summaryrefslogtreecommitdiff
path: root/samples/kdbus/kdbus-workers.c
blob: 5a6dfdce3bfddc7b49128a8a39cba0157e6ace11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
/*
 * Copyright (C) 2013-2015 David Herrmann <dh.herrmann@gmail.com>
 *
 * kdbus is free software; you can redistribute it and/or modify it under
 * the terms of the GNU Lesser General Public License as published by the
 * Free Software Foundation; either version 2.1 of the License, or (at
 * your option) any later version.
 */

/*
 * Example: Workers
 * This program computes prime-numbers based on the sieve of Eratosthenes. The
 * master sets up a shared memory region and spawns workers which clear out the
 * non-primes. The master reacts to keyboard input and to client-requests to
 * control what each worker does. Note that this is in no way meant as efficient
 * way to compute primes. It should only serve as example how a master/worker
 * concept can be implemented with kdbus used as control messages.
 *
 * The main process is called the 'master'. It creates a new, private bus which
 * will be used between the master and its workers to communicate. The master
 * then spawns a fixed number of workers. Whenever a worker dies (detected via
 * SIGCHLD), the master spawns a new worker. When done, the master waits for all
 * workers to exit, prints a status report and exits itself.
 *
 * The master process does *not* keep track of its workers. Instead, this
 * example implements a PULL model. That is, the master acquires a well-known
 * name on the bus which each worker uses to request tasks from the master. If
 * there are no more tasks, the master will return an empty task-list, which
 * casues a worker to exit immediately.
 *
 * As tasks can be computationally expensive, we support cancellation. Whenever
 * the master process is interrupted, it will drop its well-known name on the
 * bus. This causes kdbus to broadcast a name-change notification. The workers
 * check for broadcast messages regularly and will exit if they receive one.
 *
 * This example exists of 4 objects:
 *  * master: The master object contains the context of the master process. This
 *            process manages the prime-context, spawns workers and assigns
 *            prime-ranges to each worker to compute.
 *            The master itself does not do any prime-computations itself.
 *  * child:  The child object contains the context of a worker. It inherits the
 *            prime context from its parent (the master) and then creates a new
 *            bus context to request prime-ranges to compute.
 *  * prime:  The "prime" object is used to abstract how we compute primes. When
 *            allocated, it prepares a memory region to hold 1 bit for each
 *            natural number up to a fixed maximum ('MAX_PRIMES').
 *            The memory region is backed by a memfd which we share between
 *            processes. Each worker now gets assigned a range of natural
 *            numbers which it clears multiples of off the memory region. The
 *            master process is responsible of distributing all natural numbers
 *            up to the fixed maximum to its workers.
 *  * bus:    The bus object is an abstraction of the kdbus API. It is pretty
 *            straightfoward and only manages the connection-fd plus the
 *            memory-mapped pool in a single object.
 *
 * This example is in reversed order, which should make it easier to read
 * top-down, but requires some forward-declarations. Just ignore those.
 */

#include <stdio.h>
#include <stdlib.h>
#include <sys/syscall.h>

/* glibc < 2.7 does not ship sys/signalfd.h */
/* we require kernels with __NR_memfd_create */
#if __GLIBC__ >= 2 && __GLIBC_MINOR__ >= 7 && defined(__NR_memfd_create)

#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/memfd.h>
#include <signal.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/poll.h>
#include <sys/signalfd.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include "kdbus-api.h"

/* FORWARD DECLARATIONS */

#define POOL_SIZE (16 * 1024 * 1024)
#define MAX_PRIMES (2UL << 24)
#define WORKER_COUNT (16)
#define PRIME_STEPS (65536 * 4)

static const char *arg_busname = "example-workers";
static const char *arg_modname = "kdbus";
static const char *arg_master = "org.freedesktop.master";

static int err_assert(int r_errno, const char *msg, const char *func, int line,
		      const char *file)
{
	r_errno = (r_errno != 0) ? -abs(r_errno) : -EFAULT;
	if (r_errno < 0) {
		errno = -r_errno;
		fprintf(stderr, "ERR: %s: %m (%s:%d in %s)\n",
			msg, func, line, file);
	}
	return r_errno;
}

#define err_r(_r, _msg) err_assert((_r), (_msg), __func__, __LINE__, __FILE__)
#define err(_msg) err_r(errno, (_msg))

struct prime;
struct bus;
struct master;
struct child;

struct prime {
	int fd;
	uint8_t *area;
	size_t max;
	size_t done;
	size_t status;
};

static int prime_new(struct prime **out);
static void prime_free(struct prime *p);
static bool prime_done(struct prime *p);
static void prime_consume(struct prime *p, size_t amount);
static int prime_run(struct prime *p, struct bus *cancel, size_t number);
static void prime_print(struct prime *p);

struct bus {
	int fd;
	uint8_t *pool;
};

static int bus_open_connection(struct bus **out, uid_t uid, const char *name,
			       uint64_t recv_flags);
static void bus_close_connection(struct bus *b);
static void bus_poool_free_slice(struct bus *b, uint64_t offset);
static int bus_acquire_name(struct bus *b, const char *name);
static int bus_install_name_loss_match(struct bus *b, const char *name);
static int bus_poll(struct bus *b);
static int bus_make(uid_t uid, const char *name);

struct master {
	size_t n_workers;
	size_t max_workers;

	int signal_fd;
	int control_fd;

	struct prime *prime;
	struct bus *bus;
};

static int master_new(struct master **out);
static void master_free(struct master *m);
static int master_run(struct master *m);
static int master_poll(struct master *m);
static int master_handle_stdin(struct master *m);
static int master_handle_signal(struct master *m);
static int master_handle_bus(struct master *m);
static int master_reply(struct master *m, const struct kdbus_msg *msg);
static int master_waitpid(struct master *m);
static int master_spawn(struct master *m);

struct child {
	struct bus *bus;
	struct prime *prime;
};

static int child_new(struct child **out, struct prime *p);
static void child_free(struct child *c);
static int child_run(struct child *c);

/* END OF FORWARD DECLARATIONS */

/*
 * This is the main entrypoint of this example. It is pretty straightforward. We
 * create a master object, run the computation, print a status report and then
 * exit. Nothing particularly interesting here, so lets look into the master
 * object...
 */
int main(int argc, char **argv)
{
	struct master *m = NULL;
	int r;

	r = master_new(&m);
	if (r < 0)
		goto out;

	r = master_run(m);
	if (r < 0)
		goto out;

	if (0)
		prime_print(m->prime);

out:
	master_free(m);
	if (r < 0 && r != -EINTR)
		fprintf(stderr, "failed\n");
	else
		fprintf(stderr, "done\n");
	return r < 0 ? EXIT_FAILURE : EXIT_SUCCESS;
}

/*
 * ...this will allocate a new master context. It keeps track of the current
 * number of children/workers that are running, manages a signalfd to track
 * SIGCHLD, and creates a private kdbus bus. Afterwards, it opens its connection
 * to the bus and acquires a well known-name (arg_master).
 */
static int master_new(struct master **out)
{
	struct master *m;
	sigset_t smask;
	int r;

	m = calloc(1, sizeof(*m));
	if (!m)
		return err("cannot allocate master");

	m->max_workers = WORKER_COUNT;
	m->signal_fd = -1;
	m->control_fd = -1;

	/* Block SIGINT and SIGCHLD signals */
	sigemptyset(&smask);
	sigaddset(&smask, SIGINT);
	sigaddset(&smask, SIGCHLD);
	sigprocmask(SIG_BLOCK, &smask, NULL);

	m->signal_fd = signalfd(-1, &smask, SFD_CLOEXEC);
	if (m->signal_fd < 0) {
		r = err("cannot create signalfd");
		goto error;
	}

	r = prime_new(&m->prime);
	if (r < 0)
		goto error;

	m->control_fd = bus_make(getuid(), arg_busname);
	if (m->control_fd < 0) {
		r = m->control_fd;
		goto error;
	}

	/*
	 * Open a bus connection for the master, and require each received
	 * message to have a metadata item of type KDBUS_ITEM_PIDS attached.
	 * The current UID is needed to compute the name of the bus node to
	 * connect to.
	 */
	r = bus_open_connection(&m->bus, getuid(),
				arg_busname, KDBUS_ATTACH_PIDS);
	if (r < 0)
		goto error;

	/*
	 * Acquire a well-known name on the bus, so children can address
	 * messages to the master using KDBUS_DST_ID_NAME as destination-ID
	 * of messages.
	 */
	r = bus_acquire_name(m->bus, arg_master);
	if (r < 0)
		goto error;

	*out = m;
	return 0;

error:
	master_free(m);
	return r;
}

/* pretty straightforward destructor of a master object */
static void master_free(struct master *m)
{
	if (!m)
		return;

	bus_close_connection(m->bus);
	if (m->control_fd >= 0)
		close(m->control_fd);
	prime_free(m->prime);
	if (m->signal_fd >= 0)
		close(m->signal_fd);
	free(m);
}

static int master_run(struct master *m)
{
	int res, r = 0;

	while (!prime_done(m->prime)) {
		while (m->n_workers < m->max_workers) {
			r = master_spawn(m);
			if (r < 0)
				break;
		}

		r = master_poll(m);
		if (r < 0)
			break;
	}

	if (r < 0) {
		bus_close_connection(m->bus);
		m->bus = NULL;
	}

	while (m->n_workers > 0) {
		res = master_poll(m);
		if (res < 0) {
			if (m->bus) {
				bus_close_connection(m->bus);
				m->bus = NULL;
			}
			r = res;
		}
	}

	return r == -EINTR ? 0 : r;
}

static int master_poll(struct master *m)
{
	struct pollfd fds[3] = {};
	int r = 0, n = 0;

	/*
	 * Add stdin, the eventfd and the connection owner file descriptor to
	 * the pollfd table, and handle incoming traffic on the latter in
	 * master_handle_bus().
	 */
	fds[n].fd = STDIN_FILENO;
	fds[n++].events = POLLIN;
	fds[n].fd = m->signal_fd;
	fds[n++].events = POLLIN;
	if (m->bus) {
		fds[n].fd = m->bus->fd;
		fds[n++].events = POLLIN;
	}

	r = poll(fds, n, -1);
	if (r < 0)
		return err("poll() failed");

	if (fds[0].revents & POLLIN)
		r = master_handle_stdin(m);
	else if (fds[0].revents)
		r = err("ERR/HUP on stdin");
	if (r < 0)
		return r;

	if (fds[1].revents & POLLIN)
		r = master_handle_signal(m);
	else if (fds[1].revents)
		r = err("ERR/HUP on signalfd");
	if (r < 0)
		return r;

	if (fds[2].revents & POLLIN)
		r = master_handle_bus(m);
	else if (fds[2].revents)
		r = err("ERR/HUP on bus");

	return r;
}

static int master_handle_stdin(struct master *m)
{
	char buf[128];
	ssize_t l;
	int r = 0;

	l = read(STDIN_FILENO, buf, sizeof(buf));
	if (l < 0)
		return err("cannot read stdin");
	if (l == 0)
		return err_r(-EINVAL, "EOF on stdin");

	while (l-- > 0) {
		switch (buf[l]) {
		case 'q':
			/* quit */
			r = -EINTR;
			break;
		case '\n':
		case ' ':
			/* ignore */
			break;
		default:
			if (isgraph(buf[l]))
				fprintf(stderr, "invalid input '%c'\n", buf[l]);
			else
				fprintf(stderr, "invalid input 0x%x\n", buf[l]);
			break;
		}
	}

	return r;
}

static int master_handle_signal(struct master *m)
{
	struct signalfd_siginfo val;
	ssize_t l;

	l = read(m->signal_fd, &val, sizeof(val));
	if (l < 0)
		return err("cannot read signalfd");
	if (l != sizeof(val))
		return err_r(-EINVAL, "invalid data from signalfd");

	switch (val.ssi_signo) {
	case SIGCHLD:
		return master_waitpid(m);
	case SIGINT:
		return err_r(-EINTR, "interrupted");
	default:
		return err_r(-EINVAL, "caught invalid signal");
	}
}

static int master_handle_bus(struct master *m)
{
	struct kdbus_cmd_recv recv = { .size = sizeof(recv) };
	const struct kdbus_msg *msg = NULL;
	const struct kdbus_item *item;
	const struct kdbus_vec *vec = NULL;
	int r = 0;

	/*
	 * To receive a message, the KDBUS_CMD_RECV ioctl is used.
	 * It takes an argument of type 'struct kdbus_cmd_recv', which
	 * will contain information on the received message when the call
	 * returns. See kdbus.message(7).
	 */
	r = kdbus_cmd_recv(m->bus->fd, &recv);
	/*
	 * EAGAIN is returned when there is no message waiting on this
	 * connection. This is not an error - simply bail out.
	 */
	if (r == -EAGAIN)
		return 0;
	if (r < 0)
		return err_r(r, "cannot receive message");

	/*
	 * Messages received by a connection are stored inside the connection's
	 * pool, at an offset that has been returned in the 'recv' command
	 * struct above. The value describes the relative offset from the
	 * start address of the pool. A message is described with
	 * 'struct kdbus_msg'. See kdbus.message(7).
	 */
	msg = (void *)(m->bus->pool + recv.msg.offset);

	/*
	 * A messages describes its actual payload in an array of items.
	 * KDBUS_FOREACH() is a simple iterator that walks such an array.
	 * struct kdbus_msg has a field to denote its total size, which is
	 * needed to determine the number of items in the array.
	 */
	KDBUS_FOREACH(item, msg->items,
		      msg->size - offsetof(struct kdbus_msg, items)) {
		/*
		 * An item of type PAYLOAD_OFF describes in-line memory
		 * stored in the pool at a described offset. That offset is
		 * relative to the start address of the message header.
		 * This example program only expects one single item of that
		 * type, remembers the struct kdbus_vec member of the item
		 * when it sees it, and bails out if there is more than one
		 * of them.
		 */
		if (item->type == KDBUS_ITEM_PAYLOAD_OFF) {
			if (vec) {
				r = err_r(-EEXIST,
					  "message with multiple vecs");
				break;
			}
			vec = &item->vec;
			if (vec->size != 1) {
				r = err_r(-EINVAL, "invalid message size");
				break;
			}

		/*
		 * MEMFDs are transported as items of type PAYLOAD_MEMFD.
		 * If such an item is attached, a new file descriptor was
		 * installed into the task when KDBUS_CMD_RECV was called, and
		 * its number is stored in item->memfd.fd.
		 * Implementers *must* handle this item type and close the
		 * file descriptor when no longer needed in order to prevent
		 * file descriptor exhaustion. This example program just bails
		 * out with an error in this case, as memfds are not expected
		 * in this context.
		 */
		} else if (item->type == KDBUS_ITEM_PAYLOAD_MEMFD) {
			r = err_r(-EINVAL, "message with memfd");
			break;
		}
	}
	if (r < 0)
		goto exit;
	if (!vec) {
		r = err_r(-EINVAL, "empty message");
		goto exit;
	}

	switch (*((const uint8_t *)msg + vec->offset)) {
	case 'r': {
		r = master_reply(m, msg);
		break;
	}
	default:
		r = err_r(-EINVAL, "invalid message type");
		break;
	}

exit:
	/*
	 * We are done with the memory slice that was given to us through
	 * recv.msg.offset. Tell the kernel it can use it for other content
	 * in the future. See kdbus.pool(7).
	 */
	bus_poool_free_slice(m->bus, recv.msg.offset);
	return r;
}

static int master_reply(struct master *m, const struct kdbus_msg *msg)
{
	struct kdbus_cmd_send cmd;
	struct kdbus_item *item;
	struct kdbus_msg *reply;
	size_t size, status, p[2];
	int r;

	/*
	 * This functions sends a message over kdbus. To do this, it uses the
	 * KDBUS_CMD_SEND ioctl, which takes a command struct argument of type
	 * 'struct kdbus_cmd_send'. This struct stores a pointer to the actual
	 * message to send. See kdbus.message(7).
	 */
	p[0] = m->prime->done;
	p[1] = prime_done(m->prime) ? 0 : PRIME_STEPS;

	size = sizeof(*reply);
	size += KDBUS_ITEM_SIZE(sizeof(struct kdbus_vec));

	/* Prepare the message to send */
	reply = alloca(size);
	memset(reply, 0, size);
	reply->size = size;

	/* Each message has a cookie that can be used to send replies */
	reply->cookie = 1;

	/* The payload_type is arbitrary, but it must be non-zero */
	reply->payload_type = 0xdeadbeef;

	/*
	 * We are sending a reply. Let the kernel know the cookie of the
	 * message we are replying to.
	 */
	reply->cookie_reply = msg->cookie;

	/*
	 * Messages can either be directed to a well-known name (stored as
	 * string) or to a unique name (stored as number). This example does
	 * the latter. If the message would be directed to a well-known name
	 * instead, the message's dst_id field would be set to
	 * KDBUS_DST_ID_NAME, and the name would be attaches in an item of type
	 * KDBUS_ITEM_DST_NAME. See below for an example, and also refer to
	 * kdbus.message(7).
	 */
	reply->dst_id = msg->src_id;

	/* Our message has exactly one item to store its payload */
	item = reply->items;
	item->type = KDBUS_ITEM_PAYLOAD_VEC;
	item->size = KDBUS_ITEM_HEADER_SIZE + sizeof(struct kdbus_vec);
	item->vec.address = (uintptr_t)p;
	item->vec.size = sizeof(p);

	/*
	 * Now prepare the command struct, and reference the message we want
	 * to send.
	 */
	memset(&cmd, 0, sizeof(cmd));
	cmd.size = sizeof(cmd);
	cmd.msg_address = (uintptr_t)reply;

	/*
	 * Finally, employ the command on the connection owner
	 * file descriptor.
	 */
	r = kdbus_cmd_send(m->bus->fd, &cmd);
	if (r < 0)
		return err_r(r, "cannot send reply");

	if (p[1]) {
		prime_consume(m->prime, p[1]);
		status = m->prime->done * 10000 / m->prime->max;
		if (status != m->prime->status) {
			m->prime->status = status;
			fprintf(stderr, "status: %7.3lf%%\n",
				(double)status / 100);
		}
	}

	return 0;
}

static int master_waitpid(struct master *m)
{
	pid_t pid;
	int r;

	while ((pid = waitpid(-1, &r, WNOHANG)) > 0) {
		if (m->n_workers > 0)
			--m->n_workers;
		if (!WIFEXITED(r))
			r = err_r(-EINVAL, "child died unexpectedly");
		else if (WEXITSTATUS(r) != 0)
			r = err_r(-WEXITSTATUS(r), "child failed");
	}

	return r;
}

static int master_spawn(struct master *m)
{
	struct child *c = NULL;
	struct prime *p = NULL;
	pid_t pid;
	int r;

	/* Spawn off one child and call child_run() inside it */

	pid = fork();
	if (pid < 0)
		return err("cannot fork");
	if (pid > 0) {
		/* parent */
		++m->n_workers;
		return 0;
	}

	/* child */

	p = m->prime;
	m->prime = NULL;
	master_free(m);

	r = child_new(&c, p);
	if (r < 0)
		goto exit;

	r = child_run(c);

exit:
	child_free(c);
	exit(abs(r));
}

static int child_new(struct child **out, struct prime *p)
{
	struct child *c;
	int r;

	c = calloc(1, sizeof(*c));
	if (!c)
		return err("cannot allocate child");

	c->prime = p;

	/*
	 * Open a connection to the bus and require each received message to
	 * carry a list of the well-known names the sendind connection currently
	 * owns. The current UID is needed in order to determine the name of the
	 * bus node to connect to.
	 */
	r = bus_open_connection(&c->bus, getuid(),
				arg_busname, KDBUS_ATTACH_NAMES);
	if (r < 0)
		goto error;

	/*
	 * Install a kdbus match so the child's connection gets notified when
	 * the master loses its well-known name.
	 */
	r = bus_install_name_loss_match(c->bus, arg_master);
	if (r < 0)
		goto error;

	*out = c;
	return 0;

error:
	child_free(c);
	return r;
}

static void child_free(struct child *c)
{
	if (!c)
		return;

	bus_close_connection(c->bus);
	prime_free(c->prime);
	free(c);
}

static int child_run(struct child *c)
{
	struct kdbus_cmd_send cmd;
	struct kdbus_item *item;
	struct kdbus_vec *vec = NULL;
	struct kdbus_msg *msg;
	struct timespec spec;
	size_t n, steps, size;
	int r = 0;

	/*
	 * Let's send a message to the master and ask for work. To do this,
	 * we use the KDBUS_CMD_SEND ioctl, which takes an argument of type
	 * 'struct kdbus_cmd_send'. This struct stores a pointer to the actual
	 * message to send. See kdbus.message(7).
	 */
	size = sizeof(*msg);
	size += KDBUS_ITEM_SIZE(strlen(arg_master) + 1);
	size += KDBUS_ITEM_SIZE(sizeof(struct kdbus_vec));

	msg = alloca(size);
	memset(msg, 0, size);
	msg->size = size;

	/*
	 * Tell the kernel that we expect a reply to this message. This means
	 * that
	 *
	 * a) The remote peer will gain temporary permission to talk to us
	 *    even if it would not be allowed to normally.
	 *
	 * b) A timeout value is required.
	 *
	 *    For asynchronous send commands, if no reply is received, we will
	 *    get a kernel notification with an item of type
	 *    KDBUS_ITEM_REPLY_TIMEOUT attached.
	 *
	 *    For synchronous send commands (which this example does), the
	 *    ioctl will block until a reply is received or the timeout is
	 *    exceeded.
	 */
	msg->flags = KDBUS_MSG_EXPECT_REPLY;

	/* Set our cookie. Replies must use this cookie to send their reply. */
	msg->cookie = 1;

	/* The payload_type is arbitrary, but it must be non-zero */
	msg->payload_type = 0xdeadbeef;

	/*
	 * We are sending our message to the current owner of a well-known
	 * name. This makes an item of type KDBUS_ITEM_DST_NAME mandatory.
	 */
	msg->dst_id = KDBUS_DST_ID_NAME;

	/*
	 * Set the reply timeout to 5 seconds. Timeouts are always set in
	 * absolute timestamps, based con CLOCK_MONOTONIC. See kdbus.message(7).
	 */
	clock_gettime(CLOCK_MONOTONIC_COARSE, &spec);
	msg->timeout_ns += (5 + spec.tv_sec) * 1000ULL * 1000ULL * 1000ULL;
	msg->timeout_ns += spec.tv_nsec;

	/*
	 * Fill the appended items. First, set the well-known name of the
	 * destination we want to talk to.
	 */
	item = msg->items;
	item->type = KDBUS_ITEM_DST_NAME;
	item->size = KDBUS_ITEM_HEADER_SIZE + strlen(arg_master) + 1;
	strcpy(item->str, arg_master);

	/*
	 * The 2nd item contains a vector to memory we want to send. It
	 * can be content of any type. In our case, we're sending a one-byte
	 * string only. The memory referenced by this item will be copied into
	 * the pool of the receiver connection, and does not need to be valid
	 * after the command is employed.
	 */
	item = KDBUS_ITEM_NEXT(item);
	item->type = KDBUS_ITEM_PAYLOAD_VEC;
	item->size = KDBUS_ITEM_HEADER_SIZE + sizeof(struct kdbus_vec);
	item->vec.address = (uintptr_t)"r";
	item->vec.size = 1;

	/* Set up the command struct and reference the message we prepared */
	memset(&cmd, 0, sizeof(cmd));
	cmd.size = sizeof(cmd);
	cmd.msg_address = (uintptr_t)msg;

	/*
	 * The send commands knows a mode in which it will block until a
	 * reply to a message is received. This example uses that mode.
	 * The pool offset to the received reply will be stored in the command
	 * struct after the send command returned. See below.
	 */
	cmd.flags = KDBUS_SEND_SYNC_REPLY;

	/*
	 * Finally, employ the command on the connection owner
	 * file descriptor.
	 */
	r = kdbus_cmd_send(c->bus->fd, &cmd);
	if (r == -ESRCH || r == -EPIPE || r == -ECONNRESET)
		return 0;
	if (r < 0)
		return err_r(r, "cannot send request to master");

	/*
	 * The command was sent with the KDBUS_SEND_SYNC_REPLY flag set,
	 * and returned successfully, which means that cmd.reply.offset now
	 * points to a message inside our connection's pool where the reply
	 * is found. This is equivalent to receiving the reply with
	 * KDBUS_CMD_RECV, but it doesn't require waiting for the reply with
	 * poll() and also saves the ioctl to receive the message.
	 */
	msg = (void *)(c->bus->pool + cmd.reply.offset);

	/*
	 * A messages describes its actual payload in an array of items.
	 * KDBUS_FOREACH() is a simple iterator that walks such an array.
	 * struct kdbus_msg has a field to denote its total size, which is
	 * needed to determine the number of items in the array.
	 */
	KDBUS_FOREACH(item, msg->items,
		      msg->size - offsetof(struct kdbus_msg, items)) {
		/*
		 * An item of type PAYLOAD_OFF describes in-line memory
		 * stored in the pool at a described offset. That offset is
		 * relative to the start address of the message header.
		 * This example program only expects one single item of that
		 * type, remembers the struct kdbus_vec member of the item
		 * when it sees it, and bails out if there is more than one
		 * of them.
		 */
		if (item->type == KDBUS_ITEM_PAYLOAD_OFF) {
			if (vec) {
				r = err_r(-EEXIST,
					  "message with multiple vecs");
				break;
			}
			vec = &item->vec;
			if (vec->size != 2 * sizeof(size_t)) {
				r = err_r(-EINVAL, "invalid message size");
				break;
			}
		/*
		 * MEMFDs are transported as items of type PAYLOAD_MEMFD.
		 * If such an item is attached, a new file descriptor was
		 * installed into the task when KDBUS_CMD_RECV was called, and
		 * its number is stored in item->memfd.fd.
		 * Implementers *must* handle this item type close the
		 * file descriptor when no longer needed in order to prevent
		 * file descriptor exhaustion. This example program just bails
		 * out with an error in this case, as memfds are not expected
		 * in this context.
		 */
		} else if (item->type == KDBUS_ITEM_PAYLOAD_MEMFD) {
			r = err_r(-EINVAL, "message with memfd");
			break;
		}
	}
	if (r < 0)
		goto exit;
	if (!vec) {
		r = err_r(-EINVAL, "empty message");
		goto exit;
	}

	n = ((size_t *)((const uint8_t *)msg + vec->offset))[0];
	steps = ((size_t *)((const uint8_t *)msg + vec->offset))[1];

	while (steps-- > 0) {
		++n;
		r = prime_run(c->prime, c->bus, n);
		if (r < 0)
			break;
		r = bus_poll(c->bus);
		if (r != 0) {
			r = r < 0 ? r : -EINTR;
			break;
		}
	}

exit:
	/*
	 * We are done with the memory slice that was given to us through
	 * cmd.reply.offset. Tell the kernel it can use it for other content
	 * in the future. See kdbus.pool(7).
	 */
	bus_poool_free_slice(c->bus, cmd.reply.offset);
	return r;
}

/*
 * Prime Computation
 *
 */

static int prime_new(struct prime **out)
{
	struct prime *p;
	int r;

	p = calloc(1, sizeof(*p));
	if (!p)
		return err("cannot allocate prime memory");

	p->fd = -1;
	p->area = MAP_FAILED;
	p->max = MAX_PRIMES;

	/*
	 * Prepare and map a memfd to store the bit-fields for the number
	 * ranges we want to perform the prime detection on.
	 */
	p->fd = syscall(__NR_memfd_create, "prime-area", MFD_CLOEXEC);
	if (p->fd < 0) {
		r = err("cannot create memfd");
		goto error;
	}

	r = ftruncate(p->fd, p->max / 8 + 1);
	if (r < 0) {
		r = err("cannot ftruncate area");
		goto error;
	}

	p->area = mmap(NULL, p->max / 8 + 1, PROT_READ | PROT_WRITE,
		       MAP_SHARED, p->fd, 0);
	if (p->area == MAP_FAILED) {
		r = err("cannot mmap memfd");
		goto error;
	}

	*out = p;
	return 0;

error:
	prime_free(p);
	return r;
}

static void prime_free(struct prime *p)
{
	if (!p)
		return;

	if (p->area != MAP_FAILED)
		munmap(p->area, p->max / 8 + 1);
	if (p->fd >= 0)
		close(p->fd);
	free(p);
}

static bool prime_done(struct prime *p)
{
	return p->done >= p->max;
}

static void prime_consume(struct prime *p, size_t amount)
{
	p->done += amount;
}

static int prime_run(struct prime *p, struct bus *cancel, size_t number)
{
	size_t i, n = 0;
	int r;

	if (number < 2 || number > 65535)
		return 0;

	for (i = number * number;
	     i < p->max && i > number;
	     i += number) {
		p->area[i / 8] |= 1 << (i % 8);

		if (!(++n % (1 << 20))) {
			r = bus_poll(cancel);
			if (r != 0)
				return r < 0 ? r : -EINTR;
		}
	}

	return 0;
}

static void prime_print(struct prime *p)
{
	size_t i, l = 0;

	fprintf(stderr, "PRIMES:");
	for (i = 0; i < p->max; ++i) {
		if (!(p->area[i / 8] & (1 << (i % 8))))
			fprintf(stderr, "%c%7zu", !(l++ % 16) ? '\n' : ' ', i);
	}
	fprintf(stderr, "\nEND\n");
}

static int bus_open_connection(struct bus **out, uid_t uid, const char *name,
			       uint64_t recv_flags)
{
	struct kdbus_cmd_hello hello;
	char path[128];
	struct bus *b;
	int r;

	/*
	 * The 'bus' object is our representation of a kdbus connection which
	 * stores two details: the connection owner file descriptor, and the
	 * mmap()ed memory of its associated pool. See kdbus.connection(7) and
	 * kdbus.pool(7).
	 */
	b = calloc(1, sizeof(*b));
	if (!b)
		return err("cannot allocate bus memory");

	b->fd = -1;
	b->pool = MAP_FAILED;

	/* Compute the name of the bus node to connect to. */
	snprintf(path, sizeof(path), "/sys/fs/%s/%lu-%s/bus",
		 arg_modname, (unsigned long)uid, name);
	b->fd = open(path, O_RDWR | O_CLOEXEC);
	if (b->fd < 0) {
		r = err("cannot open bus");
		goto error;
	}

	/*
	 * To make a connection to the bus, the KDBUS_CMD_HELLO ioctl is used.
	 * It takes an argument of type 'struct kdbus_cmd_hello'.
	 */
	memset(&hello, 0, sizeof(hello));
	hello.size = sizeof(hello);

	/*
	 * Specify a mask of metadata attach flags, describing metadata items
	 * that this new connection allows to be sent.
	 */
	hello.attach_flags_send = _KDBUS_ATTACH_ALL;

	/*
	 * Specify a mask of metadata attach flags, describing metadata items
	 * that this new connection wants to be receive along with each message.
	 */
	hello.attach_flags_recv = recv_flags;

	/*
	 * A connection may choose the size of its pool, but the number has to
	 * comply with two rules: a) it must be greater than 0, and b) it must
	 * be a mulitple of PAGE_SIZE. See kdbus.pool(7).
	 */
	hello.pool_size = POOL_SIZE;

	/*
	 * Now employ the command on the file descriptor opened above.
	 * This command will turn the file descriptor into a connection-owner
	 * file descriptor that controls the life-time of the connection; once
	 * it's closed, the connection is shut down.
	 */
	r = kdbus_cmd_hello(b->fd, &hello);
	if (r < 0) {
		err_r(r, "HELLO failed");
		goto error;
	}

	bus_poool_free_slice(b, hello.offset);

	/*
	 * Map the pool of the connection. Its size has been set in the
	 * command struct above. See kdbus.pool(7).
	 */
	b->pool = mmap(NULL, POOL_SIZE, PROT_READ, MAP_SHARED, b->fd, 0);
	if (b->pool == MAP_FAILED) {
		r = err("cannot mmap pool");
		goto error;
	}

	*out = b;
	return 0;

error:
	bus_close_connection(b);
	return r;
}

static void bus_close_connection(struct bus *b)
{
	if (!b)
		return;

	/*
	 * A bus connection is closed by simply calling close() on the
	 * connection owner file descriptor. The unique name and all owned
	 * well-known names of the conneciton will disappear.
	 * See kdbus.connection(7).
	 */
	if (b->pool != MAP_FAILED)
		munmap(b->pool, POOL_SIZE);
	if (b->fd >= 0)
		close(b->fd);
	free(b);
}

static void bus_poool_free_slice(struct bus *b, uint64_t offset)
{
	struct kdbus_cmd_free cmd = {
		.size = sizeof(cmd),
		.offset = offset,
	};
	int r;

	/*
	 * Once we're done with a piece of pool memory that was returned
	 * by a command, we have to call the KDBUS_CMD_FREE ioctl on it so it
	 * can be reused. The command takes an argument of type
	 * 'struct kdbus_cmd_free', in which the pool offset of the slice to
	 * free is stored. The ioctl is employed on the connection owner
	 * file descriptor. See kdbus.pool(7),
	 */
	r = kdbus_cmd_free(b->fd, &cmd);
	if (r < 0)
		err_r(r, "cannot free pool slice");
}

static int bus_acquire_name(struct bus *b, const char *name)
{
	struct kdbus_item *item;
	struct kdbus_cmd *cmd;
	size_t size;
	int r;

	/*
	 * This function acquires a well-known name on the bus through the
	 * KDBUS_CMD_NAME_ACQUIRE ioctl. This ioctl takes an argument of type
	 * 'struct kdbus_cmd', which is assembled below. See kdbus.name(7).
	 */
	size = sizeof(*cmd);
	size += KDBUS_ITEM_SIZE(strlen(name) + 1);

	cmd = alloca(size);
	memset(cmd, 0, size);
	cmd->size = size;

	/*
	 * The command requires an item of type KDBUS_ITEM_NAME, and its
	 * content must be a valid bus name.
	 */
	item = cmd->items;
	item->type = KDBUS_ITEM_NAME;
	item->size = KDBUS_ITEM_HEADER_SIZE + strlen(name) + 1;
	strcpy(item->str, name);

	/*
	 * Employ the command on the connection owner file descriptor.
	 */
	r = kdbus_cmd_name_acquire(b->fd, cmd);
	if (r < 0)
		return err_r(r, "cannot acquire name");

	return 0;
}

static int bus_install_name_loss_match(struct bus *b, const char *name)
{
	struct kdbus_cmd_match *match;
	struct kdbus_item *item;
	size_t size;
	int r;

	/*
	 * In order to install a match for signal messages, we have to
	 * assemble a 'struct kdbus_cmd_match' and use it along with the
	 * KDBUS_CMD_MATCH_ADD ioctl. See kdbus.match(7).
	 */
	size = sizeof(*match);
	size += KDBUS_ITEM_SIZE(sizeof(item->name_change) + strlen(name) + 1);

	match = alloca(size);
	memset(match, 0, size);
	match->size = size;

	/*
	 * A match is comprised of many 'rules', each of which describes a
	 * mandatory detail of the message. All rules of a match must be
	 * satified in order to make a message pass.
	 */
	item = match->items;

	/*
	 * In this case, we're interested in notifications that inform us
	 * about a well-known name being removed from the bus.
	 */
	item->type = KDBUS_ITEM_NAME_REMOVE;
	item->size = KDBUS_ITEM_HEADER_SIZE +
			sizeof(item->name_change) + strlen(name) + 1;

	/*
	 * We could limit the match further and require a specific unique-ID
	 * to be the new or the old owner of the name. In this case, however,
	 * we don't, and allow 'any' id.
	 */
	item->name_change.old_id.id = KDBUS_MATCH_ID_ANY;
	item->name_change.new_id.id = KDBUS_MATCH_ID_ANY;

	/* Copy in the well-known name we're interested in */
	strcpy(item->name_change.name, name);

	/*
	 * Add the match through the KDBUS_CMD_MATCH_ADD ioctl, employed on
	 * the connection owner fd.
	 */
	r = kdbus_cmd_match_add(b->fd, match);
	if (r < 0)
		return err_r(r, "cannot add match");

	return 0;
}

static int bus_poll(struct bus *b)
{
	struct pollfd fds[1] = {};
	int r;

	/*
	 * A connection endpoint supports poll() and will wake-up the
	 * task with POLLIN set once a message has arrived.
	 */
	fds[0].fd = b->fd;
	fds[0].events = POLLIN;
	r = poll(fds, sizeof(fds) / sizeof(*fds), 0);
	if (r < 0)
		return err("cannot poll bus");
	return !!(fds[0].revents & POLLIN);
}

static int bus_make(uid_t uid, const char *name)
{
	struct kdbus_item *item;
	struct kdbus_cmd *make;
	char path[128], busname[128];
	size_t size;
	int r, fd;

	/*
	 * Compute the full path to the 'control' node. 'arg_modname' may be
	 * set to a different value than 'kdbus' for development purposes.
	 * The 'control' node is the primary entry point to kdbus that must be
	 * used in order to create a bus. See kdbus(7) and kdbus.bus(7).
	 */
	snprintf(path, sizeof(path), "/sys/fs/%s/control", arg_modname);

	/*
	 * Compute the bus name. A valid bus name must always be prefixed with
	 * the EUID of the currently running process in order to avoid name
	 * conflicts. See kdbus.bus(7).
	 */
	snprintf(busname, sizeof(busname), "%lu-%s", (unsigned long)uid, name);

	fd = open(path, O_RDWR | O_CLOEXEC);
	if (fd < 0)
		return err("cannot open control file");

	/*
	 * The KDBUS_CMD_BUS_MAKE ioctl takes an argument of type
	 * 'struct kdbus_cmd', and expects at least two items attached to
	 * it: one to decribe the bloom parameters to be propagated to
	 * connections of the bus, and the name of the bus that was computed
	 * above. Assemble this struct now, and fill it with values.
	 */
	size = sizeof(*make);
	size += KDBUS_ITEM_SIZE(sizeof(struct kdbus_bloom_parameter));
	size += KDBUS_ITEM_SIZE(strlen(busname) + 1);

	make = alloca(size);
	memset(make, 0, size);
	make->size = size;

	/*
	 * Each item has a 'type' and 'size' field, and must be stored at an
	 * 8-byte aligned address. The KDBUS_ITEM_NEXT macro is used to advance
	 * the pointer. See kdbus.item(7) for more details.
	 */
	item = make->items;
	item->type = KDBUS_ITEM_BLOOM_PARAMETER;
	item->size = KDBUS_ITEM_HEADER_SIZE + sizeof(item->bloom_parameter);
	item->bloom_parameter.size = 8;
	item->bloom_parameter.n_hash = 1;

	/* The name of the new bus is stored in the next item. */
	item = KDBUS_ITEM_NEXT(item);
	item->type = KDBUS_ITEM_MAKE_NAME;
	item->size = KDBUS_ITEM_HEADER_SIZE + strlen(busname) + 1;
	strcpy(item->str, busname);

	/*
	 * Now create the bus via the KDBUS_CMD_BUS_MAKE ioctl and return the
	 * fd that was used back to the caller of this function. This fd is now
	 * called a 'bus owner file descriptor', and it controls the life-time
	 * of the newly created bus; once the file descriptor is closed, the
	 * bus goes away, and all connections are shut down. See kdbus.bus(7).
	 */
	r = kdbus_cmd_bus_make(fd, make);
	if (r < 0) {
		err_r(r, "cannot make bus");
		close(fd);
		return r;
	}

	return fd;
}

#else

#warning "Skipping compilation due to unsupported libc version"

int main(int argc, char **argv)
{
	fprintf(stderr,
		"Compilation of %s was skipped due to unsupported libc.\n",
		argv[0]);

	return EXIT_FAILURE;
}

#endif /* libc sanity check */