rc, node, i; struct dma_chan *dma_chan = NULL; pr_info("kthread %s starting...\n", current->comm); node = dev_to_node(&pdev->dev); if (use_dma && !pctx->dma_chan) { dma_cap_mask_t dma_mask; dma_cap_zero(dma_mask); dma_cap_set(DMA_MEMCPY, dma_mask); dma_chan = dma_request_channel(dma_mask, perf_dma_filter_fn, (void *)(unsigned long)node); if (!dma_chan) { pr_warn("%s: cannot acquire DMA channel, quitting\n", current->comm); return -ENODEV; } pctx->dma_chan = dma_chan; } for (i = 0; i < MAX_SRCS; i++) { pctx->srcs[i] = kmalloc_node(MAX_TEST_SIZE, GFP_KERNEL, node); if (!pctx->srcs[i]) { rc = -ENOMEM; goto err; } } win_size = mw->phys_size; buf_size = 1ULL << seg_order; total = 1ULL << run_order; if (buf_size > MAX_TEST_SIZE) buf_size = MAX_TEST_SIZE; dst = (char *)mw->vbase; atomic_inc(&perf->tsync); while (atomic_read(&perf->tsync) != perf->perf_threads) schedule(); src = pctx->srcs[pctx->src_idx]; pctx->src_idx = (pctx->src_idx + 1) & (MAX_SRCS - 1); rc = perf_move_data(pctx, dst, src, buf_size, win_size, total); atomic_dec(&perf->tsync); if (rc < 0) { pr_err("%s: failed\n", current->comm); rc = -ENXIO; goto err; } for (i = 0; i < MAX_SRCS; i++) { kfree(pctx->srcs[i]); pctx->srcs[i] = NULL; } return 0; err: for (i = 0; i < MAX_SRCS; i++) { kfree(pctx->srcs[i]); pctx->srcs[i] = NULL; } if (dma_chan) { dma_release_channel(dma_chan); pctx->dma_chan = NULL; } return rc; } static void perf_free_mw(struct perf_ctx *perf) { struct perf_mw *mw = &perf->mw; struct pci_dev *pdev = perf->ntb->pdev; if (!mw->virt_addr) return; ntb_mw_clear_trans(perf->ntb, 0); dma_free_coherent(&pdev->dev, mw->buf_size, mw->virt_addr, mw->dma_addr); mw->xlat_size = 0; mw->buf_size = 0; mw->virt_addr = NULL; } static int perf_set_mw(struct perf_ctx *perf, resource_size_t size) { struct perf_mw *mw = &perf->mw; size_t xlat_size, buf_size; if (!size) return -EINVAL; xlat_size = round_up(size, mw->xlat_align_size); buf_size = round_up(size, mw->xlat_align); if (mw->xlat_size == xlat_size) return 0; if (mw->buf_size) perf_free_mw(perf); mw->xlat_size = xlat_size; mw->buf_size = buf_size; mw->virt_addr = dma_alloc_coherent(&perf->ntb->pdev->dev, buf_size, &mw->dma_addr, GFP_KERNEL); if (!mw->virt_addr) { mw->xlat_size = 0; mw->buf_size = 0; } return 0; } static void perf_link_work(struct work_struct *work) { struct perf_ctx *perf = container_of(work, struct perf_ctx, link_work.work); struct ntb_dev *ndev = perf->ntb; struct pci_dev *pdev = ndev->pdev; u32 val; u64 size; int rc; dev_dbg(&perf->ntb->pdev->dev, "%s called\n", __func__); size = perf->mw.phys_size; ntb_peer_spad_write(ndev, MW_SZ_HIGH, upper_32_bits(size)); ntb_peer_spad_write(ndev, MW_SZ_LOW, lower_32_bits(size)); ntb_peer_spad_write(ndev, VERSION, PERF_VERSION); /* now read what peer wrote */ val = ntb_spad_read(ndev, VERSION); if (val != PERF_VERSION) { dev_dbg(&pdev->dev, "Remote version = %#x\n", val); goto out; } val = ntb_spad_read(ndev, MW_SZ_HIGH); size = (u64)val << 32; val = ntb_spad_read(ndev, MW_SZ_LOW); size |= val; dev_dbg(&pdev->dev, "Remote MW size = %#llx\n", size); rc = perf_set_mw(perf, size); if (rc) goto out1; perf->link_is_up = true; return; out1: perf_free_mw(perf); out: if (ntb_link_is_up(ndev, NULL, NULL) == 1) schedule_delayed_work(&perf->link_work, msecs_to_jiffies(PERF_LINK_DOWN_TIMEOUT)); } static void perf_link_cleanup(struct work_struct *work) { struct perf_ctx *perf = container_of(work, struct perf_ctx, link_cleanup); dev_dbg(&perf->ntb->pdev->dev, "%s called\n", __func__); if (!perf->link_is_up) cancel_delayed_work_sync(&perf->link_work); } static int perf_setup_mw(struct ntb_dev *ntb, struct perf_ctx *perf) { struct perf_mw *mw; int rc; mw = &perf->mw; rc = ntb_mw_get_range(ntb, 0, &mw->phys_addr, &mw->phys_size, &mw->xlat_align, &mw->xlat_align_size); if (rc) return rc; perf->mw.vbase = ioremap_wc(mw->phys_addr, mw->phys_size); if (!mw->vbase) return -ENOMEM; return 0; } static ssize_t debugfs_run_read(struct file *filp, char __user *ubuf, size_t count, loff_t *offp) { struct perf_ctx *perf = filp->private_data; char *buf; ssize_t ret, out_offset; if (!perf) return 0; buf = kmalloc(64, GFP_KERNEL); out_offset = snprintf(buf, 64, "%d\n", perf->run); ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset); kfree(buf); return ret; } static ssize_t debugfs_run_write(struct file *filp, const char __user *ubuf, size_t count, loff_t *offp) { struct perf_ctx *perf = filp->private_data; int node, i; if (!perf->link_is_up) return 0; if (perf->perf_threads == 0) return 0; if (atomic_read(&perf->tsync) == 0) perf->run = false; if (perf->run) { /* lets stop the threads */ perf->run = false; for (i = 0; i < MAX_THREADS; i++) { if (perf->pthr_ctx[i].thread) { kthread_stop(perf->pthr_ctx[i].thread); perf->pthr_ctx[i].thread = NULL; } else break; } } else { perf->run = true; if (perf->perf_threads > MAX_THREADS) { perf->perf_threads = MAX_THREADS; pr_info("Reset total threads to: %u\n", MAX_THREADS); } /* no greater than 1M */ if (seg_order > MAX_SEG_ORDER) { seg_order = MAX_SEG_ORDER; pr_info("Fix seg_order to %u\n", seg_order); } if (run_order < seg_order) { run_order = seg_order; pr_info("Fix run_order to %u\n", run_order); } node = dev_to_node(&perf->ntb->pdev->dev); /* launch kernel thread */ for (i = 0; i < perf->perf_threads; i++) { struct pthr_ctx *pctx; pctx = &perf->pthr_ctx[i]; atomic_set(&pctx->dma_sync, 0); pctx->perf = perf; pctx->thread = kthread_create_on_node(ntb_perf_thread, (void *)pctx, node, "ntb_perf %d", i); if (pctx->thread) wake_up_process(pctx->thread); else { perf->run = false; for (i = 0; i < MAX_THREADS; i++) { if (pctx->thread) { kthread_stop(pctx->thread); pctx->thread = NULL; } } } if (perf->run == false) return -ENXIO; } } return count; } static const struct file_operations ntb_perf_debugfs_run = { .owner = THIS_MODULE, .open = simple_open, .read = debugfs_run_read, .write = debugfs_run_write, }; static int perf_debugfs_setup(struct perf_ctx *perf) { struct pci_dev *pdev = perf->ntb->pdev; if (!debugfs_initialized()) return -ENODEV; if (!perf_debugfs_dir) { perf_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); if (!perf_debugfs_dir) return -ENODEV; } perf->debugfs_node_dir = debugfs_create_dir(pci_name(pdev), perf_debugfs_dir); if (!perf->debugfs_node_dir) return -ENODEV; perf->debugfs_run = debugfs_create_file("run", S_IRUSR | S_IWUSR, perf->debugfs_node_dir, perf, &ntb_perf_debugfs_run); if (!perf->debugfs_run) return -ENODEV; perf->debugfs_threads = debugfs_create_u8("threads", S_IRUSR | S_IWUSR, perf->debugfs_node_dir, &perf->perf_threads); if (!perf->debugfs_threads) return -ENODEV; return 0; } static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb) { struct pci_dev *pdev = ntb->pdev; struct perf_ctx *perf; int node; int rc = 0; node = dev_to_node(&pdev->dev); perf = kzalloc_node(sizeof(*perf), GFP_KERNEL, node); if (!perf) { rc = -ENOMEM; goto err_perf; } perf->ntb = ntb; perf->perf_threads = 1; atomic_set(&perf->tsync, 0); perf->run = false; spin_lock_init(&perf->db_lock); perf_setup_mw(ntb, perf); INIT_DELAYED_WORK(&perf->link_work, perf_link_work); INIT_WORK(&perf->link_cleanup, perf_link_cleanup); rc = ntb_set_ctx(ntb, perf, &perf_ops); if (rc) goto err_ctx; perf->link_is_up = false; ntb_link_enable(ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); ntb_link_event(ntb); rc = perf_debugfs_setup(perf); if (rc) goto err_ctx; return 0; err_ctx: cancel_delayed_work_sync(&perf->link_work); cancel_work_sync(&perf->link_cleanup); kfree(perf); err_perf: return rc; } static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb) { struct perf_ctx *perf = ntb->ctx; int i; dev_dbg(&perf->ntb->dev, "%s called\n", __func__); cancel_delayed_work_sync(&perf->link_work); cancel_work_sync(&perf->link_cleanup); ntb_clear_ctx(ntb); ntb_link_disable(ntb); debugfs_remove_recursive(perf_debugfs_dir); perf_debugfs_dir = NULL; if (use_dma) { for (i = 0; i < MAX_THREADS; i++) { struct pthr_ctx *pctx = &perf->pthr_ctx[i]; if (pctx->dma_chan) dma_release_channel(pctx->dma_chan); } } kfree(perf); } static struct ntb_client perf_client = { .ops = { .probe = perf_probe, .remove = perf_remove, }, }; module_ntb_client(perf_client);