diff options
author | Luke Shumaker <lukeshu@sbcglobal.net> | 2016-06-02 13:16:04 -0400 |
---|---|---|
committer | Luke Shumaker <lukeshu@sbcglobal.net> | 2016-06-02 13:16:04 -0400 |
commit | fccd290a8373438c26ed4e4f8130db18eb9b3dfe (patch) | |
tree | 2f032e1b125aa88e456644de865e9f42fffa4150 /src/libbasic/c-rbtree.c | |
parent | 6169d05b4a456e26a0197242464e3e2bca12a29d (diff) |
./move.sh
Diffstat (limited to 'src/libbasic/c-rbtree.c')
-rw-r--r-- | src/libbasic/c-rbtree.c | 679 |
1 files changed, 679 insertions, 0 deletions
diff --git a/src/libbasic/c-rbtree.c b/src/libbasic/c-rbtree.c new file mode 100644 index 0000000000..914d7e5229 --- /dev/null +++ b/src/libbasic/c-rbtree.c @@ -0,0 +1,679 @@ +/*** + This file is part of systemd. See COPYING for details. + + systemd is free software; you can redistribute it and/or modify it + under the terms of the GNU Lesser General Public License as published by + the Free Software Foundation; either version 2.1 of the License, or + (at your option) any later version. + + systemd is distributed in the hope that it will be useful, but + WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public License + along with systemd; If not, see <http://www.gnu.org/licenses/>. +***/ + +/* + * RB-Tree Implementation + * This implements the insertion/removal of elements in RB-Trees. You're highly + * recommended to have an RB-Tree documentation at hand when reading this. Both + * insertion and removal can be split into a handful of situations that can + * occur. Those situations are enumerated as "Case 1" to "Case n" here, and + * follow closely the cases described in most RB-Tree documentations. This file + * does not explain why it is enough to handle just those cases, nor does it + * provide a proof of correctness. Dig out your algorithm 101 handbook if + * you're interested. + * + * This implementation is *not* straightforward. Usually, a handful of + * rotation, reparent, swap and link helpers can be used to implement the + * rebalance operations. However, those often perform unnecessary writes. + * Therefore, this implementation hard-codes all the operations. You're highly + * recommended to look at the two basic helpers before reading the code: + * c_rbtree_swap_child() + * c_rbtree_set_parent_and_color() + * Those are the only helpers used, hence, you should really know what they do + * before digging into the code. + * + * For a highlevel documentation of the API, see the header file and docbook + * comments. + */ + +#include <assert.h> +#include <stddef.h> +#include "c-rbtree.h" + +enum { + C_RBNODE_RED = 0, + C_RBNODE_BLACK = 1, +}; + +static inline unsigned long c_rbnode_color(CRBNode *n) { + return (unsigned long)n->__parent_and_color & 1UL; +} + +static inline _Bool c_rbnode_is_red(CRBNode *n) { + return c_rbnode_color(n) == C_RBNODE_RED; +} + +static inline _Bool c_rbnode_is_black(CRBNode *n) { + return c_rbnode_color(n) == C_RBNODE_BLACK; +} + +/** + * c_rbnode_leftmost() - return leftmost child + * @n: current node, or NULL + * + * This returns the leftmost child of @n. If @n is NULL, this will return NULL. + * In all other cases, this function returns a valid pointer. That is, if @n + * does not have any left children, this returns @n. + * + * Worst case runtime (n: number of elements in tree): O(log(n)) + * + * Return: Pointer to leftmost child, or NULL. + */ +CRBNode *c_rbnode_leftmost(CRBNode *n) { + if (n) + while (n->left) + n = n->left; + return n; +} + +/** + * c_rbnode_rightmost() - return rightmost child + * @n: current node, or NULL + * + * This returns the rightmost child of @n. If @n is NULL, this will return + * NULL. In all other cases, this function returns a valid pointer. That is, if + * @n does not have any right children, this returns @n. + * + * Worst case runtime (n: number of elements in tree): O(log(n)) + * + * Return: Pointer to rightmost child, or NULL. + */ +CRBNode *c_rbnode_rightmost(CRBNode *n) { + if (n) + while (n->right) + n = n->right; + return n; +} + +/** + * c_rbnode_next() - return next node + * @n: current node, or NULL + * + * An RB-Tree always defines a linear order of its elements. This function + * returns the logically next node to @n. If @n is NULL, the last node or + * unlinked, this returns NULL. + * + * Worst case runtime (n: number of elements in tree): O(log(n)) + * + * Return: Pointer to next node, or NULL. + */ +CRBNode *c_rbnode_next(CRBNode *n) { + CRBNode *p; + + if (!c_rbnode_is_linked(n)) + return NULL; + if (n->right) + return c_rbnode_leftmost(n->right); + + while ((p = c_rbnode_parent(n)) && n == p->right) + n = p; + + return p; +} + +/** + * c_rbnode_prev() - return previous node + * @n: current node, or NULL + * + * An RB-Tree always defines a linear order of its elements. This function + * returns the logically previous node to @n. If @n is NULL, the first node or + * unlinked, this returns NULL. + * + * Worst case runtime (n: number of elements in tree): O(log(n)) + * + * Return: Pointer to previous node, or NULL. + */ +CRBNode *c_rbnode_prev(CRBNode *n) { + CRBNode *p; + + if (!c_rbnode_is_linked(n)) + return NULL; + if (n->left) + return c_rbnode_rightmost(n->left); + + while ((p = c_rbnode_parent(n)) && n == p->left) + n = p; + + return p; +} + +/** + * c_rbtree_first() - return first node + * @t: tree to operate on + * + * An RB-Tree always defines a linear order of its elements. This function + * returns the logically first node in @t. If @t is empty, NULL is returned. + * + * Fixed runtime (n: number of elements in tree): O(log(n)) + * + * Return: Pointer to first node, or NULL. + */ +CRBNode *c_rbtree_first(CRBTree *t) { + assert(t); + return c_rbnode_leftmost(t->root); +} + +/** + * c_rbtree_last() - return last node + * @t: tree to operate on + * + * An RB-Tree always defines a linear order of its elements. This function + * returns the logically last node in @t. If @t is empty, NULL is returned. + * + * Fixed runtime (n: number of elements in tree): O(log(n)) + * + * Return: Pointer to last node, or NULL. + */ +CRBNode *c_rbtree_last(CRBTree *t) { + assert(t); + return c_rbnode_rightmost(t->root); +} + +/* + * Set the color and parent of a node. This should be treated as a simple + * assignment of the 'color' and 'parent' fields of the node. No other magic is + * applied. But since both fields share its backing memory, this helper + * function is provided. + */ +static inline void c_rbnode_set_parent_and_color(CRBNode *n, CRBNode *p, unsigned long c) { + assert(!((unsigned long)p & 1)); + assert(c < 2); + n->__parent_and_color = (CRBNode*)((unsigned long)p | c); +} + +/* same as c_rbnode_set_parent_and_color(), but keeps the current parent */ +static inline void c_rbnode_set_color(CRBNode *n, unsigned long c) { + c_rbnode_set_parent_and_color(n, c_rbnode_parent(n), c); +} + +/* same as c_rbnode_set_parent_and_color(), but keeps the current color */ +static inline void c_rbnode_set_parent(CRBNode *n, CRBNode *p) { + c_rbnode_set_parent_and_color(n, p, c_rbnode_color(n)); +} + +/* + * This function partially replaces an existing child pointer to a new one. The + * existing child must be given as @old, the new child as @new. @p must be the + * parent of @old (or NULL if it has no parent). + * This function ensures that the parent of @old now points to @new. However, + * it does *NOT* change the parent pointer of @new. The caller must ensure + * this. + * If @p is NULL, this function ensures that the root-pointer is adjusted + * instead (given as @t). + */ +static inline void c_rbtree_swap_child(CRBTree *t, CRBNode *p, CRBNode *old, CRBNode *new) { + if (p) { + if (p->left == old) + p->left = new; + else + p->right = new; + } else { + t->root = new; + } +} + +static inline CRBNode *c_rbtree_paint_one(CRBTree *t, CRBNode *n) { + CRBNode *p, *g, *gg, *u, *x; + + /* + * Paint a single node according to RB-Tree rules. The node must + * already be linked into the tree and painted red. + * We repaint the node or rotate the tree, if required. In case a + * recursive repaint is required, the next node to be re-painted + * is returned. + * p: parent + * g: grandparent + * gg: grandgrandparent + * u: uncle + * x: temporary + */ + + /* node is red, so we can access the parent directly */ + p = n->__parent_and_color; + + if (!p) { + /* Case 1: + * We reached the root. Mark it black and be done. As all + * leaf-paths share the root, the ratio of black nodes on each + * path stays the same. */ + c_rbnode_set_parent_and_color(n, p, C_RBNODE_BLACK); + n = NULL; + } else if (c_rbnode_is_black(p)) { + /* Case 2: + * The parent is already black. As our node is red, we did not + * change the number of black nodes on any path, nor do we have + * multiple consecutive red nodes. */ + n = NULL; + } else if (p == p->__parent_and_color->left) { /* parent is red, so grandparent exists */ + g = p->__parent_and_color; + gg = c_rbnode_parent(g); + u = g->right; + + if (u && c_rbnode_is_red(u)) { + /* Case 3: + * Parent and uncle are both red. We know the + * grandparent must be black then. Repaint parent and + * uncle black, the grandparent red and recurse into + * the grandparent. */ + c_rbnode_set_parent_and_color(p, g, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(u, g, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(g, gg, C_RBNODE_RED); + n = g; + } else { + /* parent is red, uncle is black */ + + if (n == p->right) { + /* Case 4: + * We're the right child. Rotate on parent to + * become left child, so we can handle it the + * same as case 5. */ + x = n->left; + p->right = n->left; + n->left = p; + if (x) + c_rbnode_set_parent_and_color(x, p, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(p, n, C_RBNODE_RED); + p = n; + } + + /* 'n' is invalid from here on! */ + n = NULL; + + /* Case 5: + * We're the red left child or a red parent, black + * grandparent and uncle. Rotate on grandparent and + * switch color with parent. Number of black nodes on + * each path stays the same, but we got rid of the + * double red path. As the grandparent is still black, + * we're done. */ + x = p->right; + g->left = x; + p->right = g; + if (x) + c_rbnode_set_parent_and_color(x, g, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(p, gg, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(g, p, C_RBNODE_RED); + c_rbtree_swap_child(t, gg, g, p); + } + } else /* if (p == p->__parent_and_color->left) */ { /* same as above, but mirrored */ + g = p->__parent_and_color; + gg = c_rbnode_parent(g); + u = g->left; + + if (u && c_rbnode_is_red(u)) { + c_rbnode_set_parent_and_color(p, g, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(u, g, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(g, gg, C_RBNODE_RED); + n = g; + } else { + if (n == p->left) { + x = n->right; + p->left = n->right; + n->right = p; + if (x) + c_rbnode_set_parent_and_color(x, p, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(p, n, C_RBNODE_RED); + p = n; + } + + n = NULL; + + x = p->left; + g->right = x; + p->left = g; + if (x) + c_rbnode_set_parent_and_color(x, g, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(p, gg, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(g, p, C_RBNODE_RED); + c_rbtree_swap_child(t, gg, g, p); + } + } + + return n; +} + +static inline void c_rbtree_paint(CRBTree *t, CRBNode *n) { + assert(t); + assert(n); + + while (n) + n = c_rbtree_paint_one(t, n); +} + +/** + * c_rbtree_add() - add node to tree + * @t: tree to operate one + * @p: parent node to link under, or NULL + * @l: left/right slot of @p (or root) to link at + * @n: node to add + * + * This links @n into the tree given as @t. The caller must provide the exact + * spot where to link the node. That is, the caller must traverse the tree + * based on their search order. Once they hit a leaf where to insert the node, + * call this function to link it and rebalance the tree. + * + * A typical insertion would look like this (@t is your tree, @n is your node): + * + * CRBNode **i, *p; + * + * i = &t->root; + * p = NULL; + * while (*i) { + * p = *i; + * if (compare(n, *i) < 0) + * i = &(*i)->left; + * else + * i = &(*i)->right; + * } + * + * c_rbtree_add(t, p, i, n); + * + * Once the node is linked into the tree, a simple lookup on the same tree can + * be coded like this: + * + * CRBNode *i; + * + * i = t->root; + * while (i) { + * int v = compare(n, i); + * if (v < 0) + * i = (*i)->left; + * else if (v > 0) + * i = (*i)->right; + * else + * break; + * } + * + * When you add nodes to a tree, the memory contents of the node do not matter. + * That is, there is no need to initialize the node via c_rbnode_init(). + * However, if you relink nodes multiple times during their lifetime, it is + * usually very convenient to use c_rbnode_init() and c_rbtree_remove_init(). + * In those cases, you should validate that a node is unlinked before you call + * c_rbtree_add(). + */ +void c_rbtree_add(CRBTree *t, CRBNode *p, CRBNode **l, CRBNode *n) { + assert(t); + assert(l); + assert(n); + assert(!p || l == &p->left || l == &p->right); + assert(p || l == &t->root); + + c_rbnode_set_parent_and_color(n, p, C_RBNODE_RED); + n->left = n->right = NULL; + *l = n; + + c_rbtree_paint(t, n); +} + +static inline CRBNode *c_rbtree_rebalance_one(CRBTree *t, CRBNode *p, CRBNode *n) { + CRBNode *s, *x, *y, *g; + + /* + * Rebalance tree after a node was removed. This happens only if you + * remove a black node and one path is now left with an unbalanced + * number or black nodes. + * This function assumes all paths through p and n have one black node + * less than all other paths. If recursive fixup is required, the + * current node is returned. + */ + + if (n == p->left) { + s = p->right; + if (c_rbnode_is_red(s)) { + /* Case 3: + * We have a red node as sibling. Rotate it onto our + * side so we can later on turn it black. This way, we + * gain the additional black node in our path. */ + g = c_rbnode_parent(p); + x = s->left; + p->right = x; + s->left = p; + c_rbnode_set_parent_and_color(x, p, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(s, g, c_rbnode_color(p)); + c_rbnode_set_parent_and_color(p, s, C_RBNODE_RED); + c_rbtree_swap_child(t, g, p, s); + s = x; + } + + x = s->right; + if (!x || c_rbnode_is_black(x)) { + y = s->left; + if (!y || c_rbnode_is_black(y)) { + /* Case 4: + * Our sibling is black and has only black + * children. Flip it red and turn parent black. + * This way we gained a black node in our path, + * or we fix it recursively one layer up, which + * will rotate the red sibling as parent. */ + c_rbnode_set_parent_and_color(s, p, C_RBNODE_RED); + if (c_rbnode_is_black(p)) + return p; + + c_rbnode_set_parent_and_color(p, c_rbnode_parent(p), C_RBNODE_BLACK); + return NULL; + } + + /* Case 5: + * Left child of our sibling is red, right one is black. + * Rotate on parent so the right child of our sibling is + * now red, and we can fall through to case 6. */ + x = y->right; + s->left = y->right; + y->right = s; + p->right = y; + if (x) + c_rbnode_set_parent_and_color(x, s, C_RBNODE_BLACK); + x = s; + s = y; + } + + /* Case 6: + * The right child of our sibling is red. Rotate left and flip + * colors, which gains us an additional black node in our path, + * that was previously on our sibling. */ + g = c_rbnode_parent(p); + y = s->left; + p->right = y; + s->left = p; + c_rbnode_set_parent_and_color(x, s, C_RBNODE_BLACK); + if (y) + c_rbnode_set_parent_and_color(y, p, c_rbnode_color(y)); + c_rbnode_set_parent_and_color(s, g, c_rbnode_color(p)); + c_rbnode_set_parent_and_color(p, s, C_RBNODE_BLACK); + c_rbtree_swap_child(t, g, p, s); + } else /* if (!n || n == p->right) */ { /* same as above, but mirrored */ + s = p->left; + if (c_rbnode_is_red(s)) { + g = c_rbnode_parent(p); + x = s->right; + p->left = x; + s->right = p; + c_rbnode_set_parent_and_color(x, p, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(s, g, C_RBNODE_BLACK); + c_rbnode_set_parent_and_color(p, s, C_RBNODE_RED); + c_rbtree_swap_child(t, g, p, s); + s = x; + } + + x = s->left; + if (!x || c_rbnode_is_black(x)) { + y = s->right; + if (!y || c_rbnode_is_black(y)) { + c_rbnode_set_parent_and_color(s, p, C_RBNODE_RED); + if (c_rbnode_is_black(p)) + return p; + + c_rbnode_set_parent_and_color(p, c_rbnode_parent(p), C_RBNODE_BLACK); + return NULL; + } + + x = y->left; + s->right = y->left; + y->left = s; + p->left = y; + if (x) + c_rbnode_set_parent_and_color(x, s, C_RBNODE_BLACK); + x = s; + s = y; + } + + g = c_rbnode_parent(p); + y = s->right; + p->left = y; + s->right = p; + c_rbnode_set_parent_and_color(x, s, C_RBNODE_BLACK); + if (y) + c_rbnode_set_parent_and_color(y, p, c_rbnode_color(y)); + c_rbnode_set_parent_and_color(s, g, c_rbnode_color(p)); + c_rbnode_set_parent_and_color(p, s, C_RBNODE_BLACK); + c_rbtree_swap_child(t, g, p, s); + } + + return NULL; +} + +static inline void c_rbtree_rebalance(CRBTree *t, CRBNode *p) { + CRBNode *n = NULL; + + assert(t); + assert(p); + + do { + n = c_rbtree_rebalance_one(t, p, n); + p = n ? c_rbnode_parent(n) : NULL; + } while (p); +} + +/** + * c_rbtree_remove() - remove node from tree + * @t: tree to operate one + * @n: node to remove + * + * This removes the given node from its tree. Once unlinked, the tree is + * rebalanced. + * The caller *must* ensure that the given tree is actually the tree it is + * linked on. Otherwise, behavior is undefined. + * + * This does *NOT* reset @n to being unlinked (for performance reason, this + * function *never* modifies @n at all). If you need this, use + * c_rbtree_remove_init(). + */ +void c_rbtree_remove(CRBTree *t, CRBNode *n) { + CRBNode *p, *s, *gc, *x, *next = NULL; + unsigned long c; + + assert(t); + assert(n); + assert(c_rbnode_is_linked(n)); + + /* + * There are three distinct cases during node removal of a tree: + * * The node has no children, in which case it can simply be removed. + * * The node has exactly one child, in which case the child displaces + * its parent. + * * The node has two children, in which case there is guaranteed to + * be a successor to the node (successor being the node ordered + * directly after it). This successor cannot have two children by + * itself (two interior nodes can never be successive). Therefore, + * we can simply swap the node with its successor (including color) + * and have reduced this case to either of the first two. + * + * Whenever the node we removed was black, we have to rebalance the + * tree. Note that this affects the actual node we _remove_, not @n (in + * case we swap it). + * + * p: parent + * s: successor + * gc: grand-...-child + * x: temporary + * next: next node to rebalance on + */ + + if (!n->left) { + /* + * Case 1: + * The node has no left child. If it neither has a right child, + * it is a leaf-node and we can simply unlink it. If it also + * was black, we have to rebalance, as always if we remove a + * black node. + * But if the node has a right child, the child *must* be red + * (otherwise, the right path has more black nodes as the + * non-existing left path), and the node to be removed must + * hence be black. We simply replace the node with its child, + * turning the red child black, and thus no rebalancing is + * required. + */ + p = c_rbnode_parent(n); + c = c_rbnode_color(n); + c_rbtree_swap_child(t, p, n, n->right); + if (n->right) + c_rbnode_set_parent_and_color(n->right, p, c); + else + next = (c == C_RBNODE_BLACK) ? p : NULL; + } else if (!n->right) { + /* + * Case 1.1: + * The node has exactly one child, and it is on the left. Treat + * it as mirrored case of Case 1 (i.e., replace the node by its + * child). + */ + p = c_rbnode_parent(n); + c = c_rbnode_color(n); + c_rbtree_swap_child(t, p, n, n->left); + c_rbnode_set_parent_and_color(n->left, p, c); + } else { + /* + * Case 2: + * We are dealing with a full interior node with a child not on + * both sides. Find its successor and swap it. Then remove the + * node similar to Case 1. For performance reasons we don't + * perform the full swap, but skip links that are about to be + * removed, anyway. + */ + s = n->right; + if (!s->left) { + /* right child is next, no need to touch grandchild */ + p = s; + gc = s->right; + } else { + /* find successor and swap partially */ + s = c_rbnode_leftmost(s); + p = c_rbnode_parent(s); + + gc = s->right; + p->left = s->right; + s->right = n->right; + c_rbnode_set_parent(n->right, s); + } + + /* node is partially swapped, now remove as in Case 1 */ + s->left = n->left; + c_rbnode_set_parent(n->left, s); + + x = c_rbnode_parent(n); + c = c_rbnode_color(n); + c_rbtree_swap_child(t, x, n, s); + if (gc) + c_rbnode_set_parent_and_color(gc, p, C_RBNODE_BLACK); + else + next = c_rbnode_is_black(s) ? p : NULL; + c_rbnode_set_parent_and_color(s, x, c); + } + + if (next) + c_rbtree_rebalance(t, next); +} |