/* * Driver for KeyStream wireless LAN cards. * * Copyright (C) 2005-2008 KeyStream Corp. * Copyright (C) 2009 Renesas Technology Corp. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include "ks_wlan.h" #include "ks_hostif.h" #include "eap_packet.h" #include "michael_mic.h" #include #include /* Include Wireless Extension definition and check version */ #include /* New driver API */ extern int ks_wlan_hw_tx(struct ks_wlan_private *priv, void *p, unsigned long size, void (*complete_handler) (void *arg1, void *arg2), void *arg1, void *arg2); extern void send_packet_complete(void *, void *); extern void ks_wlan_hw_wakeup_request(struct ks_wlan_private *priv); extern int ks_wlan_hw_power_save(struct ks_wlan_private *priv); /* macro */ #define inc_smeqhead(priv) \ ( priv->sme_i.qhead = (priv->sme_i.qhead + 1) % SME_EVENT_BUFF_SIZE ) #define inc_smeqtail(priv) \ ( priv->sme_i.qtail = (priv->sme_i.qtail + 1) % SME_EVENT_BUFF_SIZE ) #define cnt_smeqbody(priv) \ (((priv->sme_i.qtail + SME_EVENT_BUFF_SIZE) - (priv->sme_i.qhead)) % SME_EVENT_BUFF_SIZE ) #define KS_WLAN_MEM_FLAG (GFP_ATOMIC) static inline u8 get_BYTE(struct ks_wlan_private *priv) { u8 data; data = *(priv->rxp)++; /* length check in advance ! */ --(priv->rx_size); return data; } static inline u16 get_WORD(struct ks_wlan_private *priv) { u16 data; data = (get_BYTE(priv) & 0xff); data |= ((get_BYTE(priv) << 8) & 0xff00); return data; } static inline u32 get_DWORD(struct ks_wlan_private *priv) { u32 data; data = (get_BYTE(priv) & 0xff); data |= ((get_BYTE(priv) << 8) & 0x0000ff00); data |= ((get_BYTE(priv) << 16) & 0x00ff0000); data |= ((get_BYTE(priv) << 24) & 0xff000000); return data; } void ks_wlan_hw_wakeup_task(struct work_struct *work) { struct ks_wlan_private *priv = container_of(work, struct ks_wlan_private, ks_wlan_wakeup_task); int ps_status = atomic_read(&priv->psstatus.status); if (ps_status == PS_SNOOZE) { ks_wlan_hw_wakeup_request(priv); if (!wait_for_completion_interruptible_timeout(&priv->psstatus.wakeup_wait, HZ / 50)) { /* 20ms timeout */ DPRINTK(1, "wake up timeout !!!\n"); schedule_work(&priv->ks_wlan_wakeup_task); return; } } else { DPRINTK(1, "ps_status=%d\n", ps_status); } /* power save */ if (atomic_read(&priv->sme_task.count) > 0) { DPRINTK(4, "sme task enable.\n"); tasklet_enable(&priv->sme_task); } } static int ks_wlan_do_power_save(struct ks_wlan_private *priv) { int rc = 0; DPRINTK(4, "psstatus.status=%d\n", atomic_read(&priv->psstatus.status)); if ((priv->connect_status & CONNECT_STATUS_MASK) == CONNECT_STATUS) { hostif_sme_enqueue(priv, SME_POW_MNGMT_REQUEST); } else { priv->dev_state = DEVICE_STATE_READY; } return rc; } static int get_current_ap(struct ks_wlan_private *priv, struct link_ap_info_t *ap_info) { struct local_ap_t *ap; union iwreq_data wrqu; struct net_device *netdev = priv->net_dev; int rc = 0; DPRINTK(3, "\n"); ap = &(priv->current_ap); if ((priv->connect_status & CONNECT_STATUS_MASK) == DISCONNECT_STATUS) { memset(ap, 0, sizeof(struct local_ap_t)); return 1; } /* bssid */ memcpy(&(ap->bssid[0]), &(ap_info->bssid[0]), ETH_ALEN); /* essid */ memcpy(&(ap->ssid.body[0]), &(priv->reg.ssid.body[0]), priv->reg.ssid.size); ap->ssid.size = priv->reg.ssid.size; /* rate_set */ memcpy(&(ap->rate_set.body[0]), &(ap_info->rate_set.body[0]), ap_info->rate_set.size); ap->rate_set.size = ap_info->rate_set.size; if (ap_info->ext_rate_set.size) { /* rate_set */ memcpy(&(ap->rate_set.body[ap->rate_set.size]), &(ap_info->ext_rate_set.body[0]), ap_info->ext_rate_set.size); ap->rate_set.size += ap_info->ext_rate_set.size; } /* channel */ ap->channel = ap_info->ds_parameter.channel; /* rssi */ ap->rssi = ap_info->rssi; /* sq */ ap->sq = ap_info->sq; /* noise */ ap->noise = ap_info->noise; /* capability */ ap->capability = ap_info->capability; /* rsn */ if ((ap_info->rsn_mode & RSN_MODE_WPA2) && (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)) { ap->rsn_ie.id = 0x30; if (ap_info->rsn.size <= RSN_IE_BODY_MAX) { ap->rsn_ie.size = ap_info->rsn.size; memcpy(&(ap->rsn_ie.body[0]), &(ap_info->rsn.body[0]), ap_info->rsn.size); } else { ap->rsn_ie.size = RSN_IE_BODY_MAX; memcpy(&(ap->rsn_ie.body[0]), &(ap_info->rsn.body[0]), RSN_IE_BODY_MAX); } } else if ((ap_info->rsn_mode & RSN_MODE_WPA) && (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA)) { ap->wpa_ie.id = 0xdd; if (ap_info->rsn.size <= RSN_IE_BODY_MAX) { ap->wpa_ie.size = ap_info->rsn.size; memcpy(&(ap->wpa_ie.body[0]), &(ap_info->rsn.body[0]), ap_info->rsn.size); } else { ap->wpa_ie.size = RSN_IE_BODY_MAX; memcpy(&(ap->wpa_ie.body[0]), &(ap_info->rsn.body[0]), RSN_IE_BODY_MAX); } } else { ap->rsn_ie.id = 0; ap->rsn_ie.size = 0; ap->wpa_ie.id = 0; ap->wpa_ie.size = 0; } wrqu.data.length = 0; wrqu.data.flags = 0; wrqu.ap_addr.sa_family = ARPHRD_ETHER; if ((priv->connect_status & CONNECT_STATUS_MASK) == CONNECT_STATUS) { memcpy(wrqu.ap_addr.sa_data, &(priv->current_ap.bssid[0]), ETH_ALEN); DPRINTK(3, "IWEVENT: connect bssid=%02x:%02x:%02x:%02x:%02x:%02x\n", (unsigned char)wrqu.ap_addr.sa_data[0], (unsigned char)wrqu.ap_addr.sa_data[1], (unsigned char)wrqu.ap_addr.sa_data[2], (unsigned char)wrqu.ap_addr.sa_data[3], (unsigned char)wrqu.ap_addr.sa_data[4], (unsigned char)wrqu.ap_addr.sa_data[5]); wireless_send_event(netdev, SIOCGIWAP, &wrqu, NULL); } DPRINTK(4, "\n Link AP\n"); DPRINTK(4, " bssid=%02X:%02X:%02X:%02X:%02X:%02X\n \ essid=%s\n rate_set=%02X,%02X,%02X,%02X,%02X,%02X,%02X,%02X\n channel=%d\n \ rssi=%d\n sq=%d\n capability=%04X\n", ap->bssid[0], ap->bssid[1], ap->bssid[2], ap->bssid[3], ap->bssid[4], ap->bssid[5], &(ap->ssid.body[0]), ap->rate_set.body[0], ap->rate_set.body[1], ap->rate_set.body[2], ap->rate_set.body[3], ap->rate_set.body[4], ap->rate_set.body[5], ap->rate_set.body[6], ap->rate_set.body[7], ap->channel, ap->rssi, ap->sq, ap->capability); DPRINTK(4, "\n Link AP\n rsn.mode=%d\n rsn.size=%d\n", ap_info->rsn_mode, ap_info->rsn.size); DPRINTK(4, "\n ext_rate_set_size=%d\n rate_set_size=%d\n", ap_info->ext_rate_set.size, ap_info->rate_set.size); return rc; } static int get_ap_information(struct ks_wlan_private *priv, struct ap_info_t *ap_info, struct local_ap_t *ap) { unsigned char *bp; int bsize, offset; int rc = 0; DPRINTK(3, "\n"); memset(ap, 0, sizeof(struct local_ap_t)); /* bssid */ memcpy(&(ap->bssid[0]), &(ap_info->bssid[0]), ETH_ALEN); /* rssi */ ap->rssi = ap_info->rssi; /* sq */ ap->sq = ap_info->sq; /* noise */ ap->noise = ap_info->noise; /* capability */ ap->capability = ap_info->capability; /* channel */ ap->channel = ap_info->ch_info; bp = &(ap_info->body[0]); bsize = ap_info->body_size; offset = 0; while (bsize > offset) { /* DPRINTK(4, "Element ID=%d \n",*bp); */ switch (*bp) { case 0: /* ssid */ if (*(bp + 1) <= SSID_MAX_SIZE) { ap->ssid.size = *(bp + 1); } else { DPRINTK(1, "size over :: ssid size=%d \n", *(bp + 1)); ap->ssid.size = SSID_MAX_SIZE; } memcpy(&(ap->ssid.body[0]), bp + 2, ap->ssid.size); break; case 1: /* rate */ case 50: /* ext rate */ if ((*(bp + 1) + ap->rate_set.size) <= RATE_SET_MAX_SIZE) { memcpy(&(ap->rate_set.body[ap->rate_set.size]), bp + 2, *(bp + 1)); ap->rate_set.size += *(bp + 1); } else { DPRINTK(1, "size over :: rate size=%d \n", (*(bp + 1) + ap->rate_set.size)); memcpy(&(ap->rate_set.body[ap->rate_set.size]), bp + 2, RATE_SET_MAX_SIZE - ap->rate_set.size); ap->rate_set.size += (RATE_SET_MAX_SIZE - ap->rate_set.size); } break; case 3: /* DS parameter */ break; case 48: /* RSN(WPA2) */ ap->rsn_ie.id = *bp; if (*(bp + 1) <= RSN_IE_BODY_MAX) { ap->rsn_ie.size = *(bp + 1); } else { DPRINTK(1, "size over :: rsn size=%d \n", *(bp + 1)); ap->rsn_ie.size = RSN_IE_BODY_MAX; } memcpy(&(ap->rsn_ie.body[0]), bp + 2, ap->rsn_ie.size); break; case 221: /* WPA */ if (!memcmp(bp + 2, "\x00\x50\xf2\x01", 4)) { /* WPA OUI check */ ap->wpa_ie.id = *bp; if (*(bp + 1) <= RSN_IE_BODY_MAX) { ap->wpa_ie.size = *(bp + 1); } else { DPRINTK(1, "size over :: wpa size=%d \n", *(bp + 1)); ap->wpa_ie.size = RSN_IE_BODY_MAX; } memcpy(&(ap->wpa_ie.body[0]), bp + 2, ap->wpa_ie.size); } break; case 2: /* FH parameter */ case 4: /* CF parameter */ case 5: /* TIM */ case 6: /* IBSS parameter */ case 7: /* Country */ case 42: /* ERP information */ case 47: /* Reserve ID 47 Broadcom AP */ break; default: DPRINTK(4, "unknown Element ID=%d \n", *bp); break; } offset += 2; /* id & size field */ offset += *(bp + 1); /* +size offset */ bp += (*(bp + 1) + 2); /* pointer update */ } return rc; } static void hostif_data_indication(struct ks_wlan_private *priv) { unsigned int rx_ind_size; /* indicate data size */ struct sk_buff *skb; unsigned short auth_type; unsigned char temp[256]; unsigned char RecvMIC[8]; char buf[128]; struct ether_hdr *eth_hdr; unsigned short eth_proto; unsigned long now; struct mic_failure_t *mic_failure; struct ieee802_1x_hdr *aa1x_hdr; struct wpa_eapol_key *eap_key; struct michel_mic_t michel_mic; union iwreq_data wrqu; DPRINTK(3, "\n"); /* min length check */ if (priv->rx_size <= ETH_HLEN) { DPRINTK(3, "rx_size = %d\n", priv->rx_size); priv->nstats.rx_errors++; return; } auth_type = get_WORD(priv); /* AuthType */ get_WORD(priv); /* Reserve Area */ eth_hdr = (struct ether_hdr *)(priv->rxp); eth_proto = ntohs(eth_hdr->h_proto); DPRINTK(3, "ether protocol = %04X\n", eth_proto); /* source address check */ if (!memcmp(&priv->eth_addr[0], eth_hdr->h_source, ETH_ALEN)) { DPRINTK(1, "invalid : source is own mac address !!\n"); DPRINTK(1, "eth_hdrernet->h_dest=%02X:%02X:%02X:%02X:%02X:%02X\n", eth_hdr->h_source[0], eth_hdr->h_source[1], eth_hdr->h_source[2], eth_hdr->h_source[3], eth_hdr->h_source[4], eth_hdr->h_source[5]); priv->nstats.rx_errors++; return; } /* for WPA */ if (auth_type != TYPE_DATA && priv->wpa.rsn_enabled) { if (memcmp(ð_hdr->h_source[0], &priv->eth_addr[0], ETH_ALEN)) { /* source address check */ if (eth_hdr->h_dest_snap != eth_hdr->h_source_snap) { DPRINTK(1, "invalid data format\n"); priv->nstats.rx_errors++; return; } if (((auth_type == TYPE_PMK1 && priv->wpa.pairwise_suite == IW_AUTH_CIPHER_TKIP) || (auth_type == TYPE_GMK1 && priv->wpa. group_suite == IW_AUTH_CIPHER_TKIP) || (auth_type == TYPE_GMK2 && priv->wpa.group_suite == IW_AUTH_CIPHER_TKIP)) && priv->wpa.key[auth_type - 1].key_len) { DPRINTK(4, "TKIP: protocol=%04X: size=%u\n", eth_proto, priv->rx_size); /* MIC save */ memcpy(&RecvMIC[0], (priv->rxp) + ((priv->rx_size) - 8), 8); priv->rx_size = priv->rx_size - 8; if (auth_type > 0 && auth_type < 4) { /* auth_type check */ MichaelMICFunction(&michel_mic, (uint8_t *) priv->wpa.key[auth_type - 1].rx_mic_key, (uint8_t *) priv->rxp, (int)priv->rx_size, (uint8_t) 0, /* priority */ (uint8_t *) michel_mic.Result); } if (memcmp(michel_mic.Result, RecvMIC, 8)) { now = jiffies; mic_failure = &priv->wpa.mic_failure; /* MIC FAILURE */ if (mic_failure->last_failure_time && (now - mic_failure->last_failure_time) / HZ >= 60) { mic_failure->failure = 0; } DPRINTK(4, "MIC FAILURE \n"); if (mic_failure->failure == 0) { mic_failure->failure = 1; mic_failure->counter = 0; } else if (mic_failure->failure == 1) { mic_failure->failure = 2; mic_failure->counter = (uint16_t) ((now - mic_failure-> last_failure_time) / HZ); if (!mic_failure->counter) /* mic_failure counter value range 1-60 */ mic_failure->counter = 1; } priv->wpa.mic_failure. last_failure_time = now; /* needed parameters: count, keyid, key type, TSC */ sprintf(buf, "MLME-MICHAELMICFAILURE.indication(keyid=%d %scast addr=" "%02x:%02x:%02x:%02x:%02x:%02x)", auth_type - 1, eth_hdr-> h_dest[0] & 0x01 ? "broad" : "uni", eth_hdr->h_source[0], eth_hdr->h_source[1], eth_hdr->h_source[2], eth_hdr->h_source[3], eth_hdr->h_source[4], eth_hdr->h_source[5]); memset(&wrqu, 0, sizeof(wrqu)); wrqu.data.length = strlen(buf); DPRINTK(4, "IWEVENT:MICHAELMICFAILURE\n"); wireless_send_event(priv->net_dev, IWEVCUSTOM, &wrqu, buf); return; } } } } if ((priv->connect_status & FORCE_DISCONNECT) || priv->wpa.mic_failure.failure == 2) { return; } /* check 13th byte at rx data */ switch (*(priv->rxp + 12)) { case 0xAA: /* SNAP */ rx_ind_size = priv->rx_size - 6; skb = dev_alloc_skb(rx_ind_size); DPRINTK(4, "SNAP, rx_ind_size = %d\n", rx_ind_size); if (skb) { memcpy(skb_put(skb, 12), priv->rxp, 12); /* 8802/FDDI MAC copy */ /* (SNAP+UI..) skip */ memcpy(skb_put(skb, rx_ind_size - 12), priv->rxp + 18, rx_ind_size - 12); /* copy after Type */ aa1x_hdr = (struct ieee802_1x_hdr *)(priv->rxp + 20); if (aa1x_hdr->type == IEEE802_1X_TYPE_EAPOL_KEY && priv->wpa.rsn_enabled) { eap_key = (struct wpa_eapol_key *)(aa1x_hdr + 1); atomic_set(&priv->psstatus.snooze_guard, 1); } /* rx indication */ skb->dev = priv->net_dev; skb->protocol = eth_type_trans(skb, skb->dev); priv->nstats.rx_packets++; priv->nstats.rx_bytes += rx_ind_size; skb->dev->last_rx = jiffies; netif_rx(skb); } else { printk(KERN_WARNING "%s: Memory squeeze, dropping packet.\n", skb->dev->name); priv->nstats.rx_dropped++; } break; case 0xF0: /* NETBEUI/NetBIOS */ rx_ind_size = (priv->rx_size + 2); skb = dev_alloc_skb(rx_ind_size); DPRINTK(3, "NETBEUI/NetBIOS rx_ind_size=%d\n", rx_ind_size); if (skb) { memcpy(skb_put(skb, 12), priv->rxp, 12); /* 8802/FDDI MAC copy */ temp[0] = (((rx_ind_size - 12) >> 8) & 0xff); /* NETBEUI size add */ temp[1] = ((rx_ind_size - 12) & 0xff); memcpy(skb_put(skb, 2), temp, 2); memcpy(skb_put(skb, rx_ind_size - 14), priv->rxp + 12, rx_ind_size - 14); /* copy after Type */ aa1x_hdr = (struct ieee802_1x_hdr *)(priv->rxp + 14); if (aa1x_hdr->type == IEEE802_1X_TYPE_EAPOL_KEY && priv->wpa.rsn_enabled) { eap_key = (struct wpa_eapol_key *)(aa1x_hdr + 1); atomic_set(&priv->psstatus.snooze_guard, 1); } /* rx indication */ skb->dev = priv->net_dev; skb->protocol = eth_type_trans(skb, skb->dev); priv->nstats.rx_packets++; priv->nstats.rx_bytes += rx_ind_size; skb->dev->last_rx = jiffies; netif_rx(skb); } else { printk(KERN_WARNING "%s: Memory squeeze, dropping packet.\n", skb->dev->name); priv->nstats.rx_dropped++; } break; default: /* other rx data */ DPRINTK(2, "invalid data format\n"); priv->nstats.rx_errors++; } } static void hostif_mib_get_confirm(struct ks_wlan_private *priv) { struct net_device *dev = priv->net_dev; uint32_t mib_status; uint32_t mib_attribute; uint16_t mib_val_size; uint16_t mib_val_type; DPRINTK(3, "\n"); mib_status = get_DWORD(priv); /* MIB status */ mib_attribute = get_DWORD(priv); /* MIB atttibute */ mib_val_size = get_WORD(priv); /* MIB value size */ mib_val_type = get_WORD(priv); /* MIB value type */ if (mib_status != 0) { /* in case of error */ DPRINTK(1, "attribute=%08X, status=%08X\n", mib_attribute, mib_status); return; } switch (mib_attribute) { case DOT11_MAC_ADDRESS: /* MAC address */ DPRINTK(3, " mib_attribute=DOT11_MAC_ADDRESS\n"); hostif_sme_enqueue(priv, SME_GET_MAC_ADDRESS); memcpy(priv->eth_addr, priv->rxp, ETH_ALEN); priv->mac_address_valid = 1; dev->dev_addr[0] = priv->eth_addr[0]; dev->dev_addr[1] = priv->eth_addr[1]; dev->dev_addr[2] = priv->eth_addr[2]; dev->dev_addr[3] = priv->eth_addr[3]; dev->dev_addr[4] = priv->eth_addr[4]; dev->dev_addr[5] = priv->eth_addr[5]; dev->dev_addr[6] = 0x00; dev->dev_addr[7] = 0x00; printk(KERN_INFO "ks_wlan: MAC ADDRESS = %02x:%02x:%02x:%02x:%02x:%02x\n", priv->eth_addr[0], priv->eth_addr[1], priv->eth_addr[2], priv->eth_addr[3], priv->eth_addr[4], priv->eth_addr[5]); break; case DOT11_PRODUCT_VERSION: /* firmware version */ DPRINTK(3, " mib_attribute=DOT11_PRODUCT_VERSION\n"); priv->version_size = priv->rx_size; memcpy(priv->firmware_version, priv->rxp, priv->rx_size); priv->firmware_version[priv->rx_size] = '\0'; printk(KERN_INFO "ks_wlan: firmware ver. = %s\n", priv->firmware_version); hostif_sme_enqueue(priv, SME_GET_PRODUCT_VERSION); /* wake_up_interruptible_all(&priv->confirm_wait); */ complete(&priv->confirm_wait); break; case LOCAL_GAIN: memcpy(&priv->gain, priv->rxp, sizeof(priv->gain)); DPRINTK(3, "TxMode=%d, RxMode=%d, TxGain=%d, RxGain=%d\n", priv->gain.TxMode, priv->gain.RxMode, priv->gain.TxGain, priv->gain.RxGain); break; case LOCAL_EEPROM_SUM: memcpy(&priv->eeprom_sum, priv->rxp, sizeof(priv->eeprom_sum)); DPRINTK(1, "eeprom_sum.type=%x, eeprom_sum.result=%x\n", priv->eeprom_sum.type, priv->eeprom_sum.result); if (priv->eeprom_sum.type == 0) { priv->eeprom_checksum = EEPROM_CHECKSUM_NONE; } else if (priv->eeprom_sum.type == 1) { if (priv->eeprom_sum.result == 0) { priv->eeprom_checksum = EEPROM_NG; printk("LOCAL_EEPROM_SUM NG\n"); } else if (priv->eeprom_sum.result == 1) { priv->eeprom_checksum = EEPROM_OK; } } else { printk("LOCAL_EEPROM_SUM error!\n"); } break; default: DPRINTK(1, "mib_attribute=%08x\n", (unsigned int)mib_attribute); break; } } static void hostif_mib_set_confirm(struct ks_wlan_private *priv) { uint32_t mib_status; /* +04 MIB Status */ uint32_t mib_attribute; /* +08 MIB attribute */ DPRINTK(3, "\n"); mib_status = get_DWORD(priv); /* MIB Status */ mib_attribute = get_DWORD(priv); /* MIB attribute */ if (mib_status != 0) { /* in case of error */ DPRINTK(1, "error :: attribute=%08X, status=%08X\n", mib_attribute, mib_status); } switch (mib_attribute) { case DOT11_RTS_THRESHOLD: hostif_sme_enqueue(priv, SME_RTS_THRESHOLD_CONFIRM); break; case DOT11_FRAGMENTATION_THRESHOLD: hostif_sme_enqueue(priv, SME_FRAGMENTATION_THRESHOLD_CONFIRM); break; case DOT11_WEP_DEFAULT_KEY_ID: if (!priv->wpa.wpa_enabled) hostif_sme_enqueue(priv, SME_WEP_INDEX_CONFIRM); break; case DOT11_WEP_DEFAULT_KEY_VALUE1: DPRINTK(2, "DOT11_WEP_DEFAULT_KEY_VALUE1:mib_status=%d\n", (int)mib_status); if (priv->wpa.rsn_enabled) hostif_sme_enqueue(priv, SME_SET_PMK_TSC); else hostif_sme_enqueue(priv, SME_WEP_KEY1_CONFIRM); break; case DOT11_WEP_DEFAULT_KEY_VALUE2: DPRINTK(2, "DOT11_WEP_DEFAULT_KEY_VALUE2:mib_status=%d\n", (int)mib_status); if (priv->wpa.rsn_enabled) hostif_sme_enqueue(priv, SME_SET_GMK1_TSC); else hostif_sme_enqueue(priv, SME_WEP_KEY2_CONFIRM); break; case DOT11_WEP_DEFAULT_KEY_VALUE3: DPRINTK(2, "DOT11_WEP_DEFAULT_KEY_VALUE3:mib_status=%d\n", (int)mib_status); if (priv->wpa.rsn_enabled) hostif_sme_enqueue(priv, SME_SET_GMK2_TSC); else hostif_sme_enqueue(priv, SME_WEP_KEY3_CONFIRM); break; case DOT11_WEP_DEFAULT_KEY_VALUE4: DPRINTK(2, "DOT11_WEP_DEFAULT_KEY_VALUE4:mib_status=%d\n", (int)mib_status); if (!priv->wpa.rsn_enabled) hostif_sme_enqueue(priv, SME_WEP_KEY4_CONFIRM); break; case DOT11_PRIVACY_INVOKED: if (!priv->wpa.rsn_enabled) hostif_sme_enqueue(priv, SME_WEP_FLAG_CONFIRM); break; case DOT11_RSN_ENABLED: DPRINTK(2, "DOT11_RSN_ENABLED:mib_status=%d\n", (int)mib_status); hostif_sme_enqueue(priv, SME_RSN_ENABLED_CONFIRM); break; case LOCAL_RSN_MODE: hostif_sme_enqueue(priv, SME_RSN_MODE_CONFIRM); break; case LOCAL_MULTICAST_ADDRESS: hostif_sme_enqueue(priv, SME_MULTICAST_REQUEST); break; case LOCAL_MULTICAST_FILTER: hostif_sme_enqueue(priv, SME_MULTICAST_CONFIRM); break; case LOCAL_CURRENTADDRESS: priv->mac_address_valid = 1; break; case DOT11_RSN_CONFIG_MULTICAST_CIPHER: DPRINTK(2, "DOT11_RSN_CONFIG_MULTICAST_CIPHER:mib_status=%d\n", (int)mib_status); hostif_sme_enqueue(priv, SME_RSN_MCAST_CONFIRM); break; case DOT11_RSN_CONFIG_UNICAST_CIPHER: DPRINTK(2, "DOT11_RSN_CONFIG_UNICAST_CIPHER:mib_status=%d\n", (int)mib_status); hostif_sme_enqueue(priv, SME_RSN_UCAST_CONFIRM); break; case DOT11_RSN_CONFIG_AUTH_SUITE: DPRINTK(2, "DOT11_RSN_CONFIG_AUTH_SUITE:mib_status=%d\n", (int)mib_status); hostif_sme_enqueue(priv, SME_RSN_AUTH_CONFIRM); break; case DOT11_PMK_TSC: DPRINTK(2, "DOT11_PMK_TSC:mib_status=%d\n", (int)mib_status); break; case DOT11_GMK1_TSC: DPRINTK(2, "DOT11_GMK1_TSC:mib_status=%d\n", (int)mib_status); if (atomic_read(&priv->psstatus.snooze_guard)) { atomic_set(&priv->psstatus.snooze_guard, 0); } break; case DOT11_GMK2_TSC: DPRINTK(2, "DOT11_GMK2_TSC:mib_status=%d\n", (int)mib_status); if (atomic_read(&priv->psstatus.snooze_guard)) { atomic_set(&priv->psstatus.snooze_guard, 0); } break; case LOCAL_PMK: DPRINTK(2, "LOCAL_PMK:mib_status=%d\n", (int)mib_status); break; case LOCAL_GAIN: DPRINTK(2, "LOCAL_GAIN:mib_status=%d\n", (int)mib_status); break; #ifdef WPS case LOCAL_WPS_ENABLE: DPRINTK(2, "LOCAL_WPS_ENABLE:mib_status=%d\n", (int)mib_status); break; case LOCAL_WPS_PROBE_REQ: DPRINTK(2, "LOCAL_WPS_PROBE_REQ:mib_status=%d\n", (int)mib_status); break; #endif /* WPS */ case LOCAL_REGION: DPRINTK(2, "LOCAL_REGION:mib_status=%d\n", (int)mib_status); default: break; } } static void hostif_power_mngmt_confirm(struct ks_wlan_private *priv) { DPRINTK(3, "\n"); if (priv->reg.powermgt > POWMGT_ACTIVE_MODE && priv->reg.operation_mode == MODE_INFRASTRUCTURE) { atomic_set(&priv->psstatus.confirm_wait, 0); priv->dev_state = DEVICE_STATE_SLEEP; ks_wlan_hw_power_save(priv); } else { priv->dev_state = DEVICE_STATE_READY; } } static void hostif_sleep_confirm(struct ks_wlan_private *priv) { DPRINTK(3, "\n"); atomic_set(&priv->sleepstatus.doze_request, 1); queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq, &priv->ks_wlan_hw.rw_wq, 1); } static void hostif_start_confirm(struct ks_wlan_private *priv) { #ifdef WPS union iwreq_data wrqu; wrqu.data.length = 0; wrqu.data.flags = 0; wrqu.ap_addr.sa_family = ARPHRD_ETHER; if ((priv->connect_status & CONNECT_STATUS_MASK) == CONNECT_STATUS) { memset(wrqu.ap_addr.sa_data, '\0', ETH_ALEN); DPRINTK(3, "IWEVENT: disconnect\n"); wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); } #endif DPRINTK(3, " scan_ind_count=%d\n", priv->scan_ind_count); hostif_sme_enqueue(priv, SME_START_CONFIRM); } static void hostif_connect_indication(struct ks_wlan_private *priv) { unsigned short connect_code; unsigned int tmp = 0; unsigned int old_status = priv->connect_status; struct net_device *netdev = priv->net_dev; union iwreq_data wrqu0; connect_code = get_WORD(priv); switch (connect_code) { case RESULT_CONNECT: /* connect */ DPRINTK(3, "connect :: scan_ind_count=%d\n", priv->scan_ind_count); if (!(priv->connect_status & FORCE_DISCONNECT)) netif_carrier_on(netdev); tmp = FORCE_DISCONNECT & priv->connect_status; priv->connect_status = tmp + CONNECT_STATUS; break; case RESULT_DISCONNECT: /* disconnect */ DPRINTK(3, "disconnect :: scan_ind_count=%d\n", priv->scan_ind_count); netif_carrier_off(netdev); tmp = FORCE_DISCONNECT & priv->connect_status; priv->connect_status = tmp + DISCONNECT_STATUS; break; default: DPRINTK(1, "unknown connect_code=%d :: scan_ind_count=%d\n", connect_code, priv->scan_ind_count); netif_carrier_off(netdev); tmp = FORCE_DISCONNECT & priv->connect_status; priv->connect_status = tmp + DISCONNECT_STATUS; break; } get_current_ap(priv, (struct link_ap_info_t *)priv->rxp); if ((priv->connect_status & CONNECT_STATUS_MASK) == CONNECT_STATUS && (old_status & CONNECT_STATUS_MASK) == DISCONNECT_STATUS) { /* for power save */ atomic_set(&priv->psstatus.snooze_guard, 0); atomic_set(&priv->psstatus.confirm_wait, 0); } ks_wlan_do_power_save(priv); wrqu0.data.length = 0; wrqu0.data.flags = 0; wrqu0.ap_addr.sa_family = ARPHRD_ETHER; if ((priv->connect_status & CONNECT_STATUS_MASK) == DISCONNECT_STATUS && (old_status & CONNECT_STATUS_MASK) == CONNECT_STATUS) { memset(wrqu0.ap_addr.sa_data, '\0', ETH_ALEN); DPRINTK(3, "IWEVENT: disconnect\n"); DPRINTK(3, "disconnect :: scan_ind_count=%d\n", priv->scan_ind_count); wireless_send_event(netdev, SIOCGIWAP, &wrqu0, NULL); } priv->scan_ind_count = 0; } static void hostif_scan_indication(struct ks_wlan_private *priv) { int i; struct ap_info_t *ap_info; DPRINTK(3, "scan_ind_count = %d\n", priv->scan_ind_count); ap_info = (struct ap_info_t *)(priv->rxp); if (priv->scan_ind_count != 0) { for (i = 0; i < priv->aplist.size; i++) { /* bssid check */ if (!memcmp (&(ap_info->bssid[0]), &(priv->aplist.ap[i].bssid[0]), ETH_ALEN)) { if (ap_info->frame_type == FRAME_TYPE_PROBE_RESP) get_ap_information(priv, ap_info, &(priv->aplist. ap[i])); return; } } } priv->scan_ind_count++; if (priv->scan_ind_count < LOCAL_APLIST_MAX + 1) { DPRINTK(4, " scan_ind_count=%d :: aplist.size=%d\n", priv->scan_ind_count, priv->aplist.size); get_ap_information(priv, (struct ap_info_t *)(priv->rxp), &(priv->aplist. ap[priv->scan_ind_count - 1])); priv->aplist.size = priv->scan_ind_count; } else { DPRINTK(4, " count over :: scan_ind_count=%d\n", priv->scan_ind_count); } } static void hostif_stop_confirm(struct ks_wlan_private *priv) { unsigned int tmp = 0; unsigned int old_status = priv->connect_status; struct net_device *netdev = priv->net_dev; union iwreq_data wrqu0; DPRINTK(3, "\n"); if (priv->dev_state == DEVICE_STATE_SLEEP) priv->dev_state = DEVICE_STATE_READY; /* disconnect indication */ if ((priv->connect_status & CONNECT_STATUS_MASK) == CONNECT_STATUS) { netif_carrier_off(netdev); tmp = FORCE_DISCONNECT & priv->connect_status; priv->connect_status = tmp | DISCONNECT_STATUS; printk("IWEVENT: disconnect\n"); wrqu0.data.length = 0; wrqu0.data.flags = 0; wrqu0.ap_addr.sa_family = ARPHRD_ETHER; if ((priv->connect_status & CONNECT_STATUS_MASK) == DISCONNECT_STATUS && (old_status & CONNECT_STATUS_MASK) == CONNECT_STATUS) { memset(wrqu0.ap_addr.sa_data, '\0', ETH_ALEN); DPRINTK(3, "IWEVENT: disconnect\n"); printk("IWEVENT: disconnect\n"); DPRINTK(3, "disconnect :: scan_ind_count=%d\n", priv->scan_ind_count); wireless_send_event(netdev, SIOCGIWAP, &wrqu0, NULL); } priv->scan_ind_count = 0; } hostif_sme_enqueue(priv, SME_STOP_CONFIRM); } static void hostif_ps_adhoc_set_confirm(struct ks_wlan_private *priv) { DPRINTK(3, "\n"); priv->infra_status = 0; /* infrastructure mode cancel */ hostif_sme_enqueue(priv, SME_MODE_SET_CONFIRM); } static void hostif_infrastructure_set_confirm(struct ks_wlan_private *priv) { uint16_t result_code; DPRINTK(3, "\n"); result_code = get_WORD(priv); DPRINTK(3, "result code = %d\n", result_code); priv->infra_status = 1; /* infrastructure mode set */ hostif_sme_enqueue(priv, SME_MODE_SET_CONFIRM); } static void hostif_adhoc_set_confirm(struct ks_wlan_private *priv) { DPRINTK(3, "\n"); priv->infra_status = 1; /* infrastructure mode set */ hostif_sme_enqueue(priv, SME_MODE_SET_CONFIRM); } static void hostif_associate_indication(struct ks_wlan_private *priv) { struct association_request_t *assoc_req; struct association_response_t *assoc_resp; unsigned char *pb; union iwreq_data wrqu; char buf[IW_CUSTOM_MAX]; char *pbuf = &buf[0]; int i; static const char associnfo_leader0[] = "ASSOCINFO(ReqIEs="; static const char associnfo_leader1[] = " RespIEs="; DPRINTK(3, "\n"); assoc_req = (struct association_request_t *)(priv->rxp); assoc_resp = (struct association_response_t *)(assoc_req + 1); pb = (unsigned char *)(assoc_resp + 1); memset(&wrqu, 0, sizeof(wrqu)); memcpy(pbuf, associnfo_leader0, sizeof(associnfo_leader0) - 1); wrqu.data.length += sizeof(associnfo_leader0) - 1; pbuf += sizeof(associnfo_leader0) - 1; for (i = 0; i < assoc_req->reqIEs_size; i++) pbuf += sprintf(pbuf, "%02x", *(pb + i)); wrqu.data.length += (assoc_req->reqIEs_size) * 2; memcpy(pbuf, associnfo_leader1, sizeof(associnfo_leader1) - 1); wrqu.data.length += sizeof(associnfo_leader1) - 1; pbuf += sizeof(associnfo_leader1) - 1; pb += assoc_req->reqIEs_size; for (i = 0; i < assoc_resp->respIEs_size; i++) pbuf += sprintf(pbuf, "%02x", *(pb + i)); wrqu.data.length += (assoc_resp->respIEs_size) * 2; pbuf += sprintf(pbuf, ")"); wrqu.data.length += 1; DPRINTK(3, "IWEVENT:ASSOCINFO\n"); wireless_send_event(priv->net_dev, IWEVCUSTOM, &wrqu, buf); } static void hostif_bss_scan_confirm(struct ks_wlan_private *priv) { unsigned int result_code; struct net_device *dev = priv->net_dev; union iwreq_data wrqu; result_code = get_DWORD(priv); DPRINTK(2, "result=%d :: scan_ind_count=%d\n", result_code, priv->scan_ind_count); priv->sme_i.sme_flag &= ~SME_AP_SCAN; hostif_sme_enqueue(priv, SME_BSS_SCAN_CONFIRM); wrqu.data.length = 0; wrqu.data.flags = 0; DPRINTK(3, "IWEVENT: SCAN CONFIRM\n"); wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL); priv->scan_ind_count = 0; } static void hostif_phy_information_confirm(struct ks_wlan_private *priv) { struct iw_statistics *wstats = &priv->wstats; unsigned char rssi, signal, noise; unsigned char LinkSpeed; unsigned int TransmittedFrameCount, ReceivedFragmentCount; unsigned int FailedCount, FCSErrorCount; DPRINTK(3, "\n"); rssi = get_BYTE(priv); signal = get_BYTE(priv); noise = get_BYTE(priv); LinkSpeed = get_BYTE(priv); TransmittedFrameCount = get_DWORD(priv); ReceivedFragmentCount = get_DWORD(priv); FailedCount = get_DWORD(priv); FCSErrorCount = get_DWORD(priv); DPRINTK(4, "phyinfo confirm rssi=%d signal=%d\n", rssi, signal); priv->current_rate = (LinkSpeed & RATE_MASK); wstats->qual.qual = signal; wstats->qual.level = 256 - rssi; wstats->qual.noise = 0; /* invalid noise value */ wstats->qual.updated = IW_QUAL_ALL_UPDATED | IW_QUAL_DBM; DPRINTK(3, "\n rssi=%u\n signal=%u\n LinkSpeed=%ux500Kbps\n \ TransmittedFrameCount=%u\n ReceivedFragmentCount=%u\n FailedCount=%u\n \ FCSErrorCount=%u\n", rssi, signal, LinkSpeed, TransmittedFrameCount, ReceivedFragmentCount, FailedCount, FCSErrorCount); /* wake_up_interruptible_all(&priv->confirm_wait); */ complete(&priv->confirm_wait); } static void hostif_mic_failure_confirm(struct ks_wlan_private *priv) { DPRINTK(3, "mic_failure=%u\n", priv->wpa.mic_failure.failure); hostif_sme_enqueue(priv, SME_MIC_FAILURE_CONFIRM); } static void hostif_event_check(struct ks_wlan_private *priv) { unsigned short event; DPRINTK(4, "\n"); event = get_WORD(priv); /* get event */ switch (event) { case HIF_DATA_IND: hostif_data_indication(priv); break; case HIF_MIB_GET_CONF: hostif_mib_get_confirm(priv); break; case HIF_MIB_SET_CONF: hostif_mib_set_confirm(priv); break; case HIF_POWERMGT_CONF: hostif_power_mngmt_confirm(priv); break; case HIF_SLEEP_CONF: hostif_sleep_confirm(priv); break; case HIF_START_CONF: hostif_start_confirm(priv); break; case HIF_CONNECT_IND: hostif_connect_indication(priv); break; case HIF_STOP_CONF: hostif_stop_confirm(priv); break; case HIF_PS_ADH_SET_CONF: hostif_ps_adhoc_set_confirm(priv); break; case HIF_INFRA_SET_CONF: case HIF_INFRA_SET2_CONF: hostif_infrastructure_set_confirm(priv); break; case HIF_ADH_SET_CONF: case HIF_ADH_SET2_CONF: hostif_adhoc_set_confirm(priv); break; case HIF_ASSOC_INFO_IND: hostif_associate_indication(priv); break; case HIF_MIC_FAILURE_CONF: hostif_mic_failure_confirm(priv); break; case HIF_SCAN_CONF: hostif_bss_scan_confirm(priv); break; case HIF_PHY_INFO_CONF: case HIF_PHY_INFO_IND: hostif_phy_information_confirm(priv); break; case HIF_SCAN_IND: hostif_scan_indication(priv); break; case HIF_AP_SET_CONF: default: //DPRINTK(1, "undefined event[%04X]\n", event); printk("undefined event[%04X]\n", event); /* wake_up_all(&priv->confirm_wait); */ complete(&priv->confirm_wait); break; } /* add event to hostt buffer */ priv->hostt.buff[priv->hostt.qtail] = event; priv->hostt.qtail = (priv->hostt.qtail + 1) % SME_EVENT_BUFF_SIZE; } #define CHECK_ALINE(size) (size%4 ? (size+(4-(size%4))):size) int hostif_data_request(struct ks_wlan_private *priv, struct sk_buff *packet) { unsigned int packet_len = 0; unsigned char *buffer = NULL; unsigned int length = 0; struct hostif_data_request_t *pp; unsigned char *p; int result = 0; unsigned short eth_proto; struct ether_hdr *eth_hdr; struct michel_mic_t michel_mic; unsigned short keyinfo = 0; struct ieee802_1x_hdr *aa1x_hdr; struct wpa_eapol_key *eap_key; struct ethhdr *eth; packet_len = packet->len; if (packet_len > ETH_FRAME_LEN) { DPRINTK(1, "bad length packet_len=%d \n", packet_len); dev_kfree_skb(packet); return -1; } if (((priv->connect_status & CONNECT_STATUS_MASK) == DISCONNECT_STATUS) || (priv->connect_status & FORCE_DISCONNECT) || priv->wpa.mic_failure.stop) { DPRINTK(3, " DISCONNECT\n"); if (netif_queue_stopped(priv->net_dev)) netif_wake_queue(priv->net_dev); if (packet) dev_kfree_skb(packet); return 0; } /* for PowerSave */ if (atomic_read(&priv->psstatus.status) == PS_SNOOZE) { /* power save wakeup */ if (!netif_queue_stopped(priv->net_dev)) netif_stop_queue(priv->net_dev); } DPRINTK(4, "skb_buff length=%d\n", packet_len); pp = (struct hostif_data_request_t *) kmalloc(hif_align_size(sizeof(*pp) + 6 + packet_len + 8), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); dev_kfree_skb(packet); return -2; } p = (unsigned char *)pp->data; buffer = packet->data; length = packet->len; /* packet check */ eth = (struct ethhdr *)packet->data; if (memcmp(&priv->eth_addr[0], eth->h_source, ETH_ALEN)) { DPRINTK(1, "invalid mac address !!\n"); DPRINTK(1, "ethernet->h_source=%02X:%02X:%02X:%02X:%02X:%02X\n", eth->h_source[0], eth->h_source[1], eth->h_source[2], eth->h_source[3], eth->h_source[4], eth->h_source[5]); return -3; } /* MAC address copy */ memcpy(p, buffer, 12); /* DST/SRC MAC address */ p += 12; buffer += 12; length -= 12; /* EtherType/Length check */ if (*(buffer + 1) + (*buffer << 8) > 1500) { /* ProtocolEAP = *(buffer+1) + (*buffer << 8); */ /* DPRINTK(2, "Send [SNAP]Type %x\n",ProtocolEAP); */ /* SAP/CTL/OUI(6 byte) add */ *p++ = 0xAA; /* DSAP */ *p++ = 0xAA; /* SSAP */ *p++ = 0x03; /* CTL */ *p++ = 0x00; /* OUI ("000000") */ *p++ = 0x00; /* OUI ("000000") */ *p++ = 0x00; /* OUI ("000000") */ packet_len += 6; } else { DPRINTK(4, "DIX\n"); /* Length(2 byte) delete */ buffer += 2; length -= 2; packet_len -= 2; } /* pp->data copy */ memcpy(p, buffer, length); p += length; /* for WPA */ eth_hdr = (struct ether_hdr *)&pp->data[0]; eth_proto = ntohs(eth_hdr->h_proto); /* for MIC FAILUER REPORT check */ if (eth_proto == ETHER_PROTOCOL_TYPE_EAP && priv->wpa.mic_failure.failure > 0) { aa1x_hdr = (struct ieee802_1x_hdr *)(eth_hdr + 1); if (aa1x_hdr->type == IEEE802_1X_TYPE_EAPOL_KEY) { eap_key = (struct wpa_eapol_key *)(aa1x_hdr + 1); keyinfo = ntohs(eap_key->key_info); } } if (priv->wpa.rsn_enabled && priv->wpa.key[0].key_len) { if (eth_proto == ETHER_PROTOCOL_TYPE_EAP && !(priv->wpa.key[1].key_len) && !(priv->wpa.key[2].key_len) && !(priv->wpa.key[3].key_len)) { pp->auth_type = cpu_to_le16((uint16_t) TYPE_AUTH); /* no encryption */ } else { if (priv->wpa.pairwise_suite == IW_AUTH_CIPHER_TKIP) { MichaelMICFunction(&michel_mic, (uint8_t *) priv->wpa.key[0].tx_mic_key, (uint8_t *) & pp->data[0], (int)packet_len, (uint8_t) 0, /* priority */ (uint8_t *) michel_mic. Result); memcpy(p, michel_mic.Result, 8); length += 8; packet_len += 8; p += 8; pp->auth_type = cpu_to_le16((uint16_t) TYPE_DATA); } else if (priv->wpa.pairwise_suite == IW_AUTH_CIPHER_CCMP) { pp->auth_type = cpu_to_le16((uint16_t) TYPE_DATA); } } } else { if (eth_proto == ETHER_PROTOCOL_TYPE_EAP) pp->auth_type = cpu_to_le16((uint16_t) TYPE_AUTH); else pp->auth_type = cpu_to_le16((uint16_t) TYPE_DATA); } /* header value set */ pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size) + packet_len)); pp->header.event = cpu_to_le16((uint16_t) HIF_DATA_REQ); /* tx request */ result = ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp) + packet_len), (void *)send_packet_complete, (void *)priv, (void *)packet); /* MIC FAILUER REPORT check */ if (eth_proto == ETHER_PROTOCOL_TYPE_EAP && priv->wpa.mic_failure.failure > 0) { if (keyinfo & WPA_KEY_INFO_ERROR && keyinfo & WPA_KEY_INFO_REQUEST) { DPRINTK(3, " MIC ERROR Report SET : %04X\n", keyinfo); hostif_sme_enqueue(priv, SME_MIC_FAILURE_REQUEST); } if (priv->wpa.mic_failure.failure == 2) priv->wpa.mic_failure.stop = 1; } return result; } #define ps_confirm_wait_inc(priv) do{if(atomic_read(&priv->psstatus.status) > PS_ACTIVE_SET){ \ atomic_inc(&priv->psstatus.confirm_wait); \ /* atomic_set(&priv->psstatus.status, PS_CONF_WAIT);*/ \ } }while(0) static void hostif_mib_get_request(struct ks_wlan_private *priv, unsigned long mib_attribute) { struct hostif_mib_get_request_t *pp; DPRINTK(3, "\n"); /* make primitive */ pp = (struct hostif_mib_get_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_MIB_GET_REQ); pp->mib_attribute = cpu_to_le32((uint32_t) mib_attribute); /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); } static void hostif_mib_set_request(struct ks_wlan_private *priv, unsigned long mib_attribute, unsigned short size, unsigned short type, void *vp) { struct hostif_mib_set_request_t *pp; DPRINTK(3, "\n"); if (priv->dev_state < DEVICE_STATE_BOOT) { DPRINTK(3, "DeviceRemove\n"); return; } /* make primitive */ pp = (struct hostif_mib_set_request_t *) kmalloc(hif_align_size(sizeof(*pp) + size), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size) + size)); pp->header.event = cpu_to_le16((uint16_t) HIF_MIB_SET_REQ); pp->mib_attribute = cpu_to_le32((uint32_t) mib_attribute); pp->mib_value.size = cpu_to_le16((uint16_t) size); pp->mib_value.type = cpu_to_le16((uint16_t) type); memcpy(&pp->mib_value.body, vp, size); /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp) + size), NULL, NULL, NULL); } static void hostif_start_request(struct ks_wlan_private *priv, unsigned char mode) { struct hostif_start_request_t *pp; DPRINTK(3, "\n"); /* make primitive */ pp = (struct hostif_start_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_START_REQ); pp->mode = cpu_to_le16((uint16_t) mode); /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); priv->aplist.size = 0; priv->scan_ind_count = 0; } static void hostif_ps_adhoc_set_request(struct ks_wlan_private *priv) { struct hostif_ps_adhoc_set_request_t *pp; uint16_t capability; DPRINTK(3, "\n"); /* make primitive */ pp = (struct hostif_ps_adhoc_set_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } memset(pp, 0, sizeof(*pp)); pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_PS_ADH_SET_REQ); pp->phy_type = cpu_to_le16((uint16_t) (priv->reg.phy_type)); pp->cts_mode = cpu_to_le16((uint16_t) (priv->reg.cts_mode)); pp->scan_type = cpu_to_le16((uint16_t) (priv->reg.scan_type)); pp->channel = cpu_to_le16((uint16_t) (priv->reg.channel)); pp->rate_set.size = priv->reg.rate_set.size; memcpy(&pp->rate_set.body[0], &priv->reg.rate_set.body[0], priv->reg.rate_set.size); capability = 0x0000; if (priv->reg.preamble == SHORT_PREAMBLE) { /* short preamble */ capability |= BSS_CAP_SHORT_PREAMBLE; } capability &= ~(BSS_CAP_PBCC); /* pbcc not support */ if (priv->reg.phy_type != D_11B_ONLY_MODE) { capability |= BSS_CAP_SHORT_SLOT_TIME; /* ShortSlotTime support */ capability &= ~(BSS_CAP_DSSS_OFDM); /* DSSS OFDM */ } pp->capability = cpu_to_le16((uint16_t) capability); /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); } static void hostif_infrastructure_set_request(struct ks_wlan_private *priv) { struct hostif_infrastructure_set_request_t *pp; uint16_t capability; DPRINTK(3, "ssid.size=%d \n", priv->reg.ssid.size); /* make primitive */ pp = (struct hostif_infrastructure_set_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_INFRA_SET_REQ); pp->phy_type = cpu_to_le16((uint16_t) (priv->reg.phy_type)); pp->cts_mode = cpu_to_le16((uint16_t) (priv->reg.cts_mode)); pp->scan_type = cpu_to_le16((uint16_t) (priv->reg.scan_type)); pp->rate_set.size = priv->reg.rate_set.size; memcpy(&pp->rate_set.body[0], &priv->reg.rate_set.body[0], priv->reg.rate_set.size); pp->ssid.size = priv->reg.ssid.size; memcpy(&pp->ssid.body[0], &priv->reg.ssid.body[0], priv->reg.ssid.size); capability = 0x0000; if (priv->reg.preamble == SHORT_PREAMBLE) { /* short preamble */ capability |= BSS_CAP_SHORT_PREAMBLE; } capability &= ~(BSS_CAP_PBCC); /* pbcc not support */ if (priv->reg.phy_type != D_11B_ONLY_MODE) { capability |= BSS_CAP_SHORT_SLOT_TIME; /* ShortSlotTime support */ capability &= ~(BSS_CAP_DSSS_OFDM); /* DSSS OFDM not support */ } pp->capability = cpu_to_le16((uint16_t) capability); pp->beacon_lost_count = cpu_to_le16((uint16_t) (priv->reg.beacon_lost_count)); pp->auth_type = cpu_to_le16((uint16_t) (priv->reg.authenticate_type)); pp->channel_list.body[0] = 1; pp->channel_list.body[1] = 8; pp->channel_list.body[2] = 2; pp->channel_list.body[3] = 9; pp->channel_list.body[4] = 3; pp->channel_list.body[5] = 10; pp->channel_list.body[6] = 4; pp->channel_list.body[7] = 11; pp->channel_list.body[8] = 5; pp->channel_list.body[9] = 12; pp->channel_list.body[10] = 6; pp->channel_list.body[11] = 13; pp->channel_list.body[12] = 7; if (priv->reg.phy_type == D_11G_ONLY_MODE) { pp->channel_list.size = 13; } else { pp->channel_list.body[13] = 14; pp->channel_list.size = 14; } /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); } void hostif_infrastructure_set2_request(struct ks_wlan_private *priv) { struct hostif_infrastructure_set2_request_t *pp; uint16_t capability; DPRINTK(2, "ssid.size=%d \n", priv->reg.ssid.size); /* make primitive */ pp = (struct hostif_infrastructure_set2_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_INFRA_SET2_REQ); pp->phy_type = cpu_to_le16((uint16_t) (priv->reg.phy_type)); pp->cts_mode = cpu_to_le16((uint16_t) (priv->reg.cts_mode)); pp->scan_type = cpu_to_le16((uint16_t) (priv->reg.scan_type)); pp->rate_set.size = priv->reg.rate_set.size; memcpy(&pp->rate_set.body[0], &priv->reg.rate_set.body[0], priv->reg.rate_set.size); pp->ssid.size = priv->reg.ssid.size; memcpy(&pp->ssid.body[0], &priv->reg.ssid.body[0], priv->reg.ssid.size); capability = 0x0000; if (priv->reg.preamble == SHORT_PREAMBLE) { /* short preamble */ capability |= BSS_CAP_SHORT_PREAMBLE; } capability &= ~(BSS_CAP_PBCC); /* pbcc not support */ if (priv->reg.phy_type != D_11B_ONLY_MODE) { capability |= BSS_CAP_SHORT_SLOT_TIME; /* ShortSlotTime support */ capability &= ~(BSS_CAP_DSSS_OFDM); /* DSSS OFDM not support */ } pp->capability = cpu_to_le16((uint16_t) capability); pp->beacon_lost_count = cpu_to_le16((uint16_t) (priv->reg.beacon_lost_count)); pp->auth_type = cpu_to_le16((uint16_t) (priv->reg.authenticate_type)); pp->channel_list.body[0] = 1; pp->channel_list.body[1] = 8; pp->channel_list.body[2] = 2; pp->channel_list.body[3] = 9; pp->channel_list.body[4] = 3; pp->channel_list.body[5] = 10; pp->channel_list.body[6] = 4; pp->channel_list.body[7] = 11; pp->channel_list.body[8] = 5; pp->channel_list.body[9] = 12; pp->channel_list.body[10] = 6; pp->channel_list.body[11] = 13; pp->channel_list.body[12] = 7; if (priv->reg.phy_type == D_11G_ONLY_MODE) { pp->channel_list.size = 13; } else { pp->channel_list.body[13] = 14; pp->channel_list.size = 14; } memcpy(pp->bssid, priv->reg.bssid, ETH_ALEN); /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); } static void hostif_adhoc_set_request(struct ks_wlan_private *priv) { struct hostif_adhoc_set_request_t *pp; uint16_t capability; DPRINTK(3, "\n"); /* make primitive */ pp = (struct hostif_adhoc_set_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } memset(pp, 0, sizeof(*pp)); pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_ADH_SET_REQ); pp->phy_type = cpu_to_le16((uint16_t) (priv->reg.phy_type)); pp->cts_mode = cpu_to_le16((uint16_t) (priv->reg.cts_mode)); pp->scan_type = cpu_to_le16((uint16_t) (priv->reg.scan_type)); pp->channel = cpu_to_le16((uint16_t) (priv->reg.channel)); pp->rate_set.size = priv->reg.rate_set.size; memcpy(&pp->rate_set.body[0], &priv->reg.rate_set.body[0], priv->reg.rate_set.size); pp->ssid.size = priv->reg.ssid.size; memcpy(&pp->ssid.body[0], &priv->reg.ssid.body[0], priv->reg.ssid.size); capability = 0x0000; if (priv->reg.preamble == SHORT_PREAMBLE) { /* short preamble */ capability |= BSS_CAP_SHORT_PREAMBLE; } capability &= ~(BSS_CAP_PBCC); /* pbcc not support */ if (priv->reg.phy_type != D_11B_ONLY_MODE) { capability |= BSS_CAP_SHORT_SLOT_TIME; /* ShortSlotTime support */ capability &= ~(BSS_CAP_DSSS_OFDM); /* DSSS OFDM not support */ } pp->capability = cpu_to_le16((uint16_t) capability); /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); } static void hostif_adhoc_set2_request(struct ks_wlan_private *priv) { struct hostif_adhoc_set2_request_t *pp; uint16_t capability; DPRINTK(3, "\n"); /* make primitive */ pp = (struct hostif_adhoc_set2_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } memset(pp, 0, sizeof(*pp)); pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_ADH_SET_REQ); pp->phy_type = cpu_to_le16((uint16_t) (priv->reg.phy_type)); pp->cts_mode = cpu_to_le16((uint16_t) (priv->reg.cts_mode)); pp->scan_type = cpu_to_le16((uint16_t) (priv->reg.scan_type)); pp->rate_set.size = priv->reg.rate_set.size; memcpy(&pp->rate_set.body[0], &priv->reg.rate_set.body[0], priv->reg.rate_set.size); pp->ssid.size = priv->reg.ssid.size; memcpy(&pp->ssid.body[0], &priv->reg.ssid.body[0], priv->reg.ssid.size); capability = 0x0000; if (priv->reg.preamble == SHORT_PREAMBLE) { /* short preamble */ capability |= BSS_CAP_SHORT_PREAMBLE; } capability &= ~(BSS_CAP_PBCC); /* pbcc not support */ if (priv->reg.phy_type != D_11B_ONLY_MODE) { capability |= BSS_CAP_SHORT_SLOT_TIME; /* ShortSlotTime support */ capability &= ~(BSS_CAP_DSSS_OFDM); /* DSSS OFDM not support */ } pp->capability = cpu_to_le16((uint16_t) capability); pp->channel_list.body[0] = priv->reg.channel; pp->channel_list.size = 1; memcpy(pp->bssid, priv->reg.bssid, ETH_ALEN); /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); } static void hostif_stop_request(struct ks_wlan_private *priv) { struct hostif_stop_request_t *pp; DPRINTK(3, "\n"); /* make primitive */ pp = (struct hostif_stop_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_STOP_REQ); /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); } static void hostif_phy_information_request(struct ks_wlan_private *priv) { struct hostif_phy_information_request_t *pp; DPRINTK(3, "\n"); /* make primitive */ pp = (struct hostif_phy_information_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_PHY_INFO_REQ); if (priv->reg.phy_info_timer) { pp->type = cpu_to_le16((uint16_t) TIME_TYPE); pp->time = cpu_to_le16((uint16_t) (priv->reg.phy_info_timer)); } else { pp->type = cpu_to_le16((uint16_t) NORMAL_TYPE); pp->time = cpu_to_le16((uint16_t) 0); } /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); } static void hostif_power_mngmt_request(struct ks_wlan_private *priv, unsigned long mode, unsigned long wake_up, unsigned long receiveDTIMs) { struct hostif_power_mngmt_request_t *pp; DPRINTK(3, "mode=%lu wake_up=%lu receiveDTIMs=%lu\n", mode, wake_up, receiveDTIMs); /* make primitive */ pp = (struct hostif_power_mngmt_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_POWERMGT_REQ); pp->mode = cpu_to_le32((uint32_t) mode); pp->wake_up = cpu_to_le32((uint32_t) wake_up); pp->receiveDTIMs = cpu_to_le32((uint32_t) receiveDTIMs); /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); } static void hostif_sleep_request(struct ks_wlan_private *priv, unsigned long mode) { struct hostif_sleep_request_t *pp; DPRINTK(3, "mode=%lu \n", mode); if (mode == SLP_SLEEP) { /* make primitive */ pp = (struct hostif_sleep_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_SLEEP_REQ); /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); } else if (mode == SLP_ACTIVE) { atomic_set(&priv->sleepstatus.wakeup_request, 1); queue_delayed_work(priv->ks_wlan_hw.ks7010sdio_wq, &priv->ks_wlan_hw.rw_wq, 1); } else { DPRINTK(3, "invalid mode %ld \n", mode); return; } } static void hostif_bss_scan_request(struct ks_wlan_private *priv, unsigned long scan_type, uint8_t * scan_ssid, uint8_t scan_ssid_len) { struct hostif_bss_scan_request_t *pp; DPRINTK(2, "\n"); /* make primitive */ pp = (struct hostif_bss_scan_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_SCAN_REQ); pp->scan_type = scan_type; pp->ch_time_min = cpu_to_le32((uint32_t) 110); /* default value */ pp->ch_time_max = cpu_to_le32((uint32_t) 130); /* default value */ pp->channel_list.body[0] = 1; pp->channel_list.body[1] = 8; pp->channel_list.body[2] = 2; pp->channel_list.body[3] = 9; pp->channel_list.body[4] = 3; pp->channel_list.body[5] = 10; pp->channel_list.body[6] = 4; pp->channel_list.body[7] = 11; pp->channel_list.body[8] = 5; pp->channel_list.body[9] = 12; pp->channel_list.body[10] = 6; pp->channel_list.body[11] = 13; pp->channel_list.body[12] = 7; if (priv->reg.phy_type == D_11G_ONLY_MODE) { pp->channel_list.size = 13; } else { pp->channel_list.body[13] = 14; pp->channel_list.size = 14; } pp->ssid.size = 0; /* specified SSID SCAN */ if (scan_ssid_len > 0 && scan_ssid_len <= 32) { pp->ssid.size = scan_ssid_len; memcpy(&pp->ssid.body[0], scan_ssid, scan_ssid_len); } /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); priv->aplist.size = 0; priv->scan_ind_count = 0; } static void hostif_mic_failure_request(struct ks_wlan_private *priv, unsigned short failure_count, unsigned short timer) { struct hostif_mic_failure_request_t *pp; DPRINTK(3, "count=%d :: timer=%d\n", failure_count, timer); /* make primitive */ pp = (struct hostif_mic_failure_request_t *) kmalloc(hif_align_size(sizeof(*pp)), KS_WLAN_MEM_FLAG); if (pp == NULL) { DPRINTK(3, "allocate memory failed..\n"); return; } pp->header.size = cpu_to_le16((uint16_t) (sizeof(*pp) - sizeof(pp->header.size))); pp->header.event = cpu_to_le16((uint16_t) HIF_MIC_FAILURE_REQ); pp->failure_count = cpu_to_le16((uint16_t) failure_count); pp->timer = cpu_to_le16((uint16_t) timer); /* send to device request */ ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp)), NULL, NULL, NULL); } /* Device I/O Recieve indicate */ static void devio_rec_ind(struct ks_wlan_private *priv, unsigned char *p, unsigned int size) { if (priv->device_open_status) { spin_lock(&priv->dev_read_lock); /* request spin lock */ priv->dev_data[atomic_read(&priv->rec_count)] = p; priv->dev_size[atomic_read(&priv->rec_count)] = size; if (atomic_read(&priv->event_count) != DEVICE_STOCK_COUNT) { /* rx event count inc */ atomic_inc(&priv->event_count); } atomic_inc(&priv->rec_count); if (atomic_read(&priv->rec_count) == DEVICE_STOCK_COUNT) atomic_set(&priv->rec_count, 0); wake_up_interruptible_all(&priv->devread_wait); /* release spin lock */ spin_unlock(&priv->dev_read_lock); } } void hostif_receive(struct ks_wlan_private *priv, unsigned char *p, unsigned int size) { DPRINTK(4, "\n"); devio_rec_ind(priv, p, size); priv->rxp = p; priv->rx_size = size; if (get_WORD(priv) == priv->rx_size) { /* length check !! */ hostif_event_check(priv); /* event check */ } } static void hostif_sme_set_wep(struct ks_wlan_private *priv, int type) { uint32_t val; switch (type) { case SME_WEP_INDEX_REQUEST: val = cpu_to_le32((uint32_t) (priv->reg.wep_index)); hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_ID, sizeof(val), MIB_VALUE_TYPE_INT, &val); break; case SME_WEP_KEY1_REQUEST: if (!priv->wpa.wpa_enabled) hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE1, priv->reg.wep_key[0].size, MIB_VALUE_TYPE_OSTRING, &priv->reg.wep_key[0].val[0]); break; case SME_WEP_KEY2_REQUEST: if (!priv->wpa.wpa_enabled) hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE2, priv->reg.wep_key[1].size, MIB_VALUE_TYPE_OSTRING, &priv->reg.wep_key[1].val[0]); break; case SME_WEP_KEY3_REQUEST: if (!priv->wpa.wpa_enabled) hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE3, priv->reg.wep_key[2].size, MIB_VALUE_TYPE_OSTRING, &priv->reg.wep_key[2].val[0]); break; case SME_WEP_KEY4_REQUEST: if (!priv->wpa.wpa_enabled) hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE4, priv->reg.wep_key[3].size, MIB_VALUE_TYPE_OSTRING, &priv->reg.wep_key[3].val[0]); break; case SME_WEP_FLAG_REQUEST: val = cpu_to_le32((uint32_t) (priv->reg.privacy_invoked)); hostif_mib_set_request(priv, DOT11_PRIVACY_INVOKED, sizeof(val), MIB_VALUE_TYPE_BOOL, &val); break; } return; } struct wpa_suite_t { unsigned short size; unsigned char suite[4][CIPHER_ID_LEN]; } __attribute__ ((packed)); struct rsn_mode_t { uint32_t rsn_mode; uint16_t rsn_capability; } __attribute__ ((packed)); static void hostif_sme_set_rsn(struct ks_wlan_private *priv, int type) { struct wpa_suite_t wpa_suite; struct rsn_mode_t rsn_mode; uint32_t val; memset(&wpa_suite, 0, sizeof(wpa_suite)); switch (type) { case SME_RSN_UCAST_REQUEST: wpa_suite.size = cpu_to_le16((uint16_t) 1); switch (priv->wpa.pairwise_suite) { case IW_AUTH_CIPHER_NONE: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA2_NONE, CIPHER_ID_LEN); else memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA_NONE, CIPHER_ID_LEN); break; case IW_AUTH_CIPHER_WEP40: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA2_WEP40, CIPHER_ID_LEN); else memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA_WEP40, CIPHER_ID_LEN); break; case IW_AUTH_CIPHER_TKIP: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA2_TKIP, CIPHER_ID_LEN); else memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA_TKIP, CIPHER_ID_LEN); break; case IW_AUTH_CIPHER_CCMP: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA2_CCMP, CIPHER_ID_LEN); else memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA_CCMP, CIPHER_ID_LEN); break; case IW_AUTH_CIPHER_WEP104: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA2_WEP104, CIPHER_ID_LEN); else memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA_WEP104, CIPHER_ID_LEN); break; } hostif_mib_set_request(priv, DOT11_RSN_CONFIG_UNICAST_CIPHER, sizeof(wpa_suite.size) + CIPHER_ID_LEN * wpa_suite.size, MIB_VALUE_TYPE_OSTRING, &wpa_suite); break; case SME_RSN_MCAST_REQUEST: switch (priv->wpa.group_suite) { case IW_AUTH_CIPHER_NONE: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA2_NONE, CIPHER_ID_LEN); else memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA_NONE, CIPHER_ID_LEN); break; case IW_AUTH_CIPHER_WEP40: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA2_WEP40, CIPHER_ID_LEN); else memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA_WEP40, CIPHER_ID_LEN); break; case IW_AUTH_CIPHER_TKIP: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA2_TKIP, CIPHER_ID_LEN); else memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA_TKIP, CIPHER_ID_LEN); break; case IW_AUTH_CIPHER_CCMP: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA2_CCMP, CIPHER_ID_LEN); else memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA_CCMP, CIPHER_ID_LEN); break; case IW_AUTH_CIPHER_WEP104: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA2_WEP104, CIPHER_ID_LEN); else memcpy(&wpa_suite.suite[0][0], CIPHER_ID_WPA_WEP104, CIPHER_ID_LEN); break; } hostif_mib_set_request(priv, DOT11_RSN_CONFIG_MULTICAST_CIPHER, CIPHER_ID_LEN, MIB_VALUE_TYPE_OSTRING, &wpa_suite.suite[0][0]); break; case SME_RSN_AUTH_REQUEST: wpa_suite.size = cpu_to_le16((uint16_t) 1); switch (priv->wpa.key_mgmt_suite) { case IW_AUTH_KEY_MGMT_802_1X: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], KEY_MGMT_ID_WPA2_1X, KEY_MGMT_ID_LEN); else memcpy(&wpa_suite.suite[0][0], KEY_MGMT_ID_WPA_1X, KEY_MGMT_ID_LEN); break; case IW_AUTH_KEY_MGMT_PSK: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], KEY_MGMT_ID_WPA2_PSK, KEY_MGMT_ID_LEN); else memcpy(&wpa_suite.suite[0][0], KEY_MGMT_ID_WPA_PSK, KEY_MGMT_ID_LEN); break; case 0: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], KEY_MGMT_ID_WPA2_NONE, KEY_MGMT_ID_LEN); else memcpy(&wpa_suite.suite[0][0], KEY_MGMT_ID_WPA_NONE, KEY_MGMT_ID_LEN); break; case 4: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) memcpy(&wpa_suite.suite[0][0], KEY_MGMT_ID_WPA2_WPANONE, KEY_MGMT_ID_LEN); else memcpy(&wpa_suite.suite[0][0], KEY_MGMT_ID_WPA_WPANONE, KEY_MGMT_ID_LEN); break; } hostif_mib_set_request(priv, DOT11_RSN_CONFIG_AUTH_SUITE, sizeof(wpa_suite.size) + KEY_MGMT_ID_LEN * wpa_suite.size, MIB_VALUE_TYPE_OSTRING, &wpa_suite); break; case SME_RSN_ENABLED_REQUEST: val = cpu_to_le32((uint32_t) (priv->wpa.rsn_enabled)); hostif_mib_set_request(priv, DOT11_RSN_ENABLED, sizeof(val), MIB_VALUE_TYPE_BOOL, &val); break; case SME_RSN_MODE_REQUEST: if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) { rsn_mode.rsn_mode = cpu_to_le32((uint32_t) RSN_MODE_WPA2); rsn_mode.rsn_capability = cpu_to_le16((uint16_t) 0); } else if (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA) { rsn_mode.rsn_mode = cpu_to_le32((uint32_t) RSN_MODE_WPA); rsn_mode.rsn_capability = cpu_to_le16((uint16_t) 0); } else { rsn_mode.rsn_mode = cpu_to_le32((uint32_t) RSN_MODE_NONE); rsn_mode.rsn_capability = cpu_to_le16((uint16_t) 0); } hostif_mib_set_request(priv, LOCAL_RSN_MODE, sizeof(rsn_mode), MIB_VALUE_TYPE_OSTRING, &rsn_mode); break; } return; } static void hostif_sme_mode_setup(struct ks_wlan_private *priv) { unsigned char rate_size; unsigned char rate_octet[RATE_SET_MAX_SIZE]; int i = 0; /* rate setting if rate segging is auto for changing phy_type (#94) */ if (priv->reg.tx_rate == TX_RATE_FULL_AUTO) { if (priv->reg.phy_type == D_11B_ONLY_MODE) { priv->reg.rate_set.body[3] = TX_RATE_11M; priv->reg.rate_set.body[2] = TX_RATE_5M; priv->reg.rate_set.body[1] = TX_RATE_2M | BASIC_RATE; priv->reg.rate_set.body[0] = TX_RATE_1M | BASIC_RATE; priv->reg.rate_set.size = 4; } else { /* D_11G_ONLY_MODE or D_11BG_COMPATIBLE_MODE */ priv->reg.rate_set.body[11] = TX_RATE_54M; priv->reg.rate_set.body[10] = TX_RATE_48M; priv->reg.rate_set.body[9] = TX_RATE_36M; priv->reg.rate_set.body[8] = TX_RATE_18M; priv->reg.rate_set.body[7] = TX_RATE_9M; priv->reg.rate_set.body[6] = TX_RATE_24M | BASIC_RATE; priv->reg.rate_set.body[5] = TX_RATE_12M | BASIC_RATE; priv->reg.rate_set.body[4] = TX_RATE_6M | BASIC_RATE; priv->reg.rate_set.body[3] = TX_RATE_11M | BASIC_RATE; priv->reg.rate_set.body[2] = TX_RATE_5M | BASIC_RATE; priv->reg.rate_set.body[1] = TX_RATE_2M | BASIC_RATE; priv->reg.rate_set.body[0] = TX_RATE_1M | BASIC_RATE; priv->reg.rate_set.size = 12; } } /* rate mask by phy setting */ if (priv->reg.phy_type == D_11B_ONLY_MODE) { for (i = 0; i < priv->reg.rate_set.size; i++) { if (IS_11B_RATE(priv->reg.rate_set.body[i])) { if ((priv->reg.rate_set.body[i] & RATE_MASK) >= TX_RATE_5M) rate_octet[i] = priv->reg.rate_set. body[i] & RATE_MASK; else rate_octet[i] = priv->reg.rate_set.body[i]; } else break; } } else { /* D_11G_ONLY_MODE or D_11BG_COMPATIBLE_MODE */ for (i = 0; i < priv->reg.rate_set.size; i++) { if (IS_11BG_RATE(priv->reg.rate_set.body[i])) { if (IS_OFDM_EXT_RATE (priv->reg.rate_set.body[i])) rate_octet[i] = priv->reg.rate_set. body[i] & RATE_MASK; else rate_octet[i] = priv->reg.rate_set.body[i]; } else break; } } rate_size = i; if (rate_size == 0) { if (priv->reg.phy_type == D_11G_ONLY_MODE) rate_octet[0] = TX_RATE_6M | BASIC_RATE; else rate_octet[0] = TX_RATE_2M | BASIC_RATE; rate_size = 1; } /* rate set update */ priv->reg.rate_set.size = rate_size; memcpy(&priv->reg.rate_set.body[0], &rate_octet[0], rate_size); switch (priv->reg.operation_mode) { case MODE_PSEUDO_ADHOC: /* Pseudo Ad-Hoc mode */ hostif_ps_adhoc_set_request(priv); break; case MODE_INFRASTRUCTURE: /* Infrastructure mode */ if (!is_valid_ether_addr((u8 *) priv->reg.bssid)) { hostif_infrastructure_set_request(priv); } else { hostif_infrastructure_set2_request(priv); DPRINTK(2, "Infra bssid = %02x:%02x:%02x:%02x:%02x:%02x\n", priv->reg.bssid[0], priv->reg.bssid[1], priv->reg.bssid[2], priv->reg.bssid[3], priv->reg.bssid[4], priv->reg.bssid[5]); } break; case MODE_ADHOC: /* IEEE802.11 Ad-Hoc mode */ if (!is_valid_ether_addr((u8 *) priv->reg.bssid)) { hostif_adhoc_set_request(priv); } else { hostif_adhoc_set2_request(priv); DPRINTK(2, "Adhoc bssid = %02x:%02x:%02x:%02x:%02x:%02x\n", priv->reg.bssid[0], priv->reg.bssid[1], priv->reg.bssid[2], priv->reg.bssid[3], priv->reg.bssid[4], priv->reg.bssid[5]); } break; default: break; } return; } static void hostif_sme_multicast_set(struct ks_wlan_private *priv) { struct net_device *dev = priv->net_dev; int mc_count; struct netdev_hw_addr *ha; char set_address[NIC_MAX_MCAST_LIST * ETH_ALEN]; unsigned long filter_type; int i = 0; DPRINTK(3, "\n"); spin_lock(&priv->multicast_spin); memset(set_address, 0, NIC_MAX_MCAST_LIST * ETH_ALEN); if (dev->flags & IFF_PROMISC) { filter_type = cpu_to_le32((uint32_t) MCAST_FILTER_PROMISC); hostif_mib_set_request(priv, LOCAL_MULTICAST_FILTER, sizeof(filter_type), MIB_VALUE_TYPE_BOOL, &filter_type); } else if ((netdev_mc_count(dev) > NIC_MAX_MCAST_LIST) || (dev->flags & IFF_ALLMULTI)) { filter_type = cpu_to_le32((uint32_t) MCAST_FILTER_MCASTALL); hostif_mib_set_request(priv, LOCAL_MULTICAST_FILTER, sizeof(filter_type), MIB_VALUE_TYPE_BOOL, &filter_type); } else { if (priv->sme_i.sme_flag & SME_MULTICAST) { mc_count = netdev_mc_count(dev); netdev_for_each_mc_addr(ha, dev) { memcpy(&set_address[i * ETH_ALEN], ha->addr, ETH_ALEN); i++; } priv->sme_i.sme_flag &= ~SME_MULTICAST; hostif_mib_set_request(priv, LOCAL_MULTICAST_ADDRESS, (ETH_ALEN * mc_count), MIB_VALUE_TYPE_OSTRING, &set_address[0]); } else { filter_type = cpu_to_le32((uint32_t) MCAST_FILTER_MCAST); priv->sme_i.sme_flag |= SME_MULTICAST; hostif_mib_set_request(priv, LOCAL_MULTICAST_FILTER, sizeof(filter_type), MIB_VALUE_TYPE_BOOL, &filter_type); } } spin_unlock(&priv->multicast_spin); } static void hostif_sme_powermgt_set(struct ks_wlan_private *priv) { unsigned long mode, wake_up, receiveDTIMs; DPRINTK(3, "\n"); switch (priv->reg.powermgt) { case POWMGT_ACTIVE_MODE: mode = POWER_ACTIVE; wake_up = 0; receiveDTIMs = 0; break; case POWMGT_SAVE1_MODE: if (priv->reg.operation_mode == MODE_INFRASTRUCTURE) { mode = POWER_SAVE; wake_up = 0; receiveDTIMs = 0; } else { mode = POWER_ACTIVE; wake_up = 0; receiveDTIMs = 0; } break; case POWMGT_SAVE2_MODE: if (priv->reg.operation_mode == MODE_INFRASTRUCTURE) { mode = POWER_SAVE; wake_up = 0; receiveDTIMs = 1; } else { mode = POWER_ACTIVE; wake_up = 0; receiveDTIMs = 0; } break; default: mode = POWER_ACTIVE; wake_up = 0; receiveDTIMs = 0; break; } hostif_power_mngmt_request(priv, mode, wake_up, receiveDTIMs); return; } static void hostif_sme_sleep_set(struct ks_wlan_private *priv) { DPRINTK(3, "\n"); switch (priv->sleep_mode) { case SLP_SLEEP: hostif_sleep_request(priv, priv->sleep_mode); break; case SLP_ACTIVE: hostif_sleep_request(priv, priv->sleep_mode); break; default: break; } return; } static void hostif_sme_set_key(struct ks_wlan_private *priv, int type) { uint32_t val; switch (type) { case SME_SET_FLAG: val = cpu_to_le32((uint32_t) (priv->reg.privacy_invoked)); hostif_mib_set_request(priv, DOT11_PRIVACY_INVOKED, sizeof(val), MIB_VALUE_TYPE_BOOL, &val); break; case SME_SET_TXKEY: val = cpu_to_le32((uint32_t) (priv->wpa.txkey)); hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_ID, sizeof(val), MIB_VALUE_TYPE_INT, &val); break; case SME_SET_KEY1: hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE1, priv->wpa.key[0].key_len, MIB_VALUE_TYPE_OSTRING, &priv->wpa.key[0].key_val[0]); break; case SME_SET_KEY2: hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE2, priv->wpa.key[1].key_len, MIB_VALUE_TYPE_OSTRING, &priv->wpa.key[1].key_val[0]); break; case SME_SET_KEY3: hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE3, priv->wpa.key[2].key_len, MIB_VALUE_TYPE_OSTRING, &priv->wpa.key[2].key_val[0]); break; case SME_SET_KEY4: hostif_mib_set_request(priv, DOT11_WEP_DEFAULT_KEY_VALUE4, priv->wpa.key[3].key_len, MIB_VALUE_TYPE_OSTRING, &priv->wpa.key[3].key_val[0]); break; case SME_SET_PMK_TSC: hostif_mib_set_request(priv, DOT11_PMK_TSC, WPA_RX_SEQ_LEN, MIB_VALUE_TYPE_OSTRING, &priv->wpa.key[0].rx_seq[0]); break; case SME_SET_GMK1_TSC: hostif_mib_set_request(priv, DOT11_GMK1_TSC, WPA_RX_SEQ_LEN, MIB_VALUE_TYPE_OSTRING, &priv->wpa.key[1].rx_seq[0]); break; case SME_SET_GMK2_TSC: hostif_mib_set_request(priv, DOT11_GMK2_TSC, WPA_RX_SEQ_LEN, MIB_VALUE_TYPE_OSTRING, &priv->wpa.key[2].rx_seq[0]); break; } return; } static void hostif_sme_set_pmksa(struct ks_wlan_private *priv) { struct pmk_cache_t { uint16_t size; struct { uint8_t bssid[ETH_ALEN]; uint8_t pmkid[IW_PMKID_LEN]; } __attribute__ ((packed)) list[PMK_LIST_MAX]; } __attribute__ ((packed)) pmkcache; struct pmk_t *pmk; struct list_head *ptr; int i; DPRINTK(4, "pmklist.size=%d\n", priv->pmklist.size); i = 0; list_for_each(ptr, &priv->pmklist.head) { pmk = list_entry(ptr, struct pmk_t, list); if (i < PMK_LIST_MAX) { memcpy(pmkcache.list[i].bssid, pmk->bssid, ETH_ALEN); memcpy(pmkcache.list[i].pmkid, pmk->pmkid, IW_PMKID_LEN); i++; } } pmkcache.size = cpu_to_le16((uint16_t) (priv->pmklist.size)); hostif_mib_set_request(priv, LOCAL_PMK, sizeof(priv->pmklist.size) + (ETH_ALEN + IW_PMKID_LEN) * (priv->pmklist.size), MIB_VALUE_TYPE_OSTRING, &pmkcache); } /* execute sme */ static void hostif_sme_execute(struct ks_wlan_private *priv, int event) { uint32_t val; DPRINTK(3, "event=%d\n", event); switch (event) { case SME_START: if (priv->dev_state == DEVICE_STATE_BOOT) { hostif_mib_get_request(priv, DOT11_MAC_ADDRESS); } break; case SME_MULTICAST_REQUEST: hostif_sme_multicast_set(priv); break; case SME_MACADDRESS_SET_REQUEST: hostif_mib_set_request(priv, LOCAL_CURRENTADDRESS, ETH_ALEN, MIB_VALUE_TYPE_OSTRING, &priv->eth_addr[0]); break; case SME_BSS_SCAN_REQUEST: hostif_bss_scan_request(priv, priv->reg.scan_type, priv->scan_ssid, priv->scan_ssid_len); break; case SME_POW_MNGMT_REQUEST: hostif_sme_powermgt_set(priv); break; case SME_PHY_INFO_REQUEST: hostif_phy_information_request(priv); break; case SME_MIC_FAILURE_REQUEST: if (priv->wpa.mic_failure.failure == 1) { hostif_mic_failure_request(priv, priv->wpa.mic_failure. failure - 1, 0); } else if (priv->wpa.mic_failure.failure == 2) { hostif_mic_failure_request(priv, priv->wpa.mic_failure. failure - 1, priv->wpa.mic_failure. counter); } else DPRINTK(4, "SME_MIC_FAILURE_REQUEST: failure count=%u error?\n", priv->wpa.mic_failure.failure); break; case SME_MIC_FAILURE_CONFIRM: if (priv->wpa.mic_failure.failure == 2) { if (priv->wpa.mic_failure.stop) priv->wpa.mic_failure.stop = 0; priv->wpa.mic_failure.failure = 0; hostif_start_request(priv, priv->reg.operation_mode); } break; case SME_GET_MAC_ADDRESS: if (priv->dev_state == DEVICE_STATE_BOOT) { hostif_mib_get_request(priv, DOT11_PRODUCT_VERSION); } break; case SME_GET_PRODUCT_VERSION: if (priv->dev_state == DEVICE_STATE_BOOT) { priv->dev_state = DEVICE_STATE_PREINIT; } break; case SME_STOP_REQUEST: hostif_stop_request(priv); break; case SME_RTS_THRESHOLD_REQUEST: val = cpu_to_le32((uint32_t) (priv->reg.rts)); hostif_mib_set_request(priv, DOT11_RTS_THRESHOLD, sizeof(val), MIB_VALUE_TYPE_INT, &val); break; case SME_FRAGMENTATION_THRESHOLD_REQUEST: val = cpu_to_le32((uint32_t) (priv->reg.fragment)); hostif_mib_set_request(priv, DOT11_FRAGMENTATION_THRESHOLD, sizeof(val), MIB_VALUE_TYPE_INT, &val); break; case SME_WEP_INDEX_REQUEST: case SME_WEP_KEY1_REQUEST: case SME_WEP_KEY2_REQUEST: case SME_WEP_KEY3_REQUEST: case SME_WEP_KEY4_REQUEST: case SME_WEP_FLAG_REQUEST: hostif_sme_set_wep(priv, event); break; case SME_RSN_UCAST_REQUEST: case SME_RSN_MCAST_REQUEST: case SME_RSN_AUTH_REQUEST: case SME_RSN_ENABLED_REQUEST: case SME_RSN_MODE_REQUEST: hostif_sme_set_rsn(priv, event); break; case SME_SET_FLAG: case SME_SET_TXKEY: case SME_SET_KEY1: case SME_SET_KEY2: case SME_SET_KEY3: case SME_SET_KEY4: case SME_SET_PMK_TSC: case SME_SET_GMK1_TSC: case SME_SET_GMK2_TSC: hostif_sme_set_key(priv, event); break; case SME_SET_PMKSA: hostif_sme_set_pmksa(priv); break; #ifdef WPS case SME_WPS_ENABLE_REQUEST: hostif_mib_set_request(priv, LOCAL_WPS_ENABLE, sizeof(priv->wps.wps_enabled), MIB_VALUE_TYPE_INT, &priv->wps.wps_enabled); break; case SME_WPS_PROBE_REQUEST: hostif_mib_set_request(priv, LOCAL_WPS_PROBE_REQ, priv->wps.ielen, MIB_VALUE_TYPE_OSTRING, priv->wps.ie); break; #endif /* WPS */ case SME_MODE_SET_REQUEST: hostif_sme_mode_setup(priv); break; case SME_SET_GAIN: hostif_mib_set_request(priv, LOCAL_GAIN, sizeof(priv->gain), MIB_VALUE_TYPE_OSTRING, &priv->gain); break; case SME_GET_GAIN: hostif_mib_get_request(priv, LOCAL_GAIN); break; case SME_GET_EEPROM_CKSUM: priv->eeprom_checksum = EEPROM_FW_NOT_SUPPORT; /* initialize */ hostif_mib_get_request(priv, LOCAL_EEPROM_SUM); break; case SME_START_REQUEST: hostif_start_request(priv, priv->reg.operation_mode); break; case SME_START_CONFIRM: /* for power save */ atomic_set(&priv->psstatus.snooze_guard, 0); atomic_set(&priv->psstatus.confirm_wait, 0); if (priv->dev_state == DEVICE_STATE_PREINIT) { priv->dev_state = DEVICE_STATE_INIT; } /* wake_up_interruptible_all(&priv->confirm_wait); */ complete(&priv->confirm_wait); break; case SME_SLEEP_REQUEST: hostif_sme_sleep_set(priv); break; case SME_SET_REGION: val = cpu_to_le32((uint32_t) (priv->region)); hostif_mib_set_request(priv, LOCAL_REGION, sizeof(val), MIB_VALUE_TYPE_INT, &val); break; case SME_MULTICAST_CONFIRM: case SME_BSS_SCAN_CONFIRM: case SME_POW_MNGMT_CONFIRM: case SME_PHY_INFO_CONFIRM: case SME_STOP_CONFIRM: case SME_RTS_THRESHOLD_CONFIRM: case SME_FRAGMENTATION_THRESHOLD_CONFIRM: case SME_WEP_INDEX_CONFIRM: case SME_WEP_KEY1_CONFIRM: case SME_WEP_KEY2_CONFIRM: case SME_WEP_KEY3_CONFIRM: case SME_WEP_KEY4_CONFIRM: case SME_WEP_FLAG_CONFIRM: case SME_RSN_UCAST_CONFIRM: case SME_RSN_MCAST_CONFIRM: case SME_RSN_AUTH_CONFIRM: case SME_RSN_ENABLED_CONFIRM: case SME_RSN_MODE_CONFIRM: case SME_MODE_SET_CONFIRM: break; case SME_TERMINATE: default: break; } } static void hostif_sme_task(unsigned long dev) { struct ks_wlan_private *priv = (struct ks_wlan_private *)dev; DPRINTK(3, "\n"); if (priv->dev_state >= DEVICE_STATE_BOOT) { if (0 < cnt_smeqbody(priv) && priv->dev_state >= DEVICE_STATE_BOOT) { hostif_sme_execute(priv, priv->sme_i.event_buff[priv->sme_i. qhead]); inc_smeqhead(priv); if (0 < cnt_smeqbody(priv)) tasklet_schedule(&priv->sme_task); } } return; } /* send to Station Management Entity module */ void hostif_sme_enqueue(struct ks_wlan_private *priv, unsigned short event) { DPRINTK(3, "\n"); /* enqueue sme event */ if (cnt_smeqbody(priv) < (SME_EVENT_BUFF_SIZE - 1)) { priv->sme_i.event_buff[priv->sme_i.qtail] = event; inc_smeqtail(priv); //DPRINTK(3,"inc_smeqtail \n"); #ifdef KS_WLAN_DEBUG if (priv->sme_i.max_event_count < cnt_smeqbody(priv)) priv->sme_i.max_event_count = cnt_smeqbody(priv); #endif /* KS_WLAN_DEBUG */ } else { /* in case of buffer overflow */ //DPRINTK(2,"sme queue buffer overflow\n"); printk("sme queue buffer overflow\n"); } tasklet_schedule(&priv->sme_task); } int hostif_init(struct ks_wlan_private *priv) { int rc = 0; int i; DPRINTK(3, "\n"); priv->aplist.size = 0; for (i = 0; i < LOCAL_APLIST_MAX; i++) memset(&(priv->aplist.ap[i]), 0, sizeof(struct local_ap_t)); priv->infra_status = 0; priv->current_rate = 4; priv->connect_status = DISCONNECT_STATUS; spin_lock_init(&priv->multicast_spin); spin_lock_init(&priv->dev_read_lock); init_waitqueue_head(&priv->devread_wait); priv->dev_count = 0; atomic_set(&priv->event_count, 0); atomic_set(&priv->rec_count, 0); /* for power save */ atomic_set(&priv->psstatus.status, PS_NONE); atomic_set(&priv->psstatus.confirm_wait, 0); atomic_set(&priv->psstatus.snooze_guard, 0); /* init_waitqueue_head(&priv->psstatus.wakeup_wait); */ init_completion(&priv->psstatus.wakeup_wait); //INIT_WORK(&priv->ks_wlan_wakeup_task, ks_wlan_hw_wakeup_task, (void *)priv); INIT_WORK(&priv->ks_wlan_wakeup_task, ks_wlan_hw_wakeup_task); /* WPA */ memset(&(priv->wpa), 0, sizeof(priv->wpa)); priv->wpa.rsn_enabled = 0; priv->wpa.mic_failure.failure = 0; priv->wpa.mic_failure.last_failure_time = 0; priv->wpa.mic_failure.stop = 0; memset(&(priv->pmklist), 0, sizeof(priv->pmklist)); INIT_LIST_HEAD(&priv->pmklist.head); for (i = 0; i < PMK_LIST_MAX; i++) INIT_LIST_HEAD(&priv->pmklist.pmk[i].list); priv->sme_i.sme_status = SME_IDLE; priv->sme_i.qhead = priv->sme_i.qtail = 0; #ifdef KS_WLAN_DEBUG priv->sme_i.max_event_count = 0; #endif spin_lock_init(&priv->sme_i.sme_spin); priv->sme_i.sme_flag = 0; tasklet_init(&priv->sme_task, hostif_sme_task, (unsigned long)priv); return rc; } void hostif_exit(struct ks_wlan_private *priv) { tasklet_kill(&priv->sme_task); return; }