/* * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2015 Intel Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Copyright(c) 2015 Intel Corporation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include "hfi.h" #include "pio.h" #include "device.h" #include "common.h" #include "trace.h" #include "user_sdma.h" #include "user_exp_rcv.h" #include "eprom.h" #undef pr_fmt #define pr_fmt(fmt) DRIVER_NAME ": " fmt #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ /* * File operation functions */ static int hfi1_file_open(struct inode *, struct file *); static int hfi1_file_close(struct inode *, struct file *); static ssize_t hfi1_file_write(struct file *, const char __user *, size_t, loff_t *); static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *); static unsigned int hfi1_poll(struct file *, struct poll_table_struct *); static int hfi1_file_mmap(struct file *, struct vm_area_struct *); static u64 kvirt_to_phys(void *); static int assign_ctxt(struct file *, struct hfi1_user_info *); static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *); static int user_init(struct file *); static int get_ctxt_info(struct file *, void __user *, __u32); static int get_base_info(struct file *, void __user *, __u32); static int setup_ctxt(struct file *); static int setup_subctxt(struct hfi1_ctxtdata *); static int get_user_context(struct file *, struct hfi1_user_info *, int, unsigned); static int find_shared_ctxt(struct file *, const struct hfi1_user_info *); static int allocate_ctxt(struct file *, struct hfi1_devdata *, struct hfi1_user_info *); static unsigned int poll_urgent(struct file *, struct poll_table_struct *); static unsigned int poll_next(struct file *, struct poll_table_struct *); static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long); static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16); static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int); static int vma_fault(struct vm_area_struct *, struct vm_fault *); static int exp_tid_setup(struct file *, struct hfi1_tid_info *); static int exp_tid_free(struct file *, struct hfi1_tid_info *); static void unlock_exp_tids(struct hfi1_ctxtdata *); static const struct file_operations hfi1_file_ops = { .owner = THIS_MODULE, .write = hfi1_file_write, .write_iter = hfi1_write_iter, .open = hfi1_file_open, .release = hfi1_file_close, .poll = hfi1_poll, .mmap = hfi1_file_mmap, .llseek = noop_llseek, }; static struct vm_operations_struct vm_ops = { .fault = vma_fault, }; /* * Types of memories mapped into user processes' space */ enum mmap_types { PIO_BUFS = 1, PIO_BUFS_SOP, PIO_CRED, RCV_HDRQ, RCV_EGRBUF, UREGS, EVENTS, STATUS, RTAIL, SUBCTXT_UREGS, SUBCTXT_RCV_HDRQ, SUBCTXT_EGRBUF, SDMA_COMP }; /* * Masks and offsets defining the mmap tokens */ #define HFI1_MMAP_OFFSET_MASK 0xfffULL #define HFI1_MMAP_OFFSET_SHIFT 0 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL #define HFI1_MMAP_SUBCTXT_SHIFT 12 #define HFI1_MMAP_CTXT_MASK 0xffULL #define HFI1_MMAP_CTXT_SHIFT 16 #define HFI1_MMAP_TYPE_MASK 0xfULL #define HFI1_MMAP_TYPE_SHIFT 24 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL #define HFI1_MMAP_MAGIC_SHIFT 32 #define HFI1_MMAP_MAGIC 0xdabbad00 #define HFI1_MMAP_TOKEN_SET(field, val) \ (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) #define HFI1_MMAP_TOKEN_GET(field, token) \ (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ HFI1_MMAP_TOKEN_SET(TYPE, type) | \ HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) #define dbg(fmt, ...) \ pr_info(fmt, ##__VA_ARGS__) static inline int is_valid_mmap(u64 token) { return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); } static int hfi1_file_open(struct inode *inode, struct file *fp) { /* The real work is performed later in assign_ctxt() */ fp->private_data = kzalloc(sizeof(struct hfi1_filedata), GFP_KERNEL); if (fp->private_data) /* no cpu affinity by default */ ((struct hfi1_filedata *)fp->private_data)->rec_cpu_num = -1; return fp->private_data ? 0 : -ENOMEM; } static ssize_t hfi1_file_write(struct file *fp, const char __user *data, size_t count, loff_t *offset) { const struct hfi1_cmd __user *ucmd; struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_cmd cmd; struct hfi1_user_info uinfo; struct hfi1_tid_info tinfo; ssize_t consumed = 0, copy = 0, ret = 0; void *dest = NULL; __u64 user_val = 0; int uctxt_required = 1; int must_be_root = 0; if (count < sizeof(cmd)) { ret = -EINVAL; goto bail; } ucmd = (const struct hfi1_cmd __user *)data; if (copy_from_user(&cmd, ucmd, sizeof(cmd))) { ret = -EFAULT; goto bail; } consumed = sizeof(cmd); switch (cmd.type) { case HFI1_CMD_ASSIGN_CTXT: uctxt_required = 0; /* assigned user context not required */ copy = sizeof(uinfo); dest = &uinfo; break; case HFI1_CMD_SDMA_STATUS_UPD: case HFI1_CMD_CREDIT_UPD: copy = 0; break; case HFI1_CMD_TID_UPDATE: case HFI1_CMD_TID_FREE: copy = sizeof(tinfo); dest = &tinfo; break; case HFI1_CMD_USER_INFO: case HFI1_CMD_RECV_CTRL: case HFI1_CMD_POLL_TYPE: case HFI1_CMD_ACK_EVENT: case HFI1_CMD_CTXT_INFO: case HFI1_CMD_SET_PKEY: case HFI1_CMD_CTXT_RESET: copy = 0; user_val = cmd.addr; break; case HFI1_CMD_EP_INFO: case HFI1_CMD_EP_ERASE_CHIP: case HFI1_CMD_EP_ERASE_RANGE: case HFI1_CMD_EP_READ_RANGE: case HFI1_CMD_EP_WRITE_RANGE: uctxt_required = 0; /* assigned user context not required */ must_be_root = 1; /* validate user */ copy = 0; break; default: ret = -EINVAL; goto bail; } /* If the command comes with user data, copy it. */ if (copy) { if (copy_from_user(dest, (void __user *)cmd.addr, copy)) { ret = -EFAULT; goto bail; } consumed += copy; } /* * Make sure there is a uctxt when needed. */ if (uctxt_required && !uctxt) { ret = -EINVAL; goto bail; } /* only root can do these operations */ if (must_be_root && !capable(CAP_SYS_ADMIN)) { ret = -EPERM; goto bail; } switch (cmd.type) { case HFI1_CMD_ASSIGN_CTXT: ret = assign_ctxt(fp, &uinfo); if (ret < 0) goto bail; ret = setup_ctxt(fp); if (ret) goto bail; ret = user_init(fp); break; case HFI1_CMD_CTXT_INFO: ret = get_ctxt_info(fp, (void __user *)(unsigned long) user_val, cmd.len); break; case HFI1_CMD_USER_INFO: ret = get_base_info(fp, (void __user *)(unsigned long) user_val, cmd.len); break; case HFI1_CMD_SDMA_STATUS_UPD: break; case HFI1_CMD_CREDIT_UPD: if (uctxt && uctxt->sc) sc_return_credits(uctxt->sc); break; case HFI1_CMD_TID_UPDATE: ret = exp_tid_setup(fp, &tinfo); if (!ret) { unsigned long addr; /* * Copy the number of tidlist entries we used * and the length of the buffer we registered. * These fields are adjacent in the structure so * we can copy them at the same time. */ addr = (unsigned long)cmd.addr + offsetof(struct hfi1_tid_info, tidcnt); if (copy_to_user((void __user *)addr, &tinfo.tidcnt, sizeof(tinfo.tidcnt) + sizeof(tinfo.length))) ret = -EFAULT; } break; case HFI1_CMD_TID_FREE: ret = exp_tid_free(fp, &tinfo); break; case HFI1_CMD_RECV_CTRL: ret = manage_rcvq(uctxt, fd->subctxt, (int)user_val); break; case HFI1_CMD_POLL_TYPE: uctxt->poll_type = (typeof(uctxt->poll_type))user_val; break; case HFI1_CMD_ACK_EVENT: ret = user_event_ack(uctxt, fd->subctxt, user_val); break; case HFI1_CMD_SET_PKEY: if (HFI1_CAP_IS_USET(PKEY_CHECK)) ret = set_ctxt_pkey(uctxt, fd->subctxt, user_val); else ret = -EPERM; break; case HFI1_CMD_CTXT_RESET: { struct send_context *sc; struct hfi1_devdata *dd; if (!uctxt || !uctxt->dd || !uctxt->sc) { ret = -EINVAL; break; } /* * There is no protection here. User level has to * guarantee that no one will be writing to the send * context while it is being re-initialized. * If user level breaks that guarantee, it will break * it's own context and no one else's. */ dd = uctxt->dd; sc = uctxt->sc; /* * Wait until the interrupt handler has marked the * context as halted or frozen. Report error if we time * out. */ wait_event_interruptible_timeout( sc->halt_wait, (sc->flags & SCF_HALTED), msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); if (!(sc->flags & SCF_HALTED)) { ret = -ENOLCK; break; } /* * If the send context was halted due to a Freeze, * wait until the device has been "unfrozen" before * resetting the context. */ if (sc->flags & SCF_FROZEN) { wait_event_interruptible_timeout( dd->event_queue, !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN), msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); if (dd->flags & HFI1_FROZEN) { ret = -ENOLCK; break; } if (dd->flags & HFI1_FORCED_FREEZE) { /* Don't allow context reset if we are into * forced freeze */ ret = -ENODEV; break; } sc_disable(sc); ret = sc_enable(sc); hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt->ctxt); } else ret = sc_restart(sc); if (!ret) sc_return_credits(sc); break; } case HFI1_CMD_EP_INFO: case HFI1_CMD_EP_ERASE_CHIP: case HFI1_CMD_EP_ERASE_RANGE: case HFI1_CMD_EP_READ_RANGE: case HFI1_CMD_EP_WRITE_RANGE: ret = handle_eprom_command(&cmd); break; } if (ret >= 0) ret = consumed; bail: return ret; } static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) { struct hfi1_filedata *fd = kiocb->ki_filp->private_data; struct hfi1_user_sdma_pkt_q *pq = fd->pq; struct hfi1_user_sdma_comp_q *cq = fd->cq; int ret = 0, done = 0, reqs = 0; unsigned long dim = from->nr_segs; if (!cq || !pq) { ret = -EIO; goto done; } if (!iter_is_iovec(from) || !dim) { ret = -EINVAL; goto done; } hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)", fd->uctxt->ctxt, fd->subctxt, dim); if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) { ret = -ENOSPC; goto done; } while (dim) { unsigned long count = 0; ret = hfi1_user_sdma_process_request( kiocb->ki_filp, (struct iovec *)(from->iov + done), dim, &count); if (ret) goto done; dim -= count; done += count; reqs++; } done: return ret ? ret : reqs; } static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) { struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd; unsigned long flags, pfn; u64 token = vma->vm_pgoff << PAGE_SHIFT, memaddr = 0; u8 subctxt, mapio = 0, vmf = 0, type; ssize_t memlen = 0; int ret = 0; u16 ctxt; if (!is_valid_mmap(token) || !uctxt || !(vma->vm_flags & VM_SHARED)) { ret = -EINVAL; goto done; } dd = uctxt->dd; ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); type = HFI1_MMAP_TOKEN_GET(TYPE, token); if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { ret = -EINVAL; goto done; } flags = vma->vm_flags; switch (type) { case PIO_BUFS: case PIO_BUFS_SOP: memaddr = ((dd->physaddr + TXE_PIO_SEND) + /* chip pio base */ (uctxt->sc->hw_context * BIT(16))) + /* 64K PIO space / ctxt */ (type == PIO_BUFS_SOP ? (TXE_PIO_SIZE / 2) : 0); /* sop? */ /* * Map only the amount allocated to the context, not the * entire available context's PIO space. */ memlen = ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE, PAGE_SIZE); flags &= ~VM_MAYREAD; flags |= VM_DONTCOPY | VM_DONTEXPAND; vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); mapio = 1; break; case PIO_CRED: if (flags & VM_WRITE) { ret = -EPERM; goto done; } /* * The credit return location for this context could be on the * second or third page allocated for credit returns (if number * of enabled contexts > 64 and 128 respectively). */ memaddr = dd->cr_base[uctxt->numa_id].pa + (((u64)uctxt->sc->hw_free - (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); memlen = PAGE_SIZE; flags &= ~VM_MAYWRITE; flags |= VM_DONTCOPY | VM_DONTEXPAND; /* * The driver has already allocated memory for credit * returns and programmed it into the chip. Has that * memory been flagged as non-cached? */ /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ mapio = 1; break; case RCV_HDRQ: memaddr = uctxt->rcvhdrq_phys; memlen = uctxt->rcvhdrq_size; break; case RCV_EGRBUF: { unsigned long addr; int i; /* * The RcvEgr buffer need to be handled differently * as multiple non-contiguous pages need to be mapped * into the user process. */ memlen = uctxt->egrbufs.size; if ((vma->vm_end - vma->vm_start) != memlen) { dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", (vma->vm_end - vma->vm_start), memlen); ret = -EINVAL; goto done; } if (vma->vm_flags & VM_WRITE) { ret = -EPERM; goto done; } vma->vm_flags &= ~VM_MAYWRITE; addr = vma->vm_start; for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { ret = remap_pfn_range( vma, addr, uctxt->egrbufs.buffers[i].phys >> PAGE_SHIFT, uctxt->egrbufs.buffers[i].len, vma->vm_page_prot); if (ret < 0) goto done; addr += uctxt->egrbufs.buffers[i].len; } ret = 0; goto done; } case UREGS: /* * Map only the page that contains this context's user * registers. */ memaddr = (unsigned long) (dd->physaddr + RXE_PER_CONTEXT_USER) + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); /* * TidFlow table is on the same page as the rest of the * user registers. */ memlen = PAGE_SIZE; flags |= VM_DONTCOPY | VM_DONTEXPAND; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); mapio = 1; break; case EVENTS: /* * Use the page where this context's flags are. User level * knows where it's own bitmap is within the page. */ memaddr = (unsigned long)(dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK; memlen = PAGE_SIZE; /* * v3.7 removes VM_RESERVED but the effect is kept by * using VM_IO. */ flags |= VM_IO | VM_DONTEXPAND; vmf = 1; break; case STATUS: memaddr = kvirt_to_phys((void *)dd->status); memlen = PAGE_SIZE; flags |= VM_IO | VM_DONTEXPAND; break; case RTAIL: if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { /* * If the memory allocation failed, the context alloc * also would have failed, so we would never get here */ ret = -EINVAL; goto done; } if (flags & VM_WRITE) { ret = -EPERM; goto done; } memaddr = uctxt->rcvhdrqtailaddr_phys; memlen = PAGE_SIZE; flags &= ~VM_MAYWRITE; break; case SUBCTXT_UREGS: memaddr = (u64)uctxt->subctxt_uregbase; memlen = PAGE_SIZE; flags |= VM_IO | VM_DONTEXPAND; vmf = 1; break; case SUBCTXT_RCV_HDRQ: memaddr = (u64)uctxt->subctxt_rcvhdr_base; memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt; flags |= VM_IO | VM_DONTEXPAND; vmf = 1; break; case SUBCTXT_EGRBUF: memaddr = (u64)uctxt->subctxt_rcvegrbuf; memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; flags |= VM_IO | VM_DONTEXPAND; flags &= ~VM_MAYWRITE; vmf = 1; break; case SDMA_COMP: { struct hfi1_user_sdma_comp_q *cq = fd->cq; if (!cq) { ret = -EFAULT; goto done; } memaddr = (u64)cq->comps; memlen = ALIGN(sizeof(*cq->comps) * cq->nentries, PAGE_SIZE); flags |= VM_IO | VM_DONTEXPAND; vmf = 1; break; } default: ret = -EINVAL; break; } if ((vma->vm_end - vma->vm_start) != memlen) { hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", uctxt->ctxt, fd->subctxt, (vma->vm_end - vma->vm_start), memlen); ret = -EINVAL; goto done; } vma->vm_flags = flags; hfi1_cdbg(PROC, "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", ctxt, subctxt, type, mapio, vmf, memaddr, memlen, vma->vm_end - vma->vm_start, vma->vm_flags); pfn = (unsigned long)(memaddr >> PAGE_SHIFT); if (vmf) { vma->vm_pgoff = pfn; vma->vm_ops = &vm_ops; ret = 0; } else if (mapio) { ret = io_remap_pfn_range(vma, vma->vm_start, pfn, memlen, vma->vm_page_prot); } else { ret = remap_pfn_range(vma, vma->vm_start, pfn, memlen, vma->vm_page_prot); } done: return ret; } /* * Local (non-chip) user memory is not mapped right away but as it is * accessed by the user-level code. */ static int vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct page *page; page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); if (!page) return VM_FAULT_SIGBUS; get_page(page); vmf->page = page; return 0; } static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt) { struct hfi1_ctxtdata *uctxt; unsigned pollflag; uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; if (!uctxt) pollflag = POLLERR; else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) pollflag = poll_urgent(fp, pt); else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) pollflag = poll_next(fp, pt); else /* invalid */ pollflag = POLLERR; return pollflag; } static int hfi1_file_close(struct inode *inode, struct file *fp) { struct hfi1_filedata *fdata = fp->private_data; struct hfi1_ctxtdata *uctxt = fdata->uctxt; struct hfi1_devdata *dd; unsigned long flags, *ev; fp->private_data = NULL; if (!uctxt) goto done; hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); dd = uctxt->dd; mutex_lock(&hfi1_mutex); flush_wc(); /* drain user sdma queue */ hfi1_user_sdma_free_queues(fdata); /* * Clear any left over, unhandled events so the next process that * gets this context doesn't get confused. */ ev = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * HFI1_MAX_SHARED_CTXTS) + fdata->subctxt; *ev = 0; if (--uctxt->cnt) { uctxt->active_slaves &= ~(1 << fdata->subctxt); uctxt->subpid[fdata->subctxt] = 0; mutex_unlock(&hfi1_mutex); goto done; } spin_lock_irqsave(&dd->uctxt_lock, flags); /* * Disable receive context and interrupt available, reset all * RcvCtxtCtrl bits to default values. */ hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | HFI1_RCVCTRL_TIDFLOW_DIS | HFI1_RCVCTRL_INTRAVAIL_DIS | HFI1_RCVCTRL_ONE_PKT_EGR_DIS | HFI1_RCVCTRL_NO_RHQ_DROP_DIS | HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt); /* Clear the context's J_KEY */ hfi1_clear_ctxt_jkey(dd, uctxt->ctxt); /* * Reset context integrity checks to default. * (writes to CSRs probably belong in chip.c) */ write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE, hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type)); sc_disable(uctxt->sc); uctxt->pid = 0; spin_unlock_irqrestore(&dd->uctxt_lock, flags); dd->rcd[uctxt->ctxt] = NULL; uctxt->rcvwait_to = 0; uctxt->piowait_to = 0; uctxt->rcvnowait = 0; uctxt->pionowait = 0; uctxt->event_flags = 0; hfi1_clear_tids(uctxt); hfi1_clear_ctxt_pkey(dd, uctxt->ctxt); if (uctxt->tid_pg_list) unlock_exp_tids(uctxt); hfi1_stats.sps_ctxts--; dd->freectxts++; mutex_unlock(&hfi1_mutex); hfi1_free_ctxtdata(dd, uctxt); done: kfree(fdata); return 0; } /* * Convert kernel *virtual* addresses to physical addresses. * This is used to vmalloc'ed addresses. */ static u64 kvirt_to_phys(void *addr) { struct page *page; u64 paddr = 0; page = vmalloc_to_page(addr); if (page) paddr = page_to_pfn(page) << PAGE_SHIFT; return paddr; } static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo) { int i_minor, ret = 0; unsigned swmajor, swminor, alg = HFI1_ALG_ACROSS; swmajor = uinfo->userversion >> 16; if (swmajor != HFI1_USER_SWMAJOR) { ret = -ENODEV; goto done; } swminor = uinfo->userversion & 0xffff; if (uinfo->hfi1_alg < HFI1_ALG_COUNT) alg = uinfo->hfi1_alg; mutex_lock(&hfi1_mutex); /* First, lets check if we need to setup a shared context? */ if (uinfo->subctxt_cnt) ret = find_shared_ctxt(fp, uinfo); /* * We execute the following block if we couldn't find a * shared context or if context sharing is not required. */ if (!ret) { i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE; ret = get_user_context(fp, uinfo, i_minor - 1, alg); } mutex_unlock(&hfi1_mutex); done: return ret; } /* return true if the device available for general use */ static int usable_device(struct hfi1_devdata *dd) { struct hfi1_pportdata *ppd = dd->pport; return driver_lstate(ppd) == IB_PORT_ACTIVE; } static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo, int devno, unsigned alg) { struct hfi1_devdata *dd = NULL; int ret = 0, devmax, npresent, nup, dev; devmax = hfi1_count_units(&npresent, &nup); if (!npresent) { ret = -ENXIO; goto done; } if (!nup) { ret = -ENETDOWN; goto done; } if (devno >= 0) { dd = hfi1_lookup(devno); if (!dd) ret = -ENODEV; else if (!dd->freectxts) ret = -EBUSY; } else { struct hfi1_devdata *pdd; if (alg == HFI1_ALG_ACROSS) { unsigned free = 0U; for (dev = 0; dev < devmax; dev++) { pdd = hfi1_lookup(dev); if (!pdd) continue; if (!usable_device(pdd)) continue; if (pdd->freectxts && pdd->freectxts > free) { dd = pdd; free = pdd->freectxts; } } } else { for (dev = 0; dev < devmax; dev++) { pdd = hfi1_lookup(dev); if (!pdd) continue; if (!usable_device(pdd)) continue; if (pdd->freectxts) { dd = pdd; break; } } } if (!dd) ret = -EBUSY; } done: return ret ? ret : allocate_ctxt(fp, dd, uinfo); } static int find_shared_ctxt(struct file *fp, const struct hfi1_user_info *uinfo) { int devmax, ndev, i; int ret = 0; struct hfi1_filedata *fd = fp->private_data; devmax = hfi1_count_units(NULL, NULL); for (ndev = 0; ndev < devmax; ndev++) { struct hfi1_devdata *dd = hfi1_lookup(ndev); if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase)) continue; for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) { struct hfi1_ctxtdata *uctxt = dd->rcd[i]; /* Skip ctxts which are not yet open */ if (!uctxt || !uctxt->cnt) continue; /* Skip ctxt if it doesn't match the requested one */ if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) || uctxt->jkey != generate_jkey(current_uid()) || uctxt->subctxt_id != uinfo->subctxt_id || uctxt->subctxt_cnt != uinfo->subctxt_cnt) continue; /* Verify the sharing process matches the master */ if (uctxt->userversion != uinfo->userversion || uctxt->cnt >= uctxt->subctxt_cnt) { ret = -EINVAL; goto done; } fd->uctxt = uctxt; fd->subctxt = uctxt->cnt++; uctxt->subpid[fd->subctxt] = current->pid; uctxt->active_slaves |= 1 << fd->subctxt; ret = 1; goto done; } } done: return ret; } static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd, struct hfi1_user_info *uinfo) { struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt; unsigned ctxt; int ret; if (dd->flags & HFI1_FROZEN) { /* * Pick an error that is unique from all other errors * that are returned so the user process knows that * it tried to allocate while the SPC was frozen. It * it should be able to retry with success in a short * while. */ return -EIO; } for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++) if (!dd->rcd[ctxt]) break; if (ctxt == dd->num_rcv_contexts) return -EBUSY; uctxt = hfi1_create_ctxtdata(dd->pport, ctxt); if (!uctxt) { dd_dev_err(dd, "Unable to allocate ctxtdata memory, failing open\n"); return -ENOMEM; } /* * Allocate and enable a PIO send context. */ uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, uctxt->numa_id); if (!uctxt->sc) return -ENOMEM; hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, uctxt->sc->hw_context); ret = sc_enable(uctxt->sc); if (ret) return ret; /* * Setup shared context resources if the user-level has requested * shared contexts and this is the 'master' process. * This has to be done here so the rest of the sub-contexts find the * proper master. */ if (uinfo->subctxt_cnt && !fd->subctxt) { ret = init_subctxts(uctxt, uinfo); /* * On error, we don't need to disable and de-allocate the * send context because it will be done during file close */ if (ret) return ret; } uctxt->userversion = uinfo->userversion; uctxt->pid = current->pid; uctxt->flags = HFI1_CAP_UGET(MASK); init_waitqueue_head(&uctxt->wait); strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); uctxt->jkey = generate_jkey(current_uid()); INIT_LIST_HEAD(&uctxt->sdma_queues); spin_lock_init(&uctxt->sdma_qlock); hfi1_stats.sps_ctxts++; dd->freectxts--; fd->uctxt = uctxt; return 0; } static int init_subctxts(struct hfi1_ctxtdata *uctxt, const struct hfi1_user_info *uinfo) { int ret = 0; unsigned num_subctxts; num_subctxts = uinfo->subctxt_cnt; if (num_subctxts > HFI1_MAX_SHARED_CTXTS) { ret = -EINVAL; goto bail; } uctxt->subctxt_cnt = uinfo->subctxt_cnt; uctxt->subctxt_id = uinfo->subctxt_id; uctxt->active_slaves = 1; uctxt->redirect_seq_cnt = 1; set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); bail: return ret; } static int setup_subctxt(struct hfi1_ctxtdata *uctxt) { int ret = 0; unsigned num_subctxts = uctxt->subctxt_cnt; uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); if (!uctxt->subctxt_uregbase) { ret = -ENOMEM; goto bail; } /* We can take the size of the RcvHdr Queue from the master */ uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size * num_subctxts); if (!uctxt->subctxt_rcvhdr_base) { ret = -ENOMEM; goto bail_ureg; } uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * num_subctxts); if (!uctxt->subctxt_rcvegrbuf) { ret = -ENOMEM; goto bail_rhdr; } goto bail; bail_rhdr: vfree(uctxt->subctxt_rcvhdr_base); bail_ureg: vfree(uctxt->subctxt_uregbase); uctxt->subctxt_uregbase = NULL; bail: return ret; } static int user_init(struct file *fp) { int ret; unsigned int rcvctrl_ops = 0; struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; /* make sure that the context has already been setup */ if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags)) { ret = -EFAULT; goto done; } /* * Subctxts don't need to initialize anything since master * has done it. */ if (fd->subctxt) { ret = wait_event_interruptible(uctxt->wait, !test_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags)); goto done; } /* initialize poll variables... */ uctxt->urgent = 0; uctxt->urgent_poll = 0; /* * Now enable the ctxt for receive. * For chips that are set to DMA the tail register to memory * when they change (and when the update bit transitions from * 0 to 1. So for those chips, we turn it off and then back on. * This will (very briefly) affect any other open ctxts, but the * duration is very short, and therefore isn't an issue. We * explicitly set the in-memory tail copy to 0 beforehand, so we * don't have to wait to be sure the DMA update has happened * (chip resets head/tail to 0 on transition to enable). */ if (uctxt->rcvhdrtail_kvaddr) clear_rcvhdrtail(uctxt); /* Setup J_KEY before enabling the context */ hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey); rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; if (HFI1_CAP_KGET_MASK(uctxt->flags, HDRSUPP)) rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; /* * Ignore the bit in the flags for now until proper * support for multiple packet per rcv array entry is * added. */ if (!HFI1_CAP_KGET_MASK(uctxt->flags, MULTI_PKT_EGR)) rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; if (HFI1_CAP_KGET_MASK(uctxt->flags, NODROP_EGR_FULL)) rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; if (HFI1_CAP_KGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; if (HFI1_CAP_KGET_MASK(uctxt->flags, DMA_RTAIL)) rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt); /* Notify any waiting slaves */ if (uctxt->subctxt_cnt) { clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); wake_up(&uctxt->wait); } ret = 0; done: return ret; } static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len) { struct hfi1_ctxt_info cinfo; struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; int ret = 0; memset(&cinfo, 0, sizeof(cinfo)); ret = hfi1_get_base_kinfo(uctxt, &cinfo); if (ret < 0) goto done; cinfo.num_active = hfi1_count_active_units(); cinfo.unit = uctxt->dd->unit; cinfo.ctxt = uctxt->ctxt; cinfo.subctxt = fd->subctxt; cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, uctxt->dd->rcv_entries.group_size) + uctxt->expected_count; cinfo.credits = uctxt->sc->credits; cinfo.numa_node = uctxt->numa_id; cinfo.rec_cpu = fd->rec_cpu_num; cinfo.send_ctxt = uctxt->sc->hw_context; cinfo.egrtids = uctxt->egrbufs.alloced; cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt; cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2; cinfo.sdma_ring_size = fd->cq->nentries; cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo); if (copy_to_user(ubase, &cinfo, sizeof(cinfo))) ret = -EFAULT; done: return ret; } static int setup_ctxt(struct file *fp) { struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; int ret = 0; /* * Context should be set up only once (including allocation and * programming of eager buffers. This is done if context sharing * is not requested or by the master process. */ if (!uctxt->subctxt_cnt || !fd->subctxt) { ret = hfi1_init_ctxt(uctxt->sc); if (ret) goto done; /* Now allocate the RcvHdr queue and eager buffers. */ ret = hfi1_create_rcvhdrq(dd, uctxt); if (ret) goto done; ret = hfi1_setup_eagerbufs(uctxt); if (ret) goto done; if (uctxt->subctxt_cnt && !fd->subctxt) { ret = setup_subctxt(uctxt); if (ret) goto done; } /* Setup Expected Rcv memories */ uctxt->tid_pg_list = vzalloc(uctxt->expected_count * sizeof(struct page **)); if (!uctxt->tid_pg_list) { ret = -ENOMEM; goto done; } uctxt->physshadow = vzalloc(uctxt->expected_count * sizeof(*uctxt->physshadow)); if (!uctxt->physshadow) { ret = -ENOMEM; goto done; } /* allocate expected TID map and initialize the cursor */ atomic_set(&uctxt->tidcursor, 0); uctxt->numtidgroups = uctxt->expected_count / dd->rcv_entries.group_size; uctxt->tidmapcnt = uctxt->numtidgroups / BITS_PER_LONG + !!(uctxt->numtidgroups % BITS_PER_LONG); uctxt->tidusemap = kzalloc_node(uctxt->tidmapcnt * sizeof(*uctxt->tidusemap), GFP_KERNEL, uctxt->numa_id); if (!uctxt->tidusemap) { ret = -ENOMEM; goto done; } /* * In case that the number of groups is not a multiple of * 64 (the number of groups in a tidusemap element), mark * the extra ones as used. This will effectively make them * permanently used and should never be assigned. Otherwise, * the code which checks how many free groups we have will * get completely confused about the state of the bits. */ if (uctxt->numtidgroups % BITS_PER_LONG) uctxt->tidusemap[uctxt->tidmapcnt - 1] = ~((1ULL << (uctxt->numtidgroups % BITS_PER_LONG)) - 1); trace_hfi1_exp_tid_map(uctxt->ctxt, fd->subctxt, 0, uctxt->tidusemap, uctxt->tidmapcnt); } ret = hfi1_user_sdma_alloc_queues(uctxt, fp); if (ret) goto done; set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags); done: return ret; } static int get_base_info(struct file *fp, void __user *ubase, __u32 len) { struct hfi1_base_info binfo; struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; ssize_t sz; unsigned offset; int ret = 0; trace_hfi1_uctxtdata(uctxt->dd, uctxt); memset(&binfo, 0, sizeof(binfo)); binfo.hw_version = dd->revision; binfo.sw_version = HFI1_KERN_SWVERSION; binfo.bthqp = kdeth_qp; binfo.jkey = uctxt->jkey; /* * If more than 64 contexts are enabled the allocated credit * return will span two or three contiguous pages. Since we only * map the page containing the context's credit return address, * we need to calculate the offset in the proper page. */ offset = ((u64)uctxt->sc->hw_free - (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, fd->subctxt, offset); binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, fd->subctxt, uctxt->sc->base_addr); binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, uctxt->ctxt, fd->subctxt, uctxt->sc->base_addr); binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, fd->subctxt, uctxt->rcvhdrq); binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, fd->subctxt, uctxt->egrbufs.rcvtids[0].phys); binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, fd->subctxt, 0); /* * user regs are at * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) */ binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, fd->subctxt, 0); offset = offset_in_page((((uctxt->ctxt - dd->first_user_ctxt) * HFI1_MAX_SHARED_CTXTS) + fd->subctxt) * sizeof(*dd->events)); binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, fd->subctxt, offset); binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, fd->subctxt, dd->status); if (HFI1_CAP_IS_USET(DMA_RTAIL)) binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, fd->subctxt, 0); if (uctxt->subctxt_cnt) { binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, uctxt->ctxt, fd->subctxt, 0); binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, uctxt->ctxt, fd->subctxt, 0); binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, uctxt->ctxt, fd->subctxt, 0); } sz = (len < sizeof(binfo)) ? len : sizeof(binfo); if (copy_to_user(ubase, &binfo, sz)) ret = -EFAULT; return ret; } static unsigned int poll_urgent(struct file *fp, struct poll_table_struct *pt) { struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; unsigned pollflag; poll_wait(fp, &uctxt->wait, pt); spin_lock_irq(&dd->uctxt_lock); if (uctxt->urgent != uctxt->urgent_poll) { pollflag = POLLIN | POLLRDNORM; uctxt->urgent_poll = uctxt->urgent; } else { pollflag = 0; set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); } spin_unlock_irq(&dd->uctxt_lock); return pollflag; } static unsigned int poll_next(struct file *fp, struct poll_table_struct *pt) { struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; unsigned pollflag; poll_wait(fp, &uctxt->wait, pt); spin_lock_irq(&dd->uctxt_lock); if (hdrqempty(uctxt)) { set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt); pollflag = 0; } else pollflag = POLLIN | POLLRDNORM; spin_unlock_irq(&dd->uctxt_lock); return pollflag; } /* * Find all user contexts in use, and set the specified bit in their * event mask. * See also find_ctxt() for a similar use, that is specific to send buffers. */ int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) { struct hfi1_ctxtdata *uctxt; struct hfi1_devdata *dd = ppd->dd; unsigned ctxt; int ret = 0; unsigned long flags; if (!dd->events) { ret = -EINVAL; goto done; } spin_lock_irqsave(&dd->uctxt_lock, flags); for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++) { uctxt = dd->rcd[ctxt]; if (uctxt) { unsigned long *evs = dd->events + (uctxt->ctxt - dd->first_user_ctxt) * HFI1_MAX_SHARED_CTXTS; int i; /* * subctxt_cnt is 0 if not shared, so do base * separately, first, then remaining subctxt, if any */ set_bit(evtbit, evs); for (i = 1; i < uctxt->subctxt_cnt; i++) set_bit(evtbit, evs + i); } } spin_unlock_irqrestore(&dd->uctxt_lock, flags); done: return ret; } /** * manage_rcvq - manage a context's receive queue * @uctxt: the context * @subctxt: the sub-context * @start_stop: action to carry out * * start_stop == 0 disables receive on the context, for use in queue * overflow conditions. start_stop==1 re-enables, to be used to * re-init the software copy of the head register */ static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt, int start_stop) { struct hfi1_devdata *dd = uctxt->dd; unsigned int rcvctrl_op; if (subctxt) goto bail; /* atomically clear receive enable ctxt. */ if (start_stop) { /* * On enable, force in-memory copy of the tail register to * 0, so that protocol code doesn't have to worry about * whether or not the chip has yet updated the in-memory * copy or not on return from the system call. The chip * always resets it's tail register back to 0 on a * transition from disabled to enabled. */ if (uctxt->rcvhdrtail_kvaddr) clear_rcvhdrtail(uctxt); rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; } else rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt); /* always; new head should be equal to new tail; see above */ bail: return 0; } /* * clear the event notifier events for this context. * User process then performs actions appropriate to bit having been * set, if desired, and checks again in future. */ static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt, unsigned long events) { int i; struct hfi1_devdata *dd = uctxt->dd; unsigned long *evs; if (!dd->events) return 0; evs = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * HFI1_MAX_SHARED_CTXTS) + subctxt; for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { if (!test_bit(i, &events)) continue; clear_bit(i, evs); } return 0; } #define num_user_pages(vaddr, len) \ (1 + (((((unsigned long)(vaddr) + \ (unsigned long)(len) - 1) & PAGE_MASK) - \ ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT)) /** * tzcnt - count the number of trailing zeros in a 64bit value * @value: the value to be examined * * Returns the number of trailing least significant zeros in the * the input value. If the value is zero, return the number of * bits of the value. */ static inline u8 tzcnt(u64 value) { return value ? __builtin_ctzl(value) : sizeof(value) * 8; } static inline unsigned num_free_groups(unsigned long map, u16 *start) { unsigned free; u16 bitidx = *start; if (bitidx >= BITS_PER_LONG) return 0; /* "Turn off" any bits set before our bit index */ map &= ~((1ULL << bitidx) - 1); free = tzcnt(map) - bitidx; while (!free && bitidx < BITS_PER_LONG) { /* Zero out the last set bit so we look at the rest */ map &= ~(1ULL << bitidx); /* * Account for the previously checked bits and advance * the bit index. We don't have to check for bitidx * getting bigger than BITS_PER_LONG here as it would * mean extra instructions that we don't need. If it * did happen, it would push free to a negative value * which will break the loop. */ free = tzcnt(map) - ++bitidx; } *start = bitidx; return free; } static int exp_tid_setup(struct file *fp, struct hfi1_tid_info *tinfo) { int ret = 0; struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; unsigned tid, mapped = 0, npages, ngroups, exp_groups, tidpairs = uctxt->expected_count / 2; struct page **pages; unsigned long vaddr, tidmap[uctxt->tidmapcnt]; dma_addr_t *phys; u32 tidlist[tidpairs], pairidx = 0, tidcursor; u16 useidx, idx, bitidx, tidcnt = 0; vaddr = tinfo->vaddr; if (offset_in_page(vaddr)) { ret = -EINVAL; goto bail; } npages = num_user_pages(vaddr, tinfo->length); if (!npages) { ret = -EINVAL; goto bail; } if (!access_ok(VERIFY_WRITE, (void __user *)vaddr, npages * PAGE_SIZE)) { dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n", (void *)vaddr, npages); ret = -EFAULT; goto bail; } memset(tidmap, 0, sizeof(tidmap[0]) * uctxt->tidmapcnt); memset(tidlist, 0, sizeof(tidlist[0]) * tidpairs); exp_groups = uctxt->expected_count / dd->rcv_entries.group_size; /* which group set do we look at first? */ tidcursor = atomic_read(&uctxt->tidcursor); useidx = (tidcursor >> 16) & 0xffff; bitidx = tidcursor & 0xffff; /* * Keep going until we've mapped all pages or we've exhausted all * RcvArray entries. * This iterates over the number of tidmaps + 1 * (idx <= uctxt->tidmapcnt) so we check the bitmap which we * started from one more time for any free bits before the * starting point bit. */ for (mapped = 0, idx = 0; mapped < npages && idx <= uctxt->tidmapcnt;) { u64 i, offset = 0; unsigned free, pinned, pmapped = 0, bits_used; u16 grp; /* * "Reserve" the needed group bits under lock so other * processes can't step in the middle of it. Once * reserved, we don't need the lock anymore since we * are guaranteed the groups. */ spin_lock(&uctxt->exp_lock); if (uctxt->tidusemap[useidx] == -1ULL || bitidx >= BITS_PER_LONG) { /* no free groups in the set, use the next */ useidx = (useidx + 1) % uctxt->tidmapcnt; idx++; bitidx = 0; spin_unlock(&uctxt->exp_lock); continue; } ngroups = ((npages - mapped) / dd->rcv_entries.group_size) + !!((npages - mapped) % dd->rcv_entries.group_size); /* * If we've gotten here, the current set of groups does have * one or more free groups. */ free = num_free_groups(uctxt->tidusemap[useidx], &bitidx); if (!free) { /* * Despite the check above, free could still come back * as 0 because we don't check the entire bitmap but * we start from bitidx. */ spin_unlock(&uctxt->exp_lock); continue; } bits_used = min(free, ngroups); tidmap[useidx] |= ((1ULL << bits_used) - 1) << bitidx; uctxt->tidusemap[useidx] |= tidmap[useidx]; spin_unlock(&uctxt->exp_lock); /* * At this point, we know where in the map we have free bits. * properly offset into the various "shadow" arrays and compute * the RcvArray entry index. */ offset = ((useidx * BITS_PER_LONG) + bitidx) * dd->rcv_entries.group_size; pages = uctxt->tid_pg_list + offset; phys = uctxt->physshadow + offset; tid = uctxt->expected_base + offset; /* Calculate how many pages we can pin based on free bits */ pinned = min((bits_used * dd->rcv_entries.group_size), (npages - mapped)); /* * Now that we know how many free RcvArray entries we have, * we can pin that many user pages. */ ret = hfi1_acquire_user_pages(vaddr + (mapped * PAGE_SIZE), pinned, true, pages); if (ret) { /* * We can't continue because the pages array won't be * initialized. This should never happen, * unless perhaps the user has mpin'ed the pages * themselves. */ dd_dev_info(dd, "Failed to lock addr %p, %u pages: errno %d\n", (void *) vaddr, pinned, -ret); /* * Let go of the bits that we reserved since we are not * going to use them. */ spin_lock(&uctxt->exp_lock); uctxt->tidusemap[useidx] &= ~(((1ULL << bits_used) - 1) << bitidx); spin_unlock(&uctxt->exp_lock); goto done; } /* * How many groups do we need based on how many pages we have * pinned? */ ngroups = (pinned / dd->rcv_entries.group_size) + !!(pinned % dd->rcv_entries.group_size); /* * Keep programming RcvArray entries for all the free * groups. */ for (i = 0, grp = 0; grp < ngroups; i++, grp++) { unsigned j; u32 pair_size = 0, tidsize; /* * This inner loop will program an entire group or the * array of pinned pages (which ever limit is hit * first). */ for (j = 0; j < dd->rcv_entries.group_size && pmapped < pinned; j++, pmapped++, tid++) { tidsize = PAGE_SIZE; phys[pmapped] = hfi1_map_page(dd->pcidev, pages[pmapped], 0, tidsize, PCI_DMA_FROMDEVICE); trace_hfi1_exp_rcv_set(uctxt->ctxt, fd->subctxt, tid, vaddr, phys[pmapped], pages[pmapped]); /* * Each RcvArray entry is programmed with one * page * worth of memory. This will handle * the 8K MTU as well as anything smaller * due to the fact that both entries in the * RcvTidPair are programmed with a page. * PSM currently does not handle anything * bigger than 8K MTU, so should we even worry * about 10K here? */ hfi1_put_tid(dd, tid, PT_EXPECTED, phys[pmapped], ilog2(tidsize >> PAGE_SHIFT) + 1); pair_size += tidsize >> PAGE_SHIFT; EXP_TID_RESET(tidlist[pairidx], LEN, pair_size); if (!(tid % 2)) { tidlist[pairidx] |= EXP_TID_SET(IDX, (tid - uctxt->expected_base) / 2); tidlist[pairidx] |= EXP_TID_SET(CTRL, 1); tidcnt++; } else { tidlist[pairidx] |= EXP_TID_SET(CTRL, 2); pair_size = 0; pairidx++; } } /* * We've programmed the entire group (or as much of the * group as we'll use. Now, it's time to push it out... */ flush_wc(); } mapped += pinned; atomic_set(&uctxt->tidcursor, (((useidx & 0xffffff) << 16) | ((bitidx + bits_used) & 0xffffff))); } trace_hfi1_exp_tid_map(uctxt->ctxt, fd->subctxt, 0, uctxt->tidusemap, uctxt->tidmapcnt); done: /* If we've mapped anything, copy relevant info to user */ if (mapped) { if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist, tidlist, sizeof(tidlist[0]) * tidcnt)) { ret = -EFAULT; goto done; } /* copy TID info to user */ if (copy_to_user((void __user *)(unsigned long)tinfo->tidmap, tidmap, sizeof(tidmap[0]) * uctxt->tidmapcnt)) ret = -EFAULT; } bail: /* * Calculate mapped length. New Exp TID protocol does not "unwind" and * report an error if it can't map the entire buffer. It just reports * the length that was mapped. */ tinfo->length = mapped * PAGE_SIZE; tinfo->tidcnt = tidcnt; return ret; } static int exp_tid_free(struct file *fp, struct hfi1_tid_info *tinfo) { struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; unsigned long tidmap[uctxt->tidmapcnt]; struct page **pages; dma_addr_t *phys; u16 idx, bitidx, tid; int ret = 0; if (copy_from_user(&tidmap, (void __user *)(unsigned long) tinfo->tidmap, sizeof(tidmap[0]) * uctxt->tidmapcnt)) { ret = -EFAULT; goto done; } for (idx = 0; idx < uctxt->tidmapcnt; idx++) { unsigned long map; bitidx = 0; if (!tidmap[idx]) continue; map = tidmap[idx]; while ((bitidx = tzcnt(map)) < BITS_PER_LONG) { int i, pcount = 0; struct page *pshadow[dd->rcv_entries.group_size]; unsigned offset = ((idx * BITS_PER_LONG) + bitidx) * dd->rcv_entries.group_size; pages = uctxt->tid_pg_list + offset; phys = uctxt->physshadow + offset; tid = uctxt->expected_base + offset; for (i = 0; i < dd->rcv_entries.group_size; i++, tid++) { if (pages[i]) { hfi1_put_tid(dd, tid, PT_INVALID, 0, 0); trace_hfi1_exp_rcv_free(uctxt->ctxt, fd->subctxt, tid, phys[i], pages[i]); pci_unmap_page(dd->pcidev, phys[i], PAGE_SIZE, PCI_DMA_FROMDEVICE); pshadow[pcount] = pages[i]; pages[i] = NULL; pcount++; phys[i] = 0; } } flush_wc(); hfi1_release_user_pages(pshadow, pcount, true); clear_bit(bitidx, &uctxt->tidusemap[idx]); map &= ~(1ULL<ctxt, fd->subctxt, 1, uctxt->tidusemap, uctxt->tidmapcnt); done: return ret; } static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt) { struct hfi1_devdata *dd = uctxt->dd; unsigned tid; dd_dev_info(dd, "ctxt %u unlocking any locked expTID pages\n", uctxt->ctxt); for (tid = 0; tid < uctxt->expected_count; tid++) { struct page *p = uctxt->tid_pg_list[tid]; dma_addr_t phys; if (!p) continue; phys = uctxt->physshadow[tid]; uctxt->physshadow[tid] = 0; uctxt->tid_pg_list[tid] = NULL; pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, PCI_DMA_FROMDEVICE); hfi1_release_user_pages(&p, 1, true); } } static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt, u16 pkey) { int ret = -ENOENT, i, intable = 0; struct hfi1_pportdata *ppd = uctxt->ppd; struct hfi1_devdata *dd = uctxt->dd; if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) { ret = -EINVAL; goto done; } for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) if (pkey == ppd->pkeys[i]) { intable = 1; break; } if (intable) ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey); done: return ret; } static int ui_open(struct inode *inode, struct file *filp) { struct hfi1_devdata *dd; dd = container_of(inode->i_cdev, struct hfi1_devdata, ui_cdev); filp->private_data = dd; /* for other methods */ return 0; } static int ui_release(struct inode *inode, struct file *filp) { /* nothing to do */ return 0; } static loff_t ui_lseek(struct file *filp, loff_t offset, int whence) { struct hfi1_devdata *dd = filp->private_data; switch (whence) { case SEEK_SET: break; case SEEK_CUR: offset += filp->f_pos; break; case SEEK_END: offset = ((dd->kregend - dd->kregbase) + DC8051_DATA_MEM_SIZE) - offset; break; default: return -EINVAL; } if (offset < 0) return -EINVAL; if (offset >= (dd->kregend - dd->kregbase) + DC8051_DATA_MEM_SIZE) return -EINVAL; filp->f_pos = offset; return filp->f_pos; } /* NOTE: assumes unsigned long is 8 bytes */ static ssize_t ui_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos) { struct hfi1_devdata *dd = filp->private_data; void __iomem *base = dd->kregbase; unsigned long total, csr_off, barlen = (dd->kregend - dd->kregbase); u64 data; /* only read 8 byte quantities */ if ((count % 8) != 0) return -EINVAL; /* offset must be 8-byte aligned */ if ((*f_pos % 8) != 0) return -EINVAL; /* destination buffer must be 8-byte aligned */ if ((unsigned long)buf % 8 != 0) return -EINVAL; /* must be in range */ if (*f_pos + count > (barlen + DC8051_DATA_MEM_SIZE)) return -EINVAL; /* only set the base if we are not starting past the BAR */ if (*f_pos < barlen) base += *f_pos; csr_off = *f_pos; for (total = 0; total < count; total += 8, csr_off += 8) { /* accessing LCB CSRs requires more checks */ if (is_lcb_offset(csr_off)) { if (read_lcb_csr(dd, csr_off, (u64 *)&data)) break; /* failed */ } /* * Cannot read ASIC GPIO/QSFP* clear and force CSRs without a * false parity error. Avoid the whole issue by not reading * them. These registers are defined as having a read value * of 0. */ else if (csr_off == ASIC_GPIO_CLEAR || csr_off == ASIC_GPIO_FORCE || csr_off == ASIC_QSFP1_CLEAR || csr_off == ASIC_QSFP1_FORCE || csr_off == ASIC_QSFP2_CLEAR || csr_off == ASIC_QSFP2_FORCE) data = 0; else if (csr_off >= barlen) { /* * read_8051_data can read more than just 8 bytes at * a time. However, folding this into the loop and * handling the reads in 8 byte increments allows us * to smoothly transition from chip memory to 8051 * memory. */ if (read_8051_data(dd, (u32)(csr_off - barlen), sizeof(data), &data)) break; /* failed */ } else data = readq(base + total); if (put_user(data, (unsigned long __user *)(buf + total))) break; } *f_pos += total; return total; } /* NOTE: assumes unsigned long is 8 bytes */ static ssize_t ui_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos) { struct hfi1_devdata *dd = filp->private_data; void __iomem *base; unsigned long total, data, csr_off; int in_lcb; /* only write 8 byte quantities */ if ((count % 8) != 0) return -EINVAL; /* offset must be 8-byte aligned */ if ((*f_pos % 8) != 0) return -EINVAL; /* source buffer must be 8-byte aligned */ if ((unsigned long)buf % 8 != 0) return -EINVAL; /* must be in range */ if (*f_pos + count > dd->kregend - dd->kregbase) return -EINVAL; base = (void __iomem *)dd->kregbase + *f_pos; csr_off = *f_pos; in_lcb = 0; for (total = 0; total < count; total += 8, csr_off += 8) { if (get_user(data, (unsigned long __user *)(buf + total))) break; /* accessing LCB CSRs requires a special procedure */ if (is_lcb_offset(csr_off)) { if (!in_lcb) { int ret = acquire_lcb_access(dd, 1); if (ret) break; in_lcb = 1; } } else { if (in_lcb) { release_lcb_access(dd, 1); in_lcb = 0; } } writeq(data, base + total); } if (in_lcb) release_lcb_access(dd, 1); *f_pos += total; return total; } static const struct file_operations ui_file_ops = { .owner = THIS_MODULE, .llseek = ui_lseek, .read = ui_read, .write = ui_write, .open = ui_open, .release = ui_release, }; #define UI_OFFSET 192 /* device minor offset for UI devices */ static int create_ui = 1; static struct cdev wildcard_cdev; static struct device *wildcard_device; static atomic_t user_count = ATOMIC_INIT(0); static void user_remove(struct hfi1_devdata *dd) { if (atomic_dec_return(&user_count) == 0) hfi1_cdev_cleanup(&wildcard_cdev, &wildcard_device); hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); hfi1_cdev_cleanup(&dd->ui_cdev, &dd->ui_device); } static int user_add(struct hfi1_devdata *dd) { char name[10]; int ret; if (atomic_inc_return(&user_count) == 1) { ret = hfi1_cdev_init(0, class_name(), &hfi1_file_ops, &wildcard_cdev, &wildcard_device, true); if (ret) goto done; } snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); ret = hfi1_cdev_init(dd->unit + 1, name, &hfi1_file_ops, &dd->user_cdev, &dd->user_device, true); if (ret) goto done; if (create_ui) { snprintf(name, sizeof(name), "%s_ui%d", class_name(), dd->unit); ret = hfi1_cdev_init(dd->unit + UI_OFFSET, name, &ui_file_ops, &dd->ui_cdev, &dd->ui_device, false); if (ret) goto done; } return 0; done: user_remove(dd); return ret; } /* * Create per-unit files in /dev */ int hfi1_device_create(struct hfi1_devdata *dd) { int r, ret; r = user_add(dd); ret = hfi1_diag_add(dd); if (r && !ret) ret = r; return ret; } /* * Remove per-unit files in /dev * void, core kernel returns no errors for this stuff */ void hfi1_device_remove(struct hfi1_devdata *dd) { user_remove(dd); hfi1_diag_remove(dd); }