diff options
Diffstat (limited to 'src/bootchart')
-rw-r--r-- | src/bootchart/bootchart.c | 564 | ||||
-rw-r--r-- | src/bootchart/bootchart.h | 74 | ||||
-rw-r--r-- | src/bootchart/log.c | 712 | ||||
-rw-r--r-- | src/bootchart/svg.c | 1936 |
4 files changed, 1643 insertions, 1643 deletions
diff --git a/src/bootchart/bootchart.c b/src/bootchart/bootchart.c index 2eeb37ae53..3d77bab129 100644 --- a/src/bootchart/bootchart.c +++ b/src/bootchart/bootchart.c @@ -62,291 +62,291 @@ static struct rlimit rlim; static void signal_handler(int sig) { - if (sig++) - sig--; - exiting = 1; + if (sig++) + sig--; + exiting = 1; } int main(int argc, char *argv[]) { - struct sigaction sig; - struct ps_struct *ps; - char output_file[PATH_MAX]; - char datestr[200]; - time_t t; - FILE *f; - int gind; - int i; - - memset(&t, 0, sizeof(time_t)); - - rlim.rlim_cur = 4096; - rlim.rlim_max = 4096; - (void) setrlimit(RLIMIT_NOFILE, &rlim); - - f = fopen("/etc/systemd/bootchart.conf", "r"); - if (f) { - char buf[256]; - char *key; - char *val; - - while (fgets(buf, 80, f) != NULL) { - char *c; - - c = strchr(buf, '\n'); - if (c) *c = 0; /* remove trailing \n */ - - if (buf[0] == '#') - continue; /* comment line */ - - key = strtok(buf, "="); - if (!key) - continue; - val = strtok(NULL, "="); - if (!val) - continue; - - // todo: filter leading/trailing whitespace - - if (!strcmp(key, "samples")) - len = atoi(val); - if (!strcmp(key, "freq")) - hz = atof(val); - if (!strcmp(key, "rel")) - relative = atoi(val); - if (!strcmp(key, "filter")) - filter = atoi(val); - if (!strcmp(key, "pss")) - pss = atoi(val); - if (!strcmp(key, "output")) - strncpy(output_path, val, PATH_MAX - 1); - if (!strcmp(key, "init")) - strncpy(init_path, val, PATH_MAX - 1); - if (!strcmp(key, "scale_x")) - scale_x = atof(val); - if (!strcmp(key, "scale_y")) - scale_y = atof(val); - if (!strcmp(key, "entropy")) - entropy = atoi(val); - } - fclose(f); - } - - while (1) { - static struct option opts[] = { - {"rel", 0, NULL, 'r'}, - {"freq", 1, NULL, 'f'}, - {"samples", 1, NULL, 'n'}, - {"pss", 0, NULL, 'p'}, - {"output", 1, NULL, 'o'}, - {"init", 1, NULL, 'i'}, - {"filter", 0, NULL, 'F'}, - {"help", 0, NULL, 'h'}, - {"scale-x", 1, NULL, 'x'}, - {"scale-y", 1, NULL, 'y'}, - {"entropy", 0, NULL, 'e'}, - {NULL, 0, NULL, 0} - }; - - gind = 0; - - i = getopt_long(argc, argv, "erpf:n:o:i:Fhx:y:", opts, &gind); - if (i == -1) - break; - switch (i) { - case 'r': - relative = 1; - break; - case 'f': - hz = atof(optarg); - break; - case 'F': - filter = 0; - break; - case 'n': - len = atoi(optarg); - break; - case 'o': - strncpy(output_path, optarg, PATH_MAX - 1); - break; - case 'i': - strncpy(init_path, optarg, PATH_MAX - 1); - break; - case 'p': - pss = 1; - break; - case 'x': - scale_x = atof(optarg); - break; - case 'y': - scale_y = atof(optarg); - break; - case 'e': - entropy = 1; - break; - case 'h': - fprintf(stderr, "Usage: %s [OPTIONS]\n", argv[0]); - fprintf(stderr, " --rel, -r Record time relative to recording\n"); - fprintf(stderr, " --freq, -f N Sample frequency [%f]\n", hz); - fprintf(stderr, " --samples, -n N Stop sampling at [%d] samples\n", len); - fprintf(stderr, " --scale-x, -x N Scale the graph horizontally [%f] \n", scale_x); - fprintf(stderr, " --scale-y, -y N Scale the graph vertically [%f] \n", scale_y); - fprintf(stderr, " --pss, -p Enable PSS graph (CPU intensive)\n"); - fprintf(stderr, " --entropy, -e Enable the entropy_avail graph\n"); - fprintf(stderr, " --output, -o [PATH] Path to output files [%s]\n", output_path); - fprintf(stderr, " --init, -i [PATH] Path to init executable [%s]\n", init_path); - fprintf(stderr, " --filter, -F Disable filtering of processes from the graph\n"); - fprintf(stderr, " that are of less importance or short-lived\n"); - fprintf(stderr, " --help, -h Display this message\n"); - fprintf(stderr, "See the installed README and bootchartd.conf.example for more information.\n"); - exit (EXIT_SUCCESS); - break; - default: - break; - } - } - - if (len > MAXSAMPLES) { - fprintf(stderr, "Error: samples exceeds maximum\n"); - exit(EXIT_FAILURE); - } - - if (hz <= 0.0) { - fprintf(stderr, "Error: Frequency needs to be > 0\n"); - exit(EXIT_FAILURE); - } - - /* - * If the kernel executed us through init=/sbin/bootchartd, then - * fork: - * - parent execs executable specified via init_path[] (/sbin/init by default) as pid=1 - * - child logs data - */ - if (getpid() == 1) { - if (fork()) { - /* parent */ - execl(init_path, init_path, NULL); - } - } - - /* start with empty ps LL */ - ps_first = malloc(sizeof(struct ps_struct)); - if (!ps_first) { - perror("malloc(ps_struct)"); - exit(EXIT_FAILURE); - } - memset(ps_first, 0, sizeof(struct ps_struct)); - - /* handle TERM/INT nicely */ - memset(&sig, 0, sizeof(struct sigaction)); - sig.sa_handler = signal_handler; - sigaction(SIGHUP, &sig, NULL); - - interval = (1.0 / hz) * 1000000000.0; - - log_uptime(); - - /* main program loop */ - while (!exiting) { - int res; - double sample_stop; - struct timespec req; - time_t newint_s; - long newint_ns; - double elapsed; - double timeleft; - - sampletime[samples] = gettime_ns(); - - /* wait for /proc to become available, discarding samples */ - if (!(graph_start > 0.0)) - log_uptime(); - else - log_sample(samples); - - sample_stop = gettime_ns(); - - elapsed = (sample_stop - sampletime[samples]) * 1000000000.0; - timeleft = interval - elapsed; - - newint_s = (time_t)(timeleft / 1000000000.0); - newint_ns = (long)(timeleft - (newint_s * 1000000000.0)); - - /* - * check if we have not consumed our entire timeslice. If we - * do, don't sleep and take a new sample right away. - * we'll lose all the missed samples and overrun our total - * time - */ - if ((newint_ns > 0) || (newint_s > 0)) { - req.tv_sec = newint_s; - req.tv_nsec = newint_ns; - - res = nanosleep(&req, NULL); - if (res) { - if (errno == EINTR) { - /* caught signal, probably HUP! */ - break; - } - perror("nanosleep()"); - exit (EXIT_FAILURE); - } - } else { - overrun++; - /* calculate how many samples we lost and scrap them */ - len = len + ((int)(newint_ns / interval)); - } - - samples++; - - if (samples > len) - break; - - } - - /* do some cleanup, close fd's */ - ps = ps_first; - while (ps->next_ps) { - ps = ps->next_ps; - if (ps->schedstat) - close(ps->schedstat); - if (ps->sched) - close(ps->sched); - if (ps->smaps) - fclose(ps->smaps); - } - closedir(proc); - - t = time(NULL); - strftime(datestr, sizeof(datestr), "%Y%m%d-%H%M", localtime(&t)); - snprintf(output_file, PATH_MAX, "%s/bootchart-%s.svg", output_path, datestr); - - of = fopen(output_file, "w"); - if (!of) { - perror("open output_file"); - exit (EXIT_FAILURE); - } - - svg_do(); - - fprintf(stderr, "bootchartd: Wrote %s\n", output_file); - fclose(of); - - /* nitpic cleanups */ - ps = ps_first; - while (ps->next_ps) { - struct ps_struct *old = ps; - ps = ps->next_ps; - free(old->sample); - free(old); - } - free(ps->sample); - free(ps); - - /* don't complain when overrun once, happens most commonly on 1st sample */ - if (overrun > 1) - fprintf(stderr, "bootchartd: Warning: sample time overrun %i times\n", overrun); - - return 0; + struct sigaction sig; + struct ps_struct *ps; + char output_file[PATH_MAX]; + char datestr[200]; + time_t t; + FILE *f; + int gind; + int i; + + memset(&t, 0, sizeof(time_t)); + + rlim.rlim_cur = 4096; + rlim.rlim_max = 4096; + (void) setrlimit(RLIMIT_NOFILE, &rlim); + + f = fopen("/etc/systemd/bootchart.conf", "r"); + if (f) { + char buf[256]; + char *key; + char *val; + + while (fgets(buf, 80, f) != NULL) { + char *c; + + c = strchr(buf, '\n'); + if (c) *c = 0; /* remove trailing \n */ + + if (buf[0] == '#') + continue; /* comment line */ + + key = strtok(buf, "="); + if (!key) + continue; + val = strtok(NULL, "="); + if (!val) + continue; + + // todo: filter leading/trailing whitespace + + if (!strcmp(key, "samples")) + len = atoi(val); + if (!strcmp(key, "freq")) + hz = atof(val); + if (!strcmp(key, "rel")) + relative = atoi(val); + if (!strcmp(key, "filter")) + filter = atoi(val); + if (!strcmp(key, "pss")) + pss = atoi(val); + if (!strcmp(key, "output")) + strncpy(output_path, val, PATH_MAX - 1); + if (!strcmp(key, "init")) + strncpy(init_path, val, PATH_MAX - 1); + if (!strcmp(key, "scale_x")) + scale_x = atof(val); + if (!strcmp(key, "scale_y")) + scale_y = atof(val); + if (!strcmp(key, "entropy")) + entropy = atoi(val); + } + fclose(f); + } + + while (1) { + static struct option opts[] = { + {"rel", 0, NULL, 'r'}, + {"freq", 1, NULL, 'f'}, + {"samples", 1, NULL, 'n'}, + {"pss", 0, NULL, 'p'}, + {"output", 1, NULL, 'o'}, + {"init", 1, NULL, 'i'}, + {"filter", 0, NULL, 'F'}, + {"help", 0, NULL, 'h'}, + {"scale-x", 1, NULL, 'x'}, + {"scale-y", 1, NULL, 'y'}, + {"entropy", 0, NULL, 'e'}, + {NULL, 0, NULL, 0} + }; + + gind = 0; + + i = getopt_long(argc, argv, "erpf:n:o:i:Fhx:y:", opts, &gind); + if (i == -1) + break; + switch (i) { + case 'r': + relative = 1; + break; + case 'f': + hz = atof(optarg); + break; + case 'F': + filter = 0; + break; + case 'n': + len = atoi(optarg); + break; + case 'o': + strncpy(output_path, optarg, PATH_MAX - 1); + break; + case 'i': + strncpy(init_path, optarg, PATH_MAX - 1); + break; + case 'p': + pss = 1; + break; + case 'x': + scale_x = atof(optarg); + break; + case 'y': + scale_y = atof(optarg); + break; + case 'e': + entropy = 1; + break; + case 'h': + fprintf(stderr, "Usage: %s [OPTIONS]\n", argv[0]); + fprintf(stderr, " --rel, -r Record time relative to recording\n"); + fprintf(stderr, " --freq, -f N Sample frequency [%f]\n", hz); + fprintf(stderr, " --samples, -n N Stop sampling at [%d] samples\n", len); + fprintf(stderr, " --scale-x, -x N Scale the graph horizontally [%f] \n", scale_x); + fprintf(stderr, " --scale-y, -y N Scale the graph vertically [%f] \n", scale_y); + fprintf(stderr, " --pss, -p Enable PSS graph (CPU intensive)\n"); + fprintf(stderr, " --entropy, -e Enable the entropy_avail graph\n"); + fprintf(stderr, " --output, -o [PATH] Path to output files [%s]\n", output_path); + fprintf(stderr, " --init, -i [PATH] Path to init executable [%s]\n", init_path); + fprintf(stderr, " --filter, -F Disable filtering of processes from the graph\n"); + fprintf(stderr, " that are of less importance or short-lived\n"); + fprintf(stderr, " --help, -h Display this message\n"); + fprintf(stderr, "See the installed README and bootchartd.conf.example for more information.\n"); + exit (EXIT_SUCCESS); + break; + default: + break; + } + } + + if (len > MAXSAMPLES) { + fprintf(stderr, "Error: samples exceeds maximum\n"); + exit(EXIT_FAILURE); + } + + if (hz <= 0.0) { + fprintf(stderr, "Error: Frequency needs to be > 0\n"); + exit(EXIT_FAILURE); + } + + /* + * If the kernel executed us through init=/sbin/bootchartd, then + * fork: + * - parent execs executable specified via init_path[] (/sbin/init by default) as pid=1 + * - child logs data + */ + if (getpid() == 1) { + if (fork()) { + /* parent */ + execl(init_path, init_path, NULL); + } + } + + /* start with empty ps LL */ + ps_first = malloc(sizeof(struct ps_struct)); + if (!ps_first) { + perror("malloc(ps_struct)"); + exit(EXIT_FAILURE); + } + memset(ps_first, 0, sizeof(struct ps_struct)); + + /* handle TERM/INT nicely */ + memset(&sig, 0, sizeof(struct sigaction)); + sig.sa_handler = signal_handler; + sigaction(SIGHUP, &sig, NULL); + + interval = (1.0 / hz) * 1000000000.0; + + log_uptime(); + + /* main program loop */ + while (!exiting) { + int res; + double sample_stop; + struct timespec req; + time_t newint_s; + long newint_ns; + double elapsed; + double timeleft; + + sampletime[samples] = gettime_ns(); + + /* wait for /proc to become available, discarding samples */ + if (!(graph_start > 0.0)) + log_uptime(); + else + log_sample(samples); + + sample_stop = gettime_ns(); + + elapsed = (sample_stop - sampletime[samples]) * 1000000000.0; + timeleft = interval - elapsed; + + newint_s = (time_t)(timeleft / 1000000000.0); + newint_ns = (long)(timeleft - (newint_s * 1000000000.0)); + + /* + * check if we have not consumed our entire timeslice. If we + * do, don't sleep and take a new sample right away. + * we'll lose all the missed samples and overrun our total + * time + */ + if ((newint_ns > 0) || (newint_s > 0)) { + req.tv_sec = newint_s; + req.tv_nsec = newint_ns; + + res = nanosleep(&req, NULL); + if (res) { + if (errno == EINTR) { + /* caught signal, probably HUP! */ + break; + } + perror("nanosleep()"); + exit (EXIT_FAILURE); + } + } else { + overrun++; + /* calculate how many samples we lost and scrap them */ + len = len + ((int)(newint_ns / interval)); + } + + samples++; + + if (samples > len) + break; + + } + + /* do some cleanup, close fd's */ + ps = ps_first; + while (ps->next_ps) { + ps = ps->next_ps; + if (ps->schedstat) + close(ps->schedstat); + if (ps->sched) + close(ps->sched); + if (ps->smaps) + fclose(ps->smaps); + } + closedir(proc); + + t = time(NULL); + strftime(datestr, sizeof(datestr), "%Y%m%d-%H%M", localtime(&t)); + snprintf(output_file, PATH_MAX, "%s/bootchart-%s.svg", output_path, datestr); + + of = fopen(output_file, "w"); + if (!of) { + perror("open output_file"); + exit (EXIT_FAILURE); + } + + svg_do(); + + fprintf(stderr, "bootchartd: Wrote %s\n", output_file); + fclose(of); + + /* nitpic cleanups */ + ps = ps_first; + while (ps->next_ps) { + struct ps_struct *old = ps; + ps = ps->next_ps; + free(old->sample); + free(old); + } + free(ps->sample); + free(ps); + + /* don't complain when overrun once, happens most commonly on 1st sample */ + if (overrun > 1) + fprintf(stderr, "bootchartd: Warning: sample time overrun %i times\n", overrun); + + return 0; } diff --git a/src/bootchart/bootchart.h b/src/bootchart/bootchart.h index 0d8bed16b0..9127f92302 100644 --- a/src/bootchart/bootchart.h +++ b/src/bootchart/bootchart.h @@ -20,65 +20,65 @@ struct block_stat_struct { - /* /proc/vmstat pgpgin & pgpgout */ - int bi; - int bo; + /* /proc/vmstat pgpgin & pgpgout */ + int bi; + int bo; }; struct cpu_stat_sample_struct { - /* /proc/schedstat fields 10 & 11 (after name) */ - double runtime; - double waittime; + /* /proc/schedstat fields 10 & 11 (after name) */ + double runtime; + double waittime; }; struct cpu_stat_struct { - /* per cpu array */ - struct cpu_stat_sample_struct sample[MAXSAMPLES]; + /* per cpu array */ + struct cpu_stat_sample_struct sample[MAXSAMPLES]; }; /* per process, per sample data we will log */ struct ps_sched_struct { - /* /proc/<n>/schedstat fields 1 & 2 */ - double runtime; - double waittime; - int pss; + /* /proc/<n>/schedstat fields 1 & 2 */ + double runtime; + double waittime; + int pss; }; /* process info */ struct ps_struct { - struct ps_struct *next_ps; /* SLL pointer */ - struct ps_struct *parent; /* ppid ref */ - struct ps_struct *children; /* children */ - struct ps_struct *next; /* siblings */ + struct ps_struct *next_ps; /* SLL pointer */ + struct ps_struct *parent; /* ppid ref */ + struct ps_struct *children; /* children */ + struct ps_struct *next; /* siblings */ - /* must match - otherwise it's a new process with same PID */ - char name[16]; - int pid; - int ppid; + /* must match - otherwise it's a new process with same PID */ + char name[16]; + int pid; + int ppid; - /* cache fd's */ - int sched; - int schedstat; - FILE *smaps; + /* cache fd's */ + int sched; + int schedstat; + FILE *smaps; - /* index to first/last seen timestamps */ - int first; - int last; + /* index to first/last seen timestamps */ + int first; + int last; - /* records actual start time, may be way before bootchart runs */ - double starttime; + /* records actual start time, may be way before bootchart runs */ + double starttime; - /* record human readable total cpu time */ - double total; + /* record human readable total cpu time */ + double total; - /* largest PSS size found */ - int pss_max; + /* largest PSS size found */ + int pss_max; - /* for drawing connection lines later */ - double pos_x; - double pos_y; + /* for drawing connection lines later */ + double pos_x; + double pos_y; - struct ps_sched_struct *sample; + struct ps_sched_struct *sample; }; extern int entropy_avail[]; diff --git a/src/bootchart/log.c b/src/bootchart/log.c index 6c40913973..eda001a20e 100644 --- a/src/bootchart/log.c +++ b/src/bootchart/log.c @@ -38,383 +38,383 @@ DIR *proc; double gettime_ns(void) { - struct timespec now; + struct timespec now; - clock_gettime(CLOCK_MONOTONIC, &now); + clock_gettime(CLOCK_MONOTONIC, &now); - return (now.tv_sec + (now.tv_nsec / 1000000000.0)); + return (now.tv_sec + (now.tv_nsec / 1000000000.0)); } void log_uptime(void) { - FILE *f; - char str[32]; - double uptime; - - f = fopen("/proc/uptime", "r"); - if (!f) - return; - if (!fscanf(f, "%s %*s", str)) { - fclose(f); - return; - } - fclose(f); - uptime = strtod(str, NULL); - - log_start = gettime_ns(); - - /* start graph at kernel boot time */ - if (relative) - graph_start = log_start; - else - graph_start = log_start - uptime; + FILE *f; + char str[32]; + double uptime; + + f = fopen("/proc/uptime", "r"); + if (!f) + return; + if (!fscanf(f, "%s %*s", str)) { + fclose(f); + return; + } + fclose(f); + uptime = strtod(str, NULL); + + log_start = gettime_ns(); + + /* start graph at kernel boot time */ + if (relative) + graph_start = log_start; + else + graph_start = log_start - uptime; } static char *bufgetline(char *buf) { - char *c; + char *c; - if (!buf) - return NULL; + if (!buf) + return NULL; - c = strchr(buf, '\n'); - if (c) - c++; - return c; + c = strchr(buf, '\n'); + if (c) + c++; + return c; } void log_sample(int sample) { - static int vmstat; - static int schedstat; - FILE *st; - char buf[4095]; - char key[256]; - char val[256]; - char rt[256]; - char wt[256]; - char *m; - int c; - int p; - int mod; - static int e_fd; - ssize_t s; - ssize_t n; - struct dirent *ent; - - if (!vmstat) { - /* block stuff */ - vmstat = open("/proc/vmstat", O_RDONLY); - if (vmstat == -1) { - perror("open /proc/vmstat"); - exit (EXIT_FAILURE); - } - } - - n = pread(vmstat, buf, sizeof(buf) - 1, 0); - if (n <= 0) { - close(vmstat); - return; - } - buf[n] = '\0'; - - m = buf; - while (m) { - if (sscanf(m, "%s %s", key, val) < 2) - goto vmstat_next; - if (!strcmp(key, "pgpgin")) - blockstat[sample].bi = atoi(val); - if (!strcmp(key, "pgpgout")) { - blockstat[sample].bo = atoi(val); - break; - } + static int vmstat; + static int schedstat; + FILE *st; + char buf[4095]; + char key[256]; + char val[256]; + char rt[256]; + char wt[256]; + char *m; + int c; + int p; + int mod; + static int e_fd; + ssize_t s; + ssize_t n; + struct dirent *ent; + + if (!vmstat) { + /* block stuff */ + vmstat = open("/proc/vmstat", O_RDONLY); + if (vmstat == -1) { + perror("open /proc/vmstat"); + exit (EXIT_FAILURE); + } + } + + n = pread(vmstat, buf, sizeof(buf) - 1, 0); + if (n <= 0) { + close(vmstat); + return; + } + buf[n] = '\0'; + + m = buf; + while (m) { + if (sscanf(m, "%s %s", key, val) < 2) + goto vmstat_next; + if (!strcmp(key, "pgpgin")) + blockstat[sample].bi = atoi(val); + if (!strcmp(key, "pgpgout")) { + blockstat[sample].bo = atoi(val); + break; + } vmstat_next: - m = bufgetline(m); - if (!m) - break; - } - - if (!schedstat) { - /* overall CPU utilization */ - schedstat = open("/proc/schedstat", O_RDONLY); - if (schedstat == -1) { - perror("open /proc/schedstat"); - exit (EXIT_FAILURE); - } - } - - n = pread(schedstat, buf, sizeof(buf) - 1, 0); - if (n <= 0) { - close(schedstat); - return; - } - buf[n] = '\0'; - - m = buf; - while (m) { - if (sscanf(m, "%s %*s %*s %*s %*s %*s %*s %s %s", key, rt, wt) < 3) - goto schedstat_next; - - if (strstr(key, "cpu")) { - c = atoi((const char*)(key+3)); - if (c > MAXCPUS) - /* Oops, we only have room for MAXCPUS data */ - break; - cpustat[c].sample[sample].runtime = atoll(rt); - cpustat[c].sample[sample].waittime = atoll(wt); - - if (c == cpus) - cpus = c + 1; - } + m = bufgetline(m); + if (!m) + break; + } + + if (!schedstat) { + /* overall CPU utilization */ + schedstat = open("/proc/schedstat", O_RDONLY); + if (schedstat == -1) { + perror("open /proc/schedstat"); + exit (EXIT_FAILURE); + } + } + + n = pread(schedstat, buf, sizeof(buf) - 1, 0); + if (n <= 0) { + close(schedstat); + return; + } + buf[n] = '\0'; + + m = buf; + while (m) { + if (sscanf(m, "%s %*s %*s %*s %*s %*s %*s %s %s", key, rt, wt) < 3) + goto schedstat_next; + + if (strstr(key, "cpu")) { + c = atoi((const char*)(key+3)); + if (c > MAXCPUS) + /* Oops, we only have room for MAXCPUS data */ + break; + cpustat[c].sample[sample].runtime = atoll(rt); + cpustat[c].sample[sample].waittime = atoll(wt); + + if (c == cpus) + cpus = c + 1; + } schedstat_next: - m = bufgetline(m); - if (!m) - break; - } - - if (entropy) { - if (!e_fd) { - e_fd = open("/proc/sys/kernel/random/entropy_avail", O_RDONLY); - } - - if (e_fd) { - n = pread(e_fd, buf, sizeof(buf) - 1, 0); - if (n > 0) - entropy_avail[sample] = atoi(buf); - } - } - - /* all the per-process stuff goes here */ - if (!proc) { - /* find all processes */ - proc = opendir("/proc"); - if (!proc) - return; - } else { - rewinddir(proc); - } - - while ((ent = readdir(proc)) != NULL) { - char filename[PATH_MAX]; - int pid; - struct ps_struct *ps; - - if ((ent->d_name[0] < '0') || (ent->d_name[0] > '9')) - continue; - - pid = atoi(ent->d_name); - - if (pid >= MAXPIDS) - continue; - - ps = ps_first; - while (ps->next_ps) { - ps = ps->next_ps; - if (ps->pid == pid) - break; - } - - /* end of our LL? then append a new record */ - if (ps->pid != pid) { - char t[32]; - struct ps_struct *parent; - - ps->next_ps = malloc(sizeof(struct ps_struct)); - if (!ps->next_ps) { - perror("malloc(ps_struct)"); - exit (EXIT_FAILURE); - } - memset(ps->next_ps, 0, sizeof(struct ps_struct)); - ps = ps->next_ps; - ps->pid = pid; - - ps->sample = malloc(sizeof(struct ps_sched_struct) * (len + 1)); - if (!ps->sample) { - perror("malloc(ps_struct)"); - exit (EXIT_FAILURE); - } - memset(ps->sample, 0, sizeof(struct ps_sched_struct) * (len + 1)); - - pscount++; - - /* mark our first sample */ - ps->first = sample; - - /* get name, start time */ - if (!ps->sched) { - sprintf(filename, "/proc/%d/sched", pid); - ps->sched = open(filename, O_RDONLY); - if (ps->sched == -1) - continue; - } - - s = pread(ps->sched, buf, sizeof(buf) - 1, 0); - if (s <= 0) { - close(ps->sched); - continue; - } - - if (!sscanf(buf, "%s %*s %*s", key)) - continue; - - strncpy(ps->name, key, 16); - /* discard line 2 */ - m = bufgetline(buf); - if (!m) - continue; - - m = bufgetline(m); - if (!m) - continue; - - if (!sscanf(m, "%*s %*s %s", t)) - continue; - - ps->starttime = strtod(t, NULL) / 1000.0; - - /* ppid */ - sprintf(filename, "/proc/%d/stat", pid); - st = fopen(filename, "r"); - if (!st) - continue; - if (!fscanf(st, "%*s %*s %*s %i", &p)) { - fclose(st); - continue; - } - fclose(st); - ps->ppid = p; - - /* - * setup child pointers - * - * these are used to paint the tree coherently later - * each parent has a LL of children, and a LL of siblings - */ - if (pid == 1) - continue; /* nothing to do for init atm */ - - /* kthreadd has ppid=0, which breaks our tree ordering */ - if (ps->ppid == 0) - ps->ppid = 1; - - parent = ps_first; - while ((parent->next_ps && parent->pid != ps->ppid)) - parent = parent->next_ps; - - if ((!parent) || (parent->pid != ps->ppid)) { - /* orphan */ - ps->ppid = 1; - parent = ps_first->next_ps; - } - - ps->parent = parent; - - if (!parent->children) { - /* it's the first child */ - parent->children = ps; - } else { - /* walk all children and append */ - struct ps_struct *children; - children = parent->children; - while (children->next) - children = children->next; - children->next = ps; - } - } - - /* else -> found pid, append data in ps */ - - /* below here is all continuous logging parts - we get here on every - * iteration */ - - /* rt, wt */ - if (!ps->schedstat) { - sprintf(filename, "/proc/%d/schedstat", pid); - ps->schedstat = open(filename, O_RDONLY); - if (ps->schedstat == -1) - continue; - } - - if (pread(ps->schedstat, buf, sizeof(buf) - 1, 0) <= 0) { - /* clean up our file descriptors - assume that the process exited */ - close(ps->schedstat); - if (ps->sched) - close(ps->sched); - //if (ps->smaps) - // fclose(ps->smaps); - continue; - } - if (!sscanf(buf, "%s %s %*s", rt, wt)) - continue; - - ps->last = sample; - ps->sample[sample].runtime = atoll(rt); - ps->sample[sample].waittime = atoll(wt); - - ps->total = (ps->sample[ps->last].runtime - - ps->sample[ps->first].runtime) - / 1000000000.0; - - if (!pss) - goto catch_rename; - /* Pss */ - if (!ps->smaps) { - sprintf(filename, "/proc/%d/smaps", pid); - ps->smaps = fopen(filename, "r"); - if (!ps->smaps) - continue; - setvbuf(ps->smaps, smaps_buf, _IOFBF, sizeof(smaps_buf)); - } else { - rewind(ps->smaps); - } - - while (1) { - int pss_kb; - - /* skip one line, this contains the object mapped */ - if (fgets(buf, sizeof(buf), ps->smaps) == NULL) - break; - /* then there's a 28 char 14 line block */ - if (fread(buf, 1, 28 * 14, ps->smaps) != 28 * 14) - break; - - pss_kb = atoi(&buf[61]); - ps->sample[sample].pss += pss_kb; - } - - if (ps->sample[sample].pss > ps->pss_max) - ps->pss_max = ps->sample[sample].pss; + m = bufgetline(m); + if (!m) + break; + } + + if (entropy) { + if (!e_fd) { + e_fd = open("/proc/sys/kernel/random/entropy_avail", O_RDONLY); + } + + if (e_fd) { + n = pread(e_fd, buf, sizeof(buf) - 1, 0); + if (n > 0) + entropy_avail[sample] = atoi(buf); + } + } + + /* all the per-process stuff goes here */ + if (!proc) { + /* find all processes */ + proc = opendir("/proc"); + if (!proc) + return; + } else { + rewinddir(proc); + } + + while ((ent = readdir(proc)) != NULL) { + char filename[PATH_MAX]; + int pid; + struct ps_struct *ps; + + if ((ent->d_name[0] < '0') || (ent->d_name[0] > '9')) + continue; + + pid = atoi(ent->d_name); + + if (pid >= MAXPIDS) + continue; + + ps = ps_first; + while (ps->next_ps) { + ps = ps->next_ps; + if (ps->pid == pid) + break; + } + + /* end of our LL? then append a new record */ + if (ps->pid != pid) { + char t[32]; + struct ps_struct *parent; + + ps->next_ps = malloc(sizeof(struct ps_struct)); + if (!ps->next_ps) { + perror("malloc(ps_struct)"); + exit (EXIT_FAILURE); + } + memset(ps->next_ps, 0, sizeof(struct ps_struct)); + ps = ps->next_ps; + ps->pid = pid; + + ps->sample = malloc(sizeof(struct ps_sched_struct) * (len + 1)); + if (!ps->sample) { + perror("malloc(ps_struct)"); + exit (EXIT_FAILURE); + } + memset(ps->sample, 0, sizeof(struct ps_sched_struct) * (len + 1)); + + pscount++; + + /* mark our first sample */ + ps->first = sample; + + /* get name, start time */ + if (!ps->sched) { + sprintf(filename, "/proc/%d/sched", pid); + ps->sched = open(filename, O_RDONLY); + if (ps->sched == -1) + continue; + } + + s = pread(ps->sched, buf, sizeof(buf) - 1, 0); + if (s <= 0) { + close(ps->sched); + continue; + } + + if (!sscanf(buf, "%s %*s %*s", key)) + continue; + + strncpy(ps->name, key, 16); + /* discard line 2 */ + m = bufgetline(buf); + if (!m) + continue; + + m = bufgetline(m); + if (!m) + continue; + + if (!sscanf(m, "%*s %*s %s", t)) + continue; + + ps->starttime = strtod(t, NULL) / 1000.0; + + /* ppid */ + sprintf(filename, "/proc/%d/stat", pid); + st = fopen(filename, "r"); + if (!st) + continue; + if (!fscanf(st, "%*s %*s %*s %i", &p)) { + fclose(st); + continue; + } + fclose(st); + ps->ppid = p; + + /* + * setup child pointers + * + * these are used to paint the tree coherently later + * each parent has a LL of children, and a LL of siblings + */ + if (pid == 1) + continue; /* nothing to do for init atm */ + + /* kthreadd has ppid=0, which breaks our tree ordering */ + if (ps->ppid == 0) + ps->ppid = 1; + + parent = ps_first; + while ((parent->next_ps && parent->pid != ps->ppid)) + parent = parent->next_ps; + + if ((!parent) || (parent->pid != ps->ppid)) { + /* orphan */ + ps->ppid = 1; + parent = ps_first->next_ps; + } + + ps->parent = parent; + + if (!parent->children) { + /* it's the first child */ + parent->children = ps; + } else { + /* walk all children and append */ + struct ps_struct *children; + children = parent->children; + while (children->next) + children = children->next; + children->next = ps; + } + } + + /* else -> found pid, append data in ps */ + + /* below here is all continuous logging parts - we get here on every + * iteration */ + + /* rt, wt */ + if (!ps->schedstat) { + sprintf(filename, "/proc/%d/schedstat", pid); + ps->schedstat = open(filename, O_RDONLY); + if (ps->schedstat == -1) + continue; + } + + if (pread(ps->schedstat, buf, sizeof(buf) - 1, 0) <= 0) { + /* clean up our file descriptors - assume that the process exited */ + close(ps->schedstat); + if (ps->sched) + close(ps->sched); + //if (ps->smaps) + // fclose(ps->smaps); + continue; + } + if (!sscanf(buf, "%s %s %*s", rt, wt)) + continue; + + ps->last = sample; + ps->sample[sample].runtime = atoll(rt); + ps->sample[sample].waittime = atoll(wt); + + ps->total = (ps->sample[ps->last].runtime + - ps->sample[ps->first].runtime) + / 1000000000.0; + + if (!pss) + goto catch_rename; + /* Pss */ + if (!ps->smaps) { + sprintf(filename, "/proc/%d/smaps", pid); + ps->smaps = fopen(filename, "r"); + if (!ps->smaps) + continue; + setvbuf(ps->smaps, smaps_buf, _IOFBF, sizeof(smaps_buf)); + } else { + rewind(ps->smaps); + } + + while (1) { + int pss_kb; + + /* skip one line, this contains the object mapped */ + if (fgets(buf, sizeof(buf), ps->smaps) == NULL) + break; + /* then there's a 28 char 14 line block */ + if (fread(buf, 1, 28 * 14, ps->smaps) != 28 * 14) + break; + + pss_kb = atoi(&buf[61]); + ps->sample[sample].pss += pss_kb; + } + + if (ps->sample[sample].pss > ps->pss_max) + ps->pss_max = ps->sample[sample].pss; catch_rename: - /* catch process rename, try to randomize time */ - mod = (hz < 4.0) ? 4.0 : (hz / 4.0); - if (((samples - ps->first) + pid) % (int)(mod) == 0) { - - /* re-fetch name */ - /* get name, start time */ - if (!ps->sched) { - sprintf(filename, "/proc/%d/sched", pid); - ps->sched = open(filename, O_RDONLY); - if (ps->sched == -1) - continue; - } - if (pread(ps->sched, buf, sizeof(buf) - 1, 0) <= 0) { - /* clean up file descriptors */ - close(ps->sched); - if (ps->schedstat) - close(ps->schedstat); - //if (ps->smaps) - // fclose(ps->smaps); - continue; - } - - if (!sscanf(buf, "%s %*s %*s", key)) - continue; - - strncpy(ps->name, key, 16); - } - } + /* catch process rename, try to randomize time */ + mod = (hz < 4.0) ? 4.0 : (hz / 4.0); + if (((samples - ps->first) + pid) % (int)(mod) == 0) { + + /* re-fetch name */ + /* get name, start time */ + if (!ps->sched) { + sprintf(filename, "/proc/%d/sched", pid); + ps->sched = open(filename, O_RDONLY); + if (ps->sched == -1) + continue; + } + if (pread(ps->sched, buf, sizeof(buf) - 1, 0) <= 0) { + /* clean up file descriptors */ + close(ps->sched); + if (ps->schedstat) + close(ps->schedstat); + //if (ps->smaps) + // fclose(ps->smaps); + continue; + } + + if (!sscanf(buf, "%s %*s %*s", key)) + continue; + + strncpy(ps->name, key, 16); + } + } } diff --git a/src/bootchart/svg.c b/src/bootchart/svg.c index 68ec5399ac..156918a94b 100644 --- a/src/bootchart/svg.c +++ b/src/bootchart/svg.c @@ -37,18 +37,18 @@ static char str[8092]; #define svg(a...) do { snprintf(str, 8092, ## a); fputs(str, of); fflush(of); } while (0) static const char *colorwheel[12] = { - "rgb(255,32,32)", // red - "rgb(32,192,192)", // cyan - "rgb(255,128,32)", // orange - "rgb(128,32,192)", // blue-violet - "rgb(255,255,32)", // yellow - "rgb(192,32,128)", // red-violet - "rgb(32,255,32)", // green - "rgb(255,64,32)", // red-orange - "rgb(32,32,255)", // blue - "rgb(255,192,32)", // yellow-orange - "rgb(192,32,192)", // violet - "rgb(32,192,32)" // yellow-green + "rgb(255,32,32)", // red + "rgb(32,192,192)", // cyan + "rgb(255,128,32)", // orange + "rgb(128,32,192)", // blue-violet + "rgb(255,255,32)", // yellow + "rgb(192,32,128)", // red-violet + "rgb(32,255,32)", // green + "rgb(255,64,32)", // red-orange + "rgb(32,32,255)", // blue + "rgb(255,192,32)", // yellow-orange + "rgb(192,32,192)", // violet + "rgb(32,192,32)" // yellow-green }; static double idletime = -1.0; @@ -62,1059 +62,1059 @@ static float esize = 0; static void svg_header(void) { - float w; - float h; - - /* min width is about 1600px due to the label */ - w = 150.0 + 10.0 + time_to_graph(sampletime[samples-1] - graph_start); - w = ((w < 1600.0) ? 1600.0 : w); - - /* height is variable based on pss, psize, ksize */ - h = 400.0 + (scale_y * 30.0) /* base graphs and title */ - + (pss ? (100.0 * scale_y) + (scale_y * 7.0) : 0.0) /* pss estimate */ - + psize + ksize + esize; - - svg("<?xml version=\"1.0\" standalone=\"no\"?>\n"); - svg("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" "); - svg("\"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n"); - - //svg("<g transform=\"translate(10,%d)\">\n", 1000 + 150 + (pcount * 20)); - svg("<svg width=\"%.0fpx\" height=\"%.0fpx\" version=\"1.1\" ", - w, h); - svg("xmlns=\"http://www.w3.org/2000/svg\">\n\n"); - - /* write some basic info as a comment, including some help */ - svg("<!-- This file is a bootchart SVG file. It is best rendered in a browser -->\n"); - svg("<!-- such as Chrome/Chromium, firefox. Other applications that render -->\n"); - svg("<!-- these files properly but much more slow are ImageMagick, gimp, -->\n"); - svg("<!-- inkscape, etc.. To display the files on your system, just point -->\n"); - svg("<!-- your browser to file:///var/log/ and click. This bootchart was -->\n\n"); - - svg("<!-- generated by bootchart version %s, running with options: -->\n", VERSION); - svg("<!-- hz=\"%f\" n=\"%d\" -->\n", hz, len); - svg("<!-- x=\"%f\" y=\"%f\" -->\n", scale_x, scale_y); - svg("<!-- rel=\"%d\" f=\"%d\" -->\n", relative, filter); - svg("<!-- p=\"%d\" e=\"%d\" -->\n", pss, entropy); - svg("<!-- o=\"%s\" i=\"%s\" -->\n\n", output_path, init_path); - - /* style sheet */ - svg("<defs>\n <style type=\"text/css\">\n <![CDATA[\n"); - - svg(" rect { stroke-width: 1; }\n"); - svg(" rect.cpu { fill: rgb(64,64,240); stroke-width: 0; fill-opacity: 0.7; }\n"); - svg(" rect.wait { fill: rgb(240,240,0); stroke-width: 0; fill-opacity: 0.7; }\n"); - svg(" rect.bi { fill: rgb(240,128,128); stroke-width: 0; fill-opacity: 0.7; }\n"); - svg(" rect.bo { fill: rgb(192,64,64); stroke-width: 0; fill-opacity: 0.7; }\n"); - svg(" rect.ps { fill: rgb(192,192,192); stroke: rgb(128,128,128); fill-opacity: 0.7; }\n"); - svg(" rect.krnl { fill: rgb(240,240,0); stroke: rgb(128,128,128); fill-opacity: 0.7; }\n"); - svg(" rect.box { fill: rgb(240,240,240); stroke: rgb(192,192,192); }\n"); - svg(" rect.clrw { stroke-width: 0; fill-opacity: 0.7;}\n"); - svg(" line { stroke: rgb(64,64,64); stroke-width: 1; }\n"); - svg("// line.sec1 { }\n"); - svg(" line.sec5 { stroke-width: 2; }\n"); - svg(" line.sec01 { stroke: rgb(224,224,224); stroke-width: 1; }\n"); - svg(" line.dot { stroke-dasharray: 2 4; }\n"); - svg(" line.idle { stroke: rgb(64,64,64); stroke-dasharray: 10 6; stroke-opacity: 0.7; }\n"); - - svg(" .run { font-size: 8; font-style: italic; }\n"); - svg(" text { font-family: Verdana, Helvetica; font-size: 10; }\n"); - svg(" text.sec { font-size: 8; }\n"); - svg(" text.t1 { font-size: 24; }\n"); - svg(" text.t2 { font-size: 12; }\n"); - svg(" text.idle { font-size: 18; }\n"); - - svg(" ]]>\n </style>\n</defs>\n\n"); + float w; + float h; + + /* min width is about 1600px due to the label */ + w = 150.0 + 10.0 + time_to_graph(sampletime[samples-1] - graph_start); + w = ((w < 1600.0) ? 1600.0 : w); + + /* height is variable based on pss, psize, ksize */ + h = 400.0 + (scale_y * 30.0) /* base graphs and title */ + + (pss ? (100.0 * scale_y) + (scale_y * 7.0) : 0.0) /* pss estimate */ + + psize + ksize + esize; + + svg("<?xml version=\"1.0\" standalone=\"no\"?>\n"); + svg("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" "); + svg("\"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n"); + + //svg("<g transform=\"translate(10,%d)\">\n", 1000 + 150 + (pcount * 20)); + svg("<svg width=\"%.0fpx\" height=\"%.0fpx\" version=\"1.1\" ", + w, h); + svg("xmlns=\"http://www.w3.org/2000/svg\">\n\n"); + + /* write some basic info as a comment, including some help */ + svg("<!-- This file is a bootchart SVG file. It is best rendered in a browser -->\n"); + svg("<!-- such as Chrome/Chromium, firefox. Other applications that render -->\n"); + svg("<!-- these files properly but much more slow are ImageMagick, gimp, -->\n"); + svg("<!-- inkscape, etc.. To display the files on your system, just point -->\n"); + svg("<!-- your browser to file:///var/log/ and click. This bootchart was -->\n\n"); + + svg("<!-- generated by bootchart version %s, running with options: -->\n", VERSION); + svg("<!-- hz=\"%f\" n=\"%d\" -->\n", hz, len); + svg("<!-- x=\"%f\" y=\"%f\" -->\n", scale_x, scale_y); + svg("<!-- rel=\"%d\" f=\"%d\" -->\n", relative, filter); + svg("<!-- p=\"%d\" e=\"%d\" -->\n", pss, entropy); + svg("<!-- o=\"%s\" i=\"%s\" -->\n\n", output_path, init_path); + + /* style sheet */ + svg("<defs>\n <style type=\"text/css\">\n <![CDATA[\n"); + + svg(" rect { stroke-width: 1; }\n"); + svg(" rect.cpu { fill: rgb(64,64,240); stroke-width: 0; fill-opacity: 0.7; }\n"); + svg(" rect.wait { fill: rgb(240,240,0); stroke-width: 0; fill-opacity: 0.7; }\n"); + svg(" rect.bi { fill: rgb(240,128,128); stroke-width: 0; fill-opacity: 0.7; }\n"); + svg(" rect.bo { fill: rgb(192,64,64); stroke-width: 0; fill-opacity: 0.7; }\n"); + svg(" rect.ps { fill: rgb(192,192,192); stroke: rgb(128,128,128); fill-opacity: 0.7; }\n"); + svg(" rect.krnl { fill: rgb(240,240,0); stroke: rgb(128,128,128); fill-opacity: 0.7; }\n"); + svg(" rect.box { fill: rgb(240,240,240); stroke: rgb(192,192,192); }\n"); + svg(" rect.clrw { stroke-width: 0; fill-opacity: 0.7;}\n"); + svg(" line { stroke: rgb(64,64,64); stroke-width: 1; }\n"); + svg("// line.sec1 { }\n"); + svg(" line.sec5 { stroke-width: 2; }\n"); + svg(" line.sec01 { stroke: rgb(224,224,224); stroke-width: 1; }\n"); + svg(" line.dot { stroke-dasharray: 2 4; }\n"); + svg(" line.idle { stroke: rgb(64,64,64); stroke-dasharray: 10 6; stroke-opacity: 0.7; }\n"); + + svg(" .run { font-size: 8; font-style: italic; }\n"); + svg(" text { font-family: Verdana, Helvetica; font-size: 10; }\n"); + svg(" text.sec { font-size: 8; }\n"); + svg(" text.t1 { font-size: 24; }\n"); + svg(" text.t2 { font-size: 12; }\n"); + svg(" text.idle { font-size: 18; }\n"); + + svg(" ]]>\n </style>\n</defs>\n\n"); } static void svg_title(void) { - char cmdline[256] = ""; - char filename[PATH_MAX]; - char buf[256]; - char rootbdev[16] = "Unknown"; - char model[256] = "Unknown"; - char date[256] = "Unknown"; - char cpu[256] = "Unknown"; - char build[256] = "Unknown"; - char *c; - FILE *f; - time_t t; - struct utsname uts; - - /* grab /proc/cmdline */ - f = fopen("/proc/cmdline", "r"); - if (f) { - if (!fgets(cmdline, 255, f)) - sprintf(cmdline, "Unknown"); - fclose(f); - } - - /* extract root fs so we can find disk model name in sysfs */ - c = strstr(cmdline, "root=/dev/"); - if (c) { - strncpy(rootbdev, &c[10], 3); - rootbdev[3] = '\0'; - } - sprintf(filename, "/sys/block/%s/device/model", rootbdev); - f = fopen(filename, "r"); - if (f) { - if (!fgets(model, 255, f)) - fprintf(stderr, "Error reading disk model for %s\n", rootbdev); - fclose(f); - } - - /* various utsname parameters */ - if (uname(&uts)) - fprintf(stderr, "Error getting uname info\n"); - - /* date */ - t = time(NULL); - strftime(date, sizeof(date), "%a, %d %b %Y %H:%M:%S %z", localtime(&t)); - - /* CPU type */ - f = fopen("/proc/cpuinfo", "r"); - if (f) { - while (fgets(buf, 255, f)) { - if (strstr(buf, "model name")) { - strncpy(cpu, &buf[13], 255); - break; - } - } - fclose(f); - } - - /* Build - 1st line from /etc/system-release */ - f = fopen("/etc/system-release", "r"); - if (f) { - if (fgets(buf, 255, f)) - strncpy(build, buf, 255); - fclose(f); - } - - svg("<text class=\"t1\" x=\"0\" y=\"30\">Bootchart for %s - %s</text>\n", - uts.nodename, date); - svg("<text class=\"t2\" x=\"20\" y=\"50\">System: %s %s %s %s</text>\n", - uts.sysname, uts.release, uts.version, uts.machine); - svg("<text class=\"t2\" x=\"20\" y=\"65\">CPU: %s</text>\n", - cpu); - svg("<text class=\"t2\" x=\"20\" y=\"80\">Disk: %s</text>\n", - model); - svg("<text class=\"t2\" x=\"20\" y=\"95\">Boot options: %s</text>\n", - cmdline); - svg("<text class=\"t2\" x=\"20\" y=\"110\">Build: %s</text>\n", - build); - svg("<text class=\"t2\" x=\"20\" y=\"125\">Log start time: %.03fs</text>\n", log_start); - svg("<text class=\"t2\" x=\"20\" y=\"140\">Idle time: "); - - if (idletime >= 0.0) - svg("%.03fs", idletime); - else - svg("Not detected"); - svg("</text>\n"); - svg("<text class=\"sec\" x=\"20\" y=\"155\">Graph data: %.03f samples/sec, recorded %i total, dropped %i samples, %i processes, %i filtered</text>\n", - hz, len, overrun, pscount, pfiltered); + char cmdline[256] = ""; + char filename[PATH_MAX]; + char buf[256]; + char rootbdev[16] = "Unknown"; + char model[256] = "Unknown"; + char date[256] = "Unknown"; + char cpu[256] = "Unknown"; + char build[256] = "Unknown"; + char *c; + FILE *f; + time_t t; + struct utsname uts; + + /* grab /proc/cmdline */ + f = fopen("/proc/cmdline", "r"); + if (f) { + if (!fgets(cmdline, 255, f)) + sprintf(cmdline, "Unknown"); + fclose(f); + } + + /* extract root fs so we can find disk model name in sysfs */ + c = strstr(cmdline, "root=/dev/"); + if (c) { + strncpy(rootbdev, &c[10], 3); + rootbdev[3] = '\0'; + } + sprintf(filename, "/sys/block/%s/device/model", rootbdev); + f = fopen(filename, "r"); + if (f) { + if (!fgets(model, 255, f)) + fprintf(stderr, "Error reading disk model for %s\n", rootbdev); + fclose(f); + } + + /* various utsname parameters */ + if (uname(&uts)) + fprintf(stderr, "Error getting uname info\n"); + + /* date */ + t = time(NULL); + strftime(date, sizeof(date), "%a, %d %b %Y %H:%M:%S %z", localtime(&t)); + + /* CPU type */ + f = fopen("/proc/cpuinfo", "r"); + if (f) { + while (fgets(buf, 255, f)) { + if (strstr(buf, "model name")) { + strncpy(cpu, &buf[13], 255); + break; + } + } + fclose(f); + } + + /* Build - 1st line from /etc/system-release */ + f = fopen("/etc/system-release", "r"); + if (f) { + if (fgets(buf, 255, f)) + strncpy(build, buf, 255); + fclose(f); + } + + svg("<text class=\"t1\" x=\"0\" y=\"30\">Bootchart for %s - %s</text>\n", + uts.nodename, date); + svg("<text class=\"t2\" x=\"20\" y=\"50\">System: %s %s %s %s</text>\n", + uts.sysname, uts.release, uts.version, uts.machine); + svg("<text class=\"t2\" x=\"20\" y=\"65\">CPU: %s</text>\n", + cpu); + svg("<text class=\"t2\" x=\"20\" y=\"80\">Disk: %s</text>\n", + model); + svg("<text class=\"t2\" x=\"20\" y=\"95\">Boot options: %s</text>\n", + cmdline); + svg("<text class=\"t2\" x=\"20\" y=\"110\">Build: %s</text>\n", + build); + svg("<text class=\"t2\" x=\"20\" y=\"125\">Log start time: %.03fs</text>\n", log_start); + svg("<text class=\"t2\" x=\"20\" y=\"140\">Idle time: "); + + if (idletime >= 0.0) + svg("%.03fs", idletime); + else + svg("Not detected"); + svg("</text>\n"); + svg("<text class=\"sec\" x=\"20\" y=\"155\">Graph data: %.03f samples/sec, recorded %i total, dropped %i samples, %i processes, %i filtered</text>\n", + hz, len, overrun, pscount, pfiltered); } static void svg_graph_box(int height) { - double d = 0.0; - int i = 0; - - /* outside box, fill */ - svg("<rect class=\"box\" x=\"%.03f\" y=\"0\" width=\"%.03f\" height=\"%.03f\" />\n", - time_to_graph(0.0), - time_to_graph(sampletime[samples-1] - graph_start), - ps_to_graph(height)); - - for (d = graph_start; d <= sampletime[samples-1]; - d += (scale_x < 2.0 ? 60.0 : scale_x < 10.0 ? 1.0 : 0.1)) { - /* lines for each second */ - if (i % 50 == 0) - svg(" <line class=\"sec5\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n", - time_to_graph(d - graph_start), - time_to_graph(d - graph_start), - ps_to_graph(height)); - else if (i % 10 == 0) - svg(" <line class=\"sec1\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n", - time_to_graph(d - graph_start), - time_to_graph(d - graph_start), - ps_to_graph(height)); - else - svg(" <line class=\"sec01\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n", - time_to_graph(d - graph_start), - time_to_graph(d - graph_start), - ps_to_graph(height)); - - /* time label */ - if (i % 10 == 0) - svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.03f\" >%.01fs</text>\n", - time_to_graph(d - graph_start), - -5.0, - d - graph_start); - - i++; - } + double d = 0.0; + int i = 0; + + /* outside box, fill */ + svg("<rect class=\"box\" x=\"%.03f\" y=\"0\" width=\"%.03f\" height=\"%.03f\" />\n", + time_to_graph(0.0), + time_to_graph(sampletime[samples-1] - graph_start), + ps_to_graph(height)); + + for (d = graph_start; d <= sampletime[samples-1]; + d += (scale_x < 2.0 ? 60.0 : scale_x < 10.0 ? 1.0 : 0.1)) { + /* lines for each second */ + if (i % 50 == 0) + svg(" <line class=\"sec5\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n", + time_to_graph(d - graph_start), + time_to_graph(d - graph_start), + ps_to_graph(height)); + else if (i % 10 == 0) + svg(" <line class=\"sec1\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n", + time_to_graph(d - graph_start), + time_to_graph(d - graph_start), + ps_to_graph(height)); + else + svg(" <line class=\"sec01\" x1=\"%.03f\" y1=\"0\" x2=\"%.03f\" y2=\"%.03f\" />\n", + time_to_graph(d - graph_start), + time_to_graph(d - graph_start), + ps_to_graph(height)); + + /* time label */ + if (i % 10 == 0) + svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.03f\" >%.01fs</text>\n", + time_to_graph(d - graph_start), + -5.0, + d - graph_start); + + i++; + } } static void svg_pss_graph(void) { - struct ps_struct *ps; - int i; - - svg("\n\n<!-- Pss memory size graph -->\n"); - - svg("\n <text class=\"t2\" x=\"5\" y=\"-15\">Memory allocation - Pss</text>\n"); - - /* vsize 1000 == 1000mb */ - svg_graph_box(100); - /* draw some hlines for usable memory sizes */ - for (i = 100000; i < 1000000; i += 100000) { - svg(" <line class=\"sec01\" x1=\"%.03f\" y1=\"%.0f\" x2=\"%.03f\" y2=\"%.0f\"/>\n", - time_to_graph(.0), - kb_to_graph(i), - time_to_graph(sampletime[samples-1] - graph_start), - kb_to_graph(i)); - svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.0f\">%dM</text>\n", - time_to_graph(sampletime[samples-1] - graph_start) + 5, - kb_to_graph(i), (1000000 - i) / 1000); - } - svg("\n"); - - /* now plot the graph itself */ - for (i = 1; i < samples ; i++) { - int bottom; - int top; - - bottom = 0; - top = 0; - - /* put all the small pss blocks into the bottom */ - ps = ps_first; - while (ps->next_ps) { - ps = ps->next_ps; - if (!ps) - continue; - if (ps->sample[i].pss <= (100 * scale_y)) - top += ps->sample[i].pss; - }; - svg(" <rect class=\"clrw\" style=\"fill: %s\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", - "rgb(64,64,64)", - time_to_graph(sampletime[i - 1] - graph_start), - kb_to_graph(1000000.0 - top), - time_to_graph(sampletime[i] - sampletime[i - 1]), - kb_to_graph(top - bottom)); - - bottom = top; - - /* now plot the ones that are of significant size */ - ps = ps_first; - while (ps->next_ps) { - ps = ps->next_ps; - if (!ps) - continue; - /* don't draw anything smaller than 2mb */ - if (ps->sample[i].pss > (100 * scale_y)) { - top = bottom + ps->sample[i].pss; - svg(" <rect class=\"clrw\" style=\"fill: %s\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", - colorwheel[ps->pid % 12], - time_to_graph(sampletime[i - 1] - graph_start), - kb_to_graph(1000000.0 - top), - time_to_graph(sampletime[i] - sampletime[i - 1]), - kb_to_graph(top - bottom)); - bottom = top; - } - } - } - - /* overlay all the text labels */ - for (i = 1; i < samples ; i++) { - int bottom; - int top; - - bottom = 0; - top = 0; - - /* put all the small pss blocks into the bottom */ - ps = ps_first; - while (ps->next_ps) { - ps = ps->next_ps; - if (!ps) - continue; - if (ps->sample[i].pss <= (100 * scale_y)) - top += ps->sample[i].pss; - }; - - bottom = top; - - /* now plot the ones that are of significant size */ - ps = ps_first; - while (ps->next_ps) { - ps = ps->next_ps; - if (!ps) - continue; - /* don't draw anything smaller than 2mb */ - if (ps->sample[i].pss > (100 * scale_y)) { - top = bottom + ps->sample[i].pss; - /* draw a label with the process / PID */ - if ((i == 1) || (ps->sample[i - 1].pss <= (100 * scale_y))) - svg(" <text x=\"%.03f\" y=\"%.03f\">%s [%i]</text>\n", - time_to_graph(sampletime[i] - graph_start), - kb_to_graph(1000000.0 - bottom - ((top - bottom) / 2)), - ps->name, - ps->pid); - bottom = top; - } - } - } - - /* debug output - full data dump */ - svg("\n\n<!-- PSS map - csv format -->\n"); - ps = ps_first; - while (ps->next_ps) { - ps = ps->next_ps; - if (!ps) - continue; - svg("<!-- %s [%d] pss=", ps->name, ps->pid); - for (i = 0; i < samples ; i++) { - svg("%d," , ps->sample[i].pss); - } - svg(" -->\n"); - } + struct ps_struct *ps; + int i; + + svg("\n\n<!-- Pss memory size graph -->\n"); + + svg("\n <text class=\"t2\" x=\"5\" y=\"-15\">Memory allocation - Pss</text>\n"); + + /* vsize 1000 == 1000mb */ + svg_graph_box(100); + /* draw some hlines for usable memory sizes */ + for (i = 100000; i < 1000000; i += 100000) { + svg(" <line class=\"sec01\" x1=\"%.03f\" y1=\"%.0f\" x2=\"%.03f\" y2=\"%.0f\"/>\n", + time_to_graph(.0), + kb_to_graph(i), + time_to_graph(sampletime[samples-1] - graph_start), + kb_to_graph(i)); + svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.0f\">%dM</text>\n", + time_to_graph(sampletime[samples-1] - graph_start) + 5, + kb_to_graph(i), (1000000 - i) / 1000); + } + svg("\n"); + + /* now plot the graph itself */ + for (i = 1; i < samples ; i++) { + int bottom; + int top; + + bottom = 0; + top = 0; + + /* put all the small pss blocks into the bottom */ + ps = ps_first; + while (ps->next_ps) { + ps = ps->next_ps; + if (!ps) + continue; + if (ps->sample[i].pss <= (100 * scale_y)) + top += ps->sample[i].pss; + }; + svg(" <rect class=\"clrw\" style=\"fill: %s\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", + "rgb(64,64,64)", + time_to_graph(sampletime[i - 1] - graph_start), + kb_to_graph(1000000.0 - top), + time_to_graph(sampletime[i] - sampletime[i - 1]), + kb_to_graph(top - bottom)); + + bottom = top; + + /* now plot the ones that are of significant size */ + ps = ps_first; + while (ps->next_ps) { + ps = ps->next_ps; + if (!ps) + continue; + /* don't draw anything smaller than 2mb */ + if (ps->sample[i].pss > (100 * scale_y)) { + top = bottom + ps->sample[i].pss; + svg(" <rect class=\"clrw\" style=\"fill: %s\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", + colorwheel[ps->pid % 12], + time_to_graph(sampletime[i - 1] - graph_start), + kb_to_graph(1000000.0 - top), + time_to_graph(sampletime[i] - sampletime[i - 1]), + kb_to_graph(top - bottom)); + bottom = top; + } + } + } + + /* overlay all the text labels */ + for (i = 1; i < samples ; i++) { + int bottom; + int top; + + bottom = 0; + top = 0; + + /* put all the small pss blocks into the bottom */ + ps = ps_first; + while (ps->next_ps) { + ps = ps->next_ps; + if (!ps) + continue; + if (ps->sample[i].pss <= (100 * scale_y)) + top += ps->sample[i].pss; + }; + + bottom = top; + + /* now plot the ones that are of significant size */ + ps = ps_first; + while (ps->next_ps) { + ps = ps->next_ps; + if (!ps) + continue; + /* don't draw anything smaller than 2mb */ + if (ps->sample[i].pss > (100 * scale_y)) { + top = bottom + ps->sample[i].pss; + /* draw a label with the process / PID */ + if ((i == 1) || (ps->sample[i - 1].pss <= (100 * scale_y))) + svg(" <text x=\"%.03f\" y=\"%.03f\">%s [%i]</text>\n", + time_to_graph(sampletime[i] - graph_start), + kb_to_graph(1000000.0 - bottom - ((top - bottom) / 2)), + ps->name, + ps->pid); + bottom = top; + } + } + } + + /* debug output - full data dump */ + svg("\n\n<!-- PSS map - csv format -->\n"); + ps = ps_first; + while (ps->next_ps) { + ps = ps->next_ps; + if (!ps) + continue; + svg("<!-- %s [%d] pss=", ps->name, ps->pid); + for (i = 0; i < samples ; i++) { + svg("%d," , ps->sample[i].pss); + } + svg(" -->\n"); + } } static void svg_io_bi_bar(void) { - double max = 0.0; - double range; - int max_here = 0; - int i; - - svg("<!-- IO utilization graph - In -->\n"); - - svg("<text class=\"t2\" x=\"5\" y=\"-15\">IO utilization - read</text>\n"); - - /* - * calculate rounding range - * - * We need to round IO data since IO block data is not updated on - * each poll. Applying a smoothing function loses some burst data, - * so keep the smoothing range short. - */ - range = 0.25 / (1.0 / hz); - if (range < 2.0) - range = 2.0; /* no smoothing */ - - /* surrounding box */ - svg_graph_box(5); - - /* find the max IO first */ - for (i = 1; i < samples; i++) { - int start; - int stop; - double tot; - - start = max(i - ((range / 2) - 1), 0); - stop = min(i + (range / 2), samples - 1); - - tot = (double)(blockstat[stop].bi - blockstat[start].bi) - / (stop - start); - if (tot > max) { - max = tot; - max_here = i; - } - tot = (double)(blockstat[stop].bo - blockstat[start].bo) - / (stop - start); - if (tot > max) - max = tot; - } - - /* plot bi */ - for (i = 1; i < samples; i++) { - int start; - int stop; - double tot; - double pbi; - - start = max(i - ((range / 2) - 1), 0); - stop = min(i + (range / 2), samples); - - tot = (double)(blockstat[stop].bi - blockstat[start].bi) - / (stop - start); - pbi = tot / max; - - if (pbi > 0.001) - svg("<rect class=\"bi\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", - time_to_graph(sampletime[i - 1] - graph_start), - (scale_y * 5) - (pbi * (scale_y * 5)), - time_to_graph(sampletime[i] - sampletime[i - 1]), - pbi * (scale_y * 5)); - - /* labels around highest value */ - if (i == max_here) { - svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.03f\">%0.2fmb/sec</text>\n", - time_to_graph(sampletime[i] - graph_start) + 5, - ((scale_y * 5) - (pbi * (scale_y * 5))) + 15, - max / 1024.0 / (interval / 1000000000.0)); - } - } + double max = 0.0; + double range; + int max_here = 0; + int i; + + svg("<!-- IO utilization graph - In -->\n"); + + svg("<text class=\"t2\" x=\"5\" y=\"-15\">IO utilization - read</text>\n"); + + /* + * calculate rounding range + * + * We need to round IO data since IO block data is not updated on + * each poll. Applying a smoothing function loses some burst data, + * so keep the smoothing range short. + */ + range = 0.25 / (1.0 / hz); + if (range < 2.0) + range = 2.0; /* no smoothing */ + + /* surrounding box */ + svg_graph_box(5); + + /* find the max IO first */ + for (i = 1; i < samples; i++) { + int start; + int stop; + double tot; + + start = max(i - ((range / 2) - 1), 0); + stop = min(i + (range / 2), samples - 1); + + tot = (double)(blockstat[stop].bi - blockstat[start].bi) + / (stop - start); + if (tot > max) { + max = tot; + max_here = i; + } + tot = (double)(blockstat[stop].bo - blockstat[start].bo) + / (stop - start); + if (tot > max) + max = tot; + } + + /* plot bi */ + for (i = 1; i < samples; i++) { + int start; + int stop; + double tot; + double pbi; + + start = max(i - ((range / 2) - 1), 0); + stop = min(i + (range / 2), samples); + + tot = (double)(blockstat[stop].bi - blockstat[start].bi) + / (stop - start); + pbi = tot / max; + + if (pbi > 0.001) + svg("<rect class=\"bi\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", + time_to_graph(sampletime[i - 1] - graph_start), + (scale_y * 5) - (pbi * (scale_y * 5)), + time_to_graph(sampletime[i] - sampletime[i - 1]), + pbi * (scale_y * 5)); + + /* labels around highest value */ + if (i == max_here) { + svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.03f\">%0.2fmb/sec</text>\n", + time_to_graph(sampletime[i] - graph_start) + 5, + ((scale_y * 5) - (pbi * (scale_y * 5))) + 15, + max / 1024.0 / (interval / 1000000000.0)); + } + } } static void svg_io_bo_bar(void) { - double max = 0.0; - double range; - int max_here = 0; - int i; - - svg("<!-- IO utilization graph - out -->\n"); - - svg("<text class=\"t2\" x=\"5\" y=\"-15\">IO utilization - write</text>\n"); - - /* - * calculate rounding range - * - * We need to round IO data since IO block data is not updated on - * each poll. Applying a smoothing function loses some burst data, - * so keep the smoothing range short. - */ - range = 0.25 / (1.0 / hz); - if (range < 2.0) - range = 2.0; /* no smoothing */ - - /* surrounding box */ - svg_graph_box(5); - - /* find the max IO first */ - for (i = 1; i < samples; i++) { - int start; - int stop; - double tot; - - start = max(i - ((range / 2) - 1), 0); - stop = min(i + (range / 2), samples - 1); - - tot = (double)(blockstat[stop].bi - blockstat[start].bi) - / (stop - start); - if (tot > max) - max = tot; - tot = (double)(blockstat[stop].bo - blockstat[start].bo) - / (stop - start); - if (tot > max) { - max = tot; - max_here = i; - } - } - - /* plot bo */ - for (i = 1; i < samples; i++) { - int start; - int stop; - double tot; - double pbo; - - start = max(i - ((range / 2) - 1), 0); - stop = min(i + (range / 2), samples); - - tot = (double)(blockstat[stop].bo - blockstat[start].bo) - / (stop - start); - pbo = tot / max; - - if (pbo > 0.001) - svg("<rect class=\"bo\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", - time_to_graph(sampletime[i - 1] - graph_start), - (scale_y * 5) - (pbo * (scale_y * 5)), - time_to_graph(sampletime[i] - sampletime[i - 1]), - pbo * (scale_y * 5)); - - /* labels around highest bo value */ - if (i == max_here) { - svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.03f\">%0.2fmb/sec</text>\n", - time_to_graph(sampletime[i] - graph_start) + 5, - ((scale_y * 5) - (pbo * (scale_y * 5))), - max / 1024.0 / (interval / 1000000000.0)); - } - } + double max = 0.0; + double range; + int max_here = 0; + int i; + + svg("<!-- IO utilization graph - out -->\n"); + + svg("<text class=\"t2\" x=\"5\" y=\"-15\">IO utilization - write</text>\n"); + + /* + * calculate rounding range + * + * We need to round IO data since IO block data is not updated on + * each poll. Applying a smoothing function loses some burst data, + * so keep the smoothing range short. + */ + range = 0.25 / (1.0 / hz); + if (range < 2.0) + range = 2.0; /* no smoothing */ + + /* surrounding box */ + svg_graph_box(5); + + /* find the max IO first */ + for (i = 1; i < samples; i++) { + int start; + int stop; + double tot; + + start = max(i - ((range / 2) - 1), 0); + stop = min(i + (range / 2), samples - 1); + + tot = (double)(blockstat[stop].bi - blockstat[start].bi) + / (stop - start); + if (tot > max) + max = tot; + tot = (double)(blockstat[stop].bo - blockstat[start].bo) + / (stop - start); + if (tot > max) { + max = tot; + max_here = i; + } + } + + /* plot bo */ + for (i = 1; i < samples; i++) { + int start; + int stop; + double tot; + double pbo; + + start = max(i - ((range / 2) - 1), 0); + stop = min(i + (range / 2), samples); + + tot = (double)(blockstat[stop].bo - blockstat[start].bo) + / (stop - start); + pbo = tot / max; + + if (pbo > 0.001) + svg("<rect class=\"bo\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", + time_to_graph(sampletime[i - 1] - graph_start), + (scale_y * 5) - (pbo * (scale_y * 5)), + time_to_graph(sampletime[i] - sampletime[i - 1]), + pbo * (scale_y * 5)); + + /* labels around highest bo value */ + if (i == max_here) { + svg(" <text class=\"sec\" x=\"%.03f\" y=\"%.03f\">%0.2fmb/sec</text>\n", + time_to_graph(sampletime[i] - graph_start) + 5, + ((scale_y * 5) - (pbo * (scale_y * 5))), + max / 1024.0 / (interval / 1000000000.0)); + } + } } static void svg_cpu_bar(void) { - int i; + int i; - svg("<!-- CPU utilization graph -->\n"); + svg("<!-- CPU utilization graph -->\n"); - svg("<text class=\"t2\" x=\"5\" y=\"-15\">CPU utilization</text>\n"); - /* surrounding box */ - svg_graph_box(5); + svg("<text class=\"t2\" x=\"5\" y=\"-15\">CPU utilization</text>\n"); + /* surrounding box */ + svg_graph_box(5); - /* bars for each sample, proportional to the CPU util. */ - for (i = 1; i < samples; i++) { - int c; - double trt; - double ptrt; + /* bars for each sample, proportional to the CPU util. */ + for (i = 1; i < samples; i++) { + int c; + double trt; + double ptrt; - ptrt = trt = 0.0; + ptrt = trt = 0.0; - for (c = 0; c < cpus; c++) - trt += cpustat[c].sample[i].runtime - cpustat[c].sample[i - 1].runtime; + for (c = 0; c < cpus; c++) + trt += cpustat[c].sample[i].runtime - cpustat[c].sample[i - 1].runtime; - trt = trt / 1000000000.0; + trt = trt / 1000000000.0; - trt = trt / (double)cpus; + trt = trt / (double)cpus; - if (trt > 0.0) - ptrt = trt / (sampletime[i] - sampletime[i - 1]); + if (trt > 0.0) + ptrt = trt / (sampletime[i] - sampletime[i - 1]); - if (ptrt > 1.0) - ptrt = 1.0; + if (ptrt > 1.0) + ptrt = 1.0; - if (ptrt > 0.001) { - svg("<rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", - time_to_graph(sampletime[i - 1] - graph_start), - (scale_y * 5) - (ptrt * (scale_y * 5)), - time_to_graph(sampletime[i] - sampletime[i - 1]), - ptrt * (scale_y * 5)); - } - } + if (ptrt > 0.001) { + svg("<rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", + time_to_graph(sampletime[i - 1] - graph_start), + (scale_y * 5) - (ptrt * (scale_y * 5)), + time_to_graph(sampletime[i] - sampletime[i - 1]), + ptrt * (scale_y * 5)); + } + } } static void svg_wait_bar(void) { - int i; + int i; - svg("<!-- Wait time aggregation box -->\n"); + svg("<!-- Wait time aggregation box -->\n"); - svg("<text class=\"t2\" x=\"5\" y=\"-15\">CPU wait</text>\n"); + svg("<text class=\"t2\" x=\"5\" y=\"-15\">CPU wait</text>\n"); - /* surrounding box */ - svg_graph_box(5); + /* surrounding box */ + svg_graph_box(5); - /* bars for each sample, proportional to the CPU util. */ - for (i = 1; i < samples; i++) { - int c; - double twt; - double ptwt; + /* bars for each sample, proportional to the CPU util. */ + for (i = 1; i < samples; i++) { + int c; + double twt; + double ptwt; - ptwt = twt = 0.0; + ptwt = twt = 0.0; - for (c = 0; c < cpus; c++) - twt += cpustat[c].sample[i].waittime - cpustat[c].sample[i - 1].waittime; + for (c = 0; c < cpus; c++) + twt += cpustat[c].sample[i].waittime - cpustat[c].sample[i - 1].waittime; - twt = twt / 1000000000.0; + twt = twt / 1000000000.0; - twt = twt / (double)cpus; + twt = twt / (double)cpus; - if (twt > 0.0) - ptwt = twt / (sampletime[i] - sampletime[i - 1]); + if (twt > 0.0) + ptwt = twt / (sampletime[i] - sampletime[i - 1]); - if (ptwt > 1.0) - ptwt = 1.0; + if (ptwt > 1.0) + ptwt = 1.0; - if (ptwt > 0.001) { - svg("<rect class=\"wait\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", - time_to_graph(sampletime[i - 1] - graph_start), - ((scale_y * 5) - (ptwt * (scale_y * 5))), - time_to_graph(sampletime[i] - sampletime[i - 1]), - ptwt * (scale_y * 5)); - } - } + if (ptwt > 0.001) { + svg("<rect class=\"wait\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", + time_to_graph(sampletime[i - 1] - graph_start), + ((scale_y * 5) - (ptwt * (scale_y * 5))), + time_to_graph(sampletime[i] - sampletime[i - 1]), + ptwt * (scale_y * 5)); + } + } } static void svg_entropy_bar(void) { - int i; - - svg("<!-- entropy pool graph -->\n"); - - svg("<text class=\"t2\" x=\"5\" y=\"-15\">Entropy pool size</text>\n"); - /* surrounding box */ - svg_graph_box(5); - - /* bars for each sample, scale 0-4096 */ - for (i = 1; i < samples; i++) { - /* svg("<!-- entropy %.03f %i -->\n", sampletime[i], entropy_avail[i]); */ - svg("<rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", - time_to_graph(sampletime[i - 1] - graph_start), - ((scale_y * 5) - ((entropy_avail[i] / 4096.) * (scale_y * 5))), - time_to_graph(sampletime[i] - sampletime[i - 1]), - (entropy_avail[i] / 4096.) * (scale_y * 5)); - } + int i; + + svg("<!-- entropy pool graph -->\n"); + + svg("<text class=\"t2\" x=\"5\" y=\"-15\">Entropy pool size</text>\n"); + /* surrounding box */ + svg_graph_box(5); + + /* bars for each sample, scale 0-4096 */ + for (i = 1; i < samples; i++) { + /* svg("<!-- entropy %.03f %i -->\n", sampletime[i], entropy_avail[i]); */ + svg("<rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", + time_to_graph(sampletime[i - 1] - graph_start), + ((scale_y * 5) - ((entropy_avail[i] / 4096.) * (scale_y * 5))), + time_to_graph(sampletime[i] - sampletime[i - 1]), + (entropy_avail[i] / 4096.) * (scale_y * 5)); + } } static struct ps_struct *get_next_ps(struct ps_struct *ps) { - /* - * walk the list of processes and return the next one to be - * painted - */ - if (ps == ps_first) - return ps->next_ps; - - /* go deep */ - if (ps->children) - return ps->children; - - /* find siblings */ - if (ps->next) - return ps->next; - - /* go back for parent siblings */ - while (1) { - if (ps->parent) - if (ps->parent->next) - return ps->parent->next; - ps = ps->parent; - if (!ps) - return ps; - } - - return NULL; + /* + * walk the list of processes and return the next one to be + * painted + */ + if (ps == ps_first) + return ps->next_ps; + + /* go deep */ + if (ps->children) + return ps->children; + + /* find siblings */ + if (ps->next) + return ps->next; + + /* go back for parent siblings */ + while (1) { + if (ps->parent) + if (ps->parent->next) + return ps->parent->next; + ps = ps->parent; + if (!ps) + return ps; + } + + return NULL; } static int ps_filter(struct ps_struct *ps) { - if (!filter) - return 0; + if (!filter) + return 0; - /* can't draw data when there is only 1 sample (need start + stop) */ - if (ps->first == ps->last) - return -1; + /* can't draw data when there is only 1 sample (need start + stop) */ + if (ps->first == ps->last) + return -1; - /* don't filter kthreadd */ - if (ps->pid == 2) - return 0; + /* don't filter kthreadd */ + if (ps->pid == 2) + return 0; - /* drop stuff that doesn't use any real CPU time */ - if (ps->total <= 0.001) - return -1; + /* drop stuff that doesn't use any real CPU time */ + if (ps->total <= 0.001) + return -1; - return 0; + return 0; } static void svg_do_initcall(int count_only) { - FILE *f; - double t; - char func[256]; - int ret; - int usecs; - - /* can't plot initcall when disabled or in relative mode */ - if (!initcall || relative) { - kcount = 0; - return; - } - - if (!count_only) { - svg("<!-- initcall -->\n"); - - svg("<text class=\"t2\" x=\"5\" y=\"-15\">Kernel init threads</text>\n"); - /* surrounding box */ - svg_graph_box(kcount); - } - - kcount = 0; - - /* - * Initcall graphing - parses dmesg buffer and displays kernel threads - * This somewhat uses the same methods and scaling to show processes - * but looks a lot simpler. It's overlaid entirely onto the PS graph - * when appropriate. - */ - - f = popen("dmesg", "r"); - if (!f) - return; - - while (!feof(f)) { - int c; - int z = 0; - char l[256]; - - if (fgets(l, sizeof(l) - 1, f) == NULL) - continue; - - c = sscanf(l, "[%lf] initcall %s %*s %d %*s %d %*s", - &t, func, &ret, &usecs); - if (c != 4) { - /* also parse initcalls done by module loading */ - c = sscanf(l, "[%lf] initcall %s %*s %*s %d %*s %d %*s", - &t, func, &ret, &usecs); - if (c != 4) - continue; - } - - /* chop the +0xXX/0xXX stuff */ - while(func[z] != '+') - z++; - func[z] = 0; - - if (count_only) { - /* filter out irrelevant stuff */ - if (usecs >= 1000) - kcount++; - continue; - } - - svg("<!-- thread=\"%s\" time=\"%.3f\" elapsed=\"%d\" result=\"%d\" -->\n", - func, t, usecs, ret); - - if (usecs < 1000) - continue; - - /* rect */ - svg(" <rect class=\"krnl\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", - time_to_graph(t - (usecs / 1000000.0)), - ps_to_graph(kcount), - time_to_graph(usecs / 1000000.0), - ps_to_graph(1)); - - /* label */ - svg(" <text x=\"%.03f\" y=\"%.03f\">%s <tspan class=\"run\">%.03fs</tspan></text>\n", - time_to_graph(t - (usecs / 1000000.0)) + 5, - ps_to_graph(kcount) + 15, - func, - usecs / 1000000.0); - - kcount++; - } - - fclose(f); + FILE *f; + double t; + char func[256]; + int ret; + int usecs; + + /* can't plot initcall when disabled or in relative mode */ + if (!initcall || relative) { + kcount = 0; + return; + } + + if (!count_only) { + svg("<!-- initcall -->\n"); + + svg("<text class=\"t2\" x=\"5\" y=\"-15\">Kernel init threads</text>\n"); + /* surrounding box */ + svg_graph_box(kcount); + } + + kcount = 0; + + /* + * Initcall graphing - parses dmesg buffer and displays kernel threads + * This somewhat uses the same methods and scaling to show processes + * but looks a lot simpler. It's overlaid entirely onto the PS graph + * when appropriate. + */ + + f = popen("dmesg", "r"); + if (!f) + return; + + while (!feof(f)) { + int c; + int z = 0; + char l[256]; + + if (fgets(l, sizeof(l) - 1, f) == NULL) + continue; + + c = sscanf(l, "[%lf] initcall %s %*s %d %*s %d %*s", + &t, func, &ret, &usecs); + if (c != 4) { + /* also parse initcalls done by module loading */ + c = sscanf(l, "[%lf] initcall %s %*s %*s %d %*s %d %*s", + &t, func, &ret, &usecs); + if (c != 4) + continue; + } + + /* chop the +0xXX/0xXX stuff */ + while(func[z] != '+') + z++; + func[z] = 0; + + if (count_only) { + /* filter out irrelevant stuff */ + if (usecs >= 1000) + kcount++; + continue; + } + + svg("<!-- thread=\"%s\" time=\"%.3f\" elapsed=\"%d\" result=\"%d\" -->\n", + func, t, usecs, ret); + + if (usecs < 1000) + continue; + + /* rect */ + svg(" <rect class=\"krnl\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", + time_to_graph(t - (usecs / 1000000.0)), + ps_to_graph(kcount), + time_to_graph(usecs / 1000000.0), + ps_to_graph(1)); + + /* label */ + svg(" <text x=\"%.03f\" y=\"%.03f\">%s <tspan class=\"run\">%.03fs</tspan></text>\n", + time_to_graph(t - (usecs / 1000000.0)) + 5, + ps_to_graph(kcount) + 15, + func, + usecs / 1000000.0); + + kcount++; + } + + fclose(f); } static void svg_ps_bars(void) { - struct ps_struct *ps; - int i = 0; - int j = 0; - int w; - int pid; - - svg("<!-- Process graph -->\n"); - - svg("<text class=\"t2\" x=\"5\" y=\"-15\">Processes</text>\n"); - - /* surrounding box */ - svg_graph_box(pcount); - - /* pass 2 - ps boxes */ - ps = ps_first; - while ((ps = get_next_ps(ps))) { - double starttime; - int t; - - if (!ps) - continue; - - /* leave some trace of what we actually filtered etc. */ - svg("<!-- %s [%i] ppid=%i runtime=%.03fs -->\n", ps->name, ps->pid, - ps->ppid, ps->total); - - /* it would be nice if we could use exec_start from /proc/pid/sched, - * but it's unreliable and gives bogus numbers */ - starttime = sampletime[ps->first]; - - if (!ps_filter(ps)) { - /* remember where _to_ our children need to draw a line */ - ps->pos_x = time_to_graph(starttime - graph_start); - ps->pos_y = ps_to_graph(j+1); /* bottom left corner */ - } else { - /* hook children to our parent coords instead */ - ps->pos_x = ps->parent->pos_x; - ps->pos_y = ps->parent->pos_y; - - /* if this is the last child, we might still need to draw a connecting line */ - if ((!ps->next) && (ps->parent)) - svg(" <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n", - ps->parent->pos_x, - ps_to_graph(j-1) + 10.0, /* whee, use the last value here */ - ps->parent->pos_x, - ps->parent->pos_y); - continue; - } - - svg(" <rect class=\"ps\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", - time_to_graph(starttime - graph_start), - ps_to_graph(j), - time_to_graph(sampletime[ps->last] - starttime), - ps_to_graph(1)); - - /* paint cpu load over these */ - for (t = ps->first + 1; t < ps->last; t++) { - double rt, prt; - double wt, wrt; - - /* calculate over interval */ - rt = ps->sample[t].runtime - ps->sample[t-1].runtime; - wt = ps->sample[t].waittime - ps->sample[t-1].waittime; - - prt = (rt / 1000000000) / (sampletime[t] - sampletime[t-1]); - wrt = (wt / 1000000000) / (sampletime[t] - sampletime[t-1]); - - /* this can happen if timekeeping isn't accurate enough */ - if (prt > 1.0) - prt = 1.0; - if (wrt > 1.0) - wrt = 1.0; - - if ((prt < 0.1) && (wrt < 0.1)) /* =~ 26 (color threshold) */ - continue; - - svg(" <rect class=\"wait\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", - time_to_graph(sampletime[t - 1] - graph_start), - ps_to_graph(j), - time_to_graph(sampletime[t] - sampletime[t - 1]), - ps_to_graph(wrt)); - - /* draw cpu over wait - TODO figure out how/why run + wait > interval */ - svg(" <rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", - time_to_graph(sampletime[t - 1] - graph_start), - ps_to_graph(j + (1.0 - prt)), - time_to_graph(sampletime[t] - sampletime[t - 1]), - ps_to_graph(prt)); - } - - /* determine where to display the process name */ - if (sampletime[ps->last] - sampletime[ps->first] < 1.5) - /* too small to fit label inside the box */ - w = ps->last; - else - w = ps->first; - - /* text label of process name */ - svg(" <text x=\"%.03f\" y=\"%.03f\">%s [%i] <tspan class=\"run\">%.03fs</tspan></text>\n", - time_to_graph(sampletime[w] - graph_start) + 5.0, - ps_to_graph(j) + 14.0, - ps->name, - ps->pid, - (ps->sample[ps->last].runtime - ps->sample[ps->first].runtime) / 1000000000.0); - /* paint lines to the parent process */ - if (ps->parent) { - /* horizontal part */ - svg(" <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n", - time_to_graph(starttime - graph_start), - ps_to_graph(j) + 10.0, - ps->parent->pos_x, - ps_to_graph(j) + 10.0); - - /* one vertical line connecting all the horizontal ones up */ - if (!ps->next) - svg(" <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n", - ps->parent->pos_x, - ps_to_graph(j) + 10.0, - ps->parent->pos_x, - ps->parent->pos_y); - } - - j++; /* count boxes */ - - svg("\n"); - } - - /* last pass - determine when idle */ - pid = getpid(); - /* make sure we start counting from the point where we actually have - * data: assume that bootchart's first sample is when data started - */ - ps = ps_first; - while (ps->next_ps) { - ps = ps->next_ps; - if (ps->pid == pid) - break; - } - - for (i = ps->first; i < samples - (hz / 2); i++) { - double crt; - double brt; - int c; - - /* subtract bootchart cpu utilization from total */ - crt = 0.0; - for (c = 0; c < cpus; c++) - crt += cpustat[c].sample[i + ((int)hz / 2)].runtime - cpustat[c].sample[i].runtime; - brt = ps->sample[i + ((int)hz / 2)].runtime - ps->sample[i].runtime; - - /* - * our definition of "idle": - * - * if for (hz / 2) we've used less CPU than (interval / 2) ... - * defaults to 4.0%, which experimentally, is where atom idles - */ - if ((crt - brt) < (interval / 2.0)) { - idletime = sampletime[i] - graph_start; - svg("\n<!-- idle detected at %.03f seconds -->\n", - idletime); - svg("<line class=\"idle\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n", - time_to_graph(idletime), - -scale_y, - time_to_graph(idletime), - ps_to_graph(pcount) + scale_y); - svg("<text class=\"idle\" x=\"%.03f\" y=\"%.03f\">%.01fs</text>\n", - time_to_graph(idletime) + 5.0, - ps_to_graph(pcount) + scale_y, - idletime); - break; - } - } + struct ps_struct *ps; + int i = 0; + int j = 0; + int w; + int pid; + + svg("<!-- Process graph -->\n"); + + svg("<text class=\"t2\" x=\"5\" y=\"-15\">Processes</text>\n"); + + /* surrounding box */ + svg_graph_box(pcount); + + /* pass 2 - ps boxes */ + ps = ps_first; + while ((ps = get_next_ps(ps))) { + double starttime; + int t; + + if (!ps) + continue; + + /* leave some trace of what we actually filtered etc. */ + svg("<!-- %s [%i] ppid=%i runtime=%.03fs -->\n", ps->name, ps->pid, + ps->ppid, ps->total); + + /* it would be nice if we could use exec_start from /proc/pid/sched, + * but it's unreliable and gives bogus numbers */ + starttime = sampletime[ps->first]; + + if (!ps_filter(ps)) { + /* remember where _to_ our children need to draw a line */ + ps->pos_x = time_to_graph(starttime - graph_start); + ps->pos_y = ps_to_graph(j+1); /* bottom left corner */ + } else { + /* hook children to our parent coords instead */ + ps->pos_x = ps->parent->pos_x; + ps->pos_y = ps->parent->pos_y; + + /* if this is the last child, we might still need to draw a connecting line */ + if ((!ps->next) && (ps->parent)) + svg(" <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n", + ps->parent->pos_x, + ps_to_graph(j-1) + 10.0, /* whee, use the last value here */ + ps->parent->pos_x, + ps->parent->pos_y); + continue; + } + + svg(" <rect class=\"ps\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", + time_to_graph(starttime - graph_start), + ps_to_graph(j), + time_to_graph(sampletime[ps->last] - starttime), + ps_to_graph(1)); + + /* paint cpu load over these */ + for (t = ps->first + 1; t < ps->last; t++) { + double rt, prt; + double wt, wrt; + + /* calculate over interval */ + rt = ps->sample[t].runtime - ps->sample[t-1].runtime; + wt = ps->sample[t].waittime - ps->sample[t-1].waittime; + + prt = (rt / 1000000000) / (sampletime[t] - sampletime[t-1]); + wrt = (wt / 1000000000) / (sampletime[t] - sampletime[t-1]); + + /* this can happen if timekeeping isn't accurate enough */ + if (prt > 1.0) + prt = 1.0; + if (wrt > 1.0) + wrt = 1.0; + + if ((prt < 0.1) && (wrt < 0.1)) /* =~ 26 (color threshold) */ + continue; + + svg(" <rect class=\"wait\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", + time_to_graph(sampletime[t - 1] - graph_start), + ps_to_graph(j), + time_to_graph(sampletime[t] - sampletime[t - 1]), + ps_to_graph(wrt)); + + /* draw cpu over wait - TODO figure out how/why run + wait > interval */ + svg(" <rect class=\"cpu\" x=\"%.03f\" y=\"%.03f\" width=\"%.03f\" height=\"%.03f\" />\n", + time_to_graph(sampletime[t - 1] - graph_start), + ps_to_graph(j + (1.0 - prt)), + time_to_graph(sampletime[t] - sampletime[t - 1]), + ps_to_graph(prt)); + } + + /* determine where to display the process name */ + if (sampletime[ps->last] - sampletime[ps->first] < 1.5) + /* too small to fit label inside the box */ + w = ps->last; + else + w = ps->first; + + /* text label of process name */ + svg(" <text x=\"%.03f\" y=\"%.03f\">%s [%i] <tspan class=\"run\">%.03fs</tspan></text>\n", + time_to_graph(sampletime[w] - graph_start) + 5.0, + ps_to_graph(j) + 14.0, + ps->name, + ps->pid, + (ps->sample[ps->last].runtime - ps->sample[ps->first].runtime) / 1000000000.0); + /* paint lines to the parent process */ + if (ps->parent) { + /* horizontal part */ + svg(" <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n", + time_to_graph(starttime - graph_start), + ps_to_graph(j) + 10.0, + ps->parent->pos_x, + ps_to_graph(j) + 10.0); + + /* one vertical line connecting all the horizontal ones up */ + if (!ps->next) + svg(" <line class=\"dot\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n", + ps->parent->pos_x, + ps_to_graph(j) + 10.0, + ps->parent->pos_x, + ps->parent->pos_y); + } + + j++; /* count boxes */ + + svg("\n"); + } + + /* last pass - determine when idle */ + pid = getpid(); + /* make sure we start counting from the point where we actually have + * data: assume that bootchart's first sample is when data started + */ + ps = ps_first; + while (ps->next_ps) { + ps = ps->next_ps; + if (ps->pid == pid) + break; + } + + for (i = ps->first; i < samples - (hz / 2); i++) { + double crt; + double brt; + int c; + + /* subtract bootchart cpu utilization from total */ + crt = 0.0; + for (c = 0; c < cpus; c++) + crt += cpustat[c].sample[i + ((int)hz / 2)].runtime - cpustat[c].sample[i].runtime; + brt = ps->sample[i + ((int)hz / 2)].runtime - ps->sample[i].runtime; + + /* + * our definition of "idle": + * + * if for (hz / 2) we've used less CPU than (interval / 2) ... + * defaults to 4.0%, which experimentally, is where atom idles + */ + if ((crt - brt) < (interval / 2.0)) { + idletime = sampletime[i] - graph_start; + svg("\n<!-- idle detected at %.03f seconds -->\n", + idletime); + svg("<line class=\"idle\" x1=\"%.03f\" y1=\"%.03f\" x2=\"%.03f\" y2=\"%.03f\" />\n", + time_to_graph(idletime), + -scale_y, + time_to_graph(idletime), + ps_to_graph(pcount) + scale_y); + svg("<text class=\"idle\" x=\"%.03f\" y=\"%.03f\">%.01fs</text>\n", + time_to_graph(idletime) + 5.0, + ps_to_graph(pcount) + scale_y, + idletime); + break; + } + } } static void svg_top_ten_cpu(void) { - struct ps_struct *top[10]; - struct ps_struct emptyps; - struct ps_struct *ps; - int n, m; - - memset(&emptyps, 0, sizeof(struct ps_struct)); - for (n=0; n < 10; n++) - top[n] = &emptyps; - - /* walk all ps's and setup ptrs */ - ps = ps_first; - while ((ps = get_next_ps(ps))) { - for (n = 0; n < 10; n++) { - if (ps->total <= top[n]->total) - continue; - /* cascade insert */ - for (m = 9; m > n; m--) - top[m] = top[m-1]; - top[n] = ps; - break; - } - } - - svg("<text class=\"t2\" x=\"20\" y=\"0\">Top CPU consumers:</text>\n"); - for (n = 0; n < 10; n++) - svg("<text class=\"t3\" x=\"20\" y=\"%d\">%3.03fs - %s[%d]</text>\n", - 20 + (n * 13), - top[n]->total, - top[n]->name, - top[n]->pid); + struct ps_struct *top[10]; + struct ps_struct emptyps; + struct ps_struct *ps; + int n, m; + + memset(&emptyps, 0, sizeof(struct ps_struct)); + for (n=0; n < 10; n++) + top[n] = &emptyps; + + /* walk all ps's and setup ptrs */ + ps = ps_first; + while ((ps = get_next_ps(ps))) { + for (n = 0; n < 10; n++) { + if (ps->total <= top[n]->total) + continue; + /* cascade insert */ + for (m = 9; m > n; m--) + top[m] = top[m-1]; + top[n] = ps; + break; + } + } + + svg("<text class=\"t2\" x=\"20\" y=\"0\">Top CPU consumers:</text>\n"); + for (n = 0; n < 10; n++) + svg("<text class=\"t3\" x=\"20\" y=\"%d\">%3.03fs - %s[%d]</text>\n", + 20 + (n * 13), + top[n]->total, + top[n]->name, + top[n]->pid); } static void svg_top_ten_pss(void) { - struct ps_struct *top[10]; - struct ps_struct emptyps; - struct ps_struct *ps; - int n, m; - - memset(&emptyps, 0, sizeof(struct ps_struct)); - for (n=0; n < 10; n++) - top[n] = &emptyps; - - /* walk all ps's and setup ptrs */ - ps = ps_first; - while ((ps = get_next_ps(ps))) { - for (n = 0; n < 10; n++) { - if (ps->pss_max <= top[n]->pss_max) - continue; - /* cascade insert */ - for (m = 9; m > n; m--) - top[m] = top[m-1]; - top[n] = ps; - break; - } - } - - svg("<text class=\"t2\" x=\"20\" y=\"0\">Top PSS consumers:</text>\n"); - for (n = 0; n < 10; n++) - svg("<text class=\"t3\" x=\"20\" y=\"%d\">%dK - %s[%d]</text>\n", - 20 + (n * 13), - top[n]->pss_max, - top[n]->name, - top[n]->pid); + struct ps_struct *top[10]; + struct ps_struct emptyps; + struct ps_struct *ps; + int n, m; + + memset(&emptyps, 0, sizeof(struct ps_struct)); + for (n=0; n < 10; n++) + top[n] = &emptyps; + + /* walk all ps's and setup ptrs */ + ps = ps_first; + while ((ps = get_next_ps(ps))) { + for (n = 0; n < 10; n++) { + if (ps->pss_max <= top[n]->pss_max) + continue; + /* cascade insert */ + for (m = 9; m > n; m--) + top[m] = top[m-1]; + top[n] = ps; + break; + } + } + + svg("<text class=\"t2\" x=\"20\" y=\"0\">Top PSS consumers:</text>\n"); + for (n = 0; n < 10; n++) + svg("<text class=\"t3\" x=\"20\" y=\"%d\">%dK - %s[%d]</text>\n", + 20 + (n * 13), + top[n]->pss_max, + top[n]->name, + top[n]->pid); } void svg_do(void) { - struct ps_struct *ps; - - memset(&str, 0, sizeof(str)); - - ps = ps_first; - - /* count initcall thread count first */ - svg_do_initcall(1); - ksize = (kcount ? ps_to_graph(kcount) + (scale_y * 2) : 0); - - /* then count processes */ - while ((ps = get_next_ps(ps))) { - if (!ps_filter(ps)) - pcount++; - else - pfiltered++; - } - psize = ps_to_graph(pcount) + (scale_y * 2); - - esize = (entropy ? scale_y * 7 : 0); - - /* after this, we can draw the header with proper sizing */ - svg_header(); - - svg("<g transform=\"translate(10,400)\">\n"); - svg_io_bi_bar(); - svg("</g>\n\n"); - - svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 7.0)); - svg_io_bo_bar(); - svg("</g>\n\n"); - - svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 14.0)); - svg_cpu_bar(); - svg("</g>\n\n"); - - svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 21.0)); - svg_wait_bar(); - svg("</g>\n\n"); - - if (kcount) { - svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0)); - svg_do_initcall(0); - svg("</g>\n\n"); - } - - svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0) + ksize); - svg_ps_bars(); - svg("</g>\n\n"); - - svg("<g transform=\"translate(10, 0)\">\n"); - svg_title(); - svg("</g>\n\n"); - - svg("<g transform=\"translate(10,200)\">\n"); - svg_top_ten_cpu(); - svg("</g>\n\n"); - - if (entropy) { - svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0) + ksize + psize); - svg_entropy_bar(); - svg("</g>\n\n"); - } - - if (pss) { - svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0) + ksize + psize + esize); - svg_pss_graph(); - svg("</g>\n\n"); - - svg("<g transform=\"translate(410,200)\">\n"); - svg_top_ten_pss(); - svg("</g>\n\n"); - } - - /* svg footer */ - svg("\n</svg>\n"); + struct ps_struct *ps; + + memset(&str, 0, sizeof(str)); + + ps = ps_first; + + /* count initcall thread count first */ + svg_do_initcall(1); + ksize = (kcount ? ps_to_graph(kcount) + (scale_y * 2) : 0); + + /* then count processes */ + while ((ps = get_next_ps(ps))) { + if (!ps_filter(ps)) + pcount++; + else + pfiltered++; + } + psize = ps_to_graph(pcount) + (scale_y * 2); + + esize = (entropy ? scale_y * 7 : 0); + + /* after this, we can draw the header with proper sizing */ + svg_header(); + + svg("<g transform=\"translate(10,400)\">\n"); + svg_io_bi_bar(); + svg("</g>\n\n"); + + svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 7.0)); + svg_io_bo_bar(); + svg("</g>\n\n"); + + svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 14.0)); + svg_cpu_bar(); + svg("</g>\n\n"); + + svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 21.0)); + svg_wait_bar(); + svg("</g>\n\n"); + + if (kcount) { + svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0)); + svg_do_initcall(0); + svg("</g>\n\n"); + } + + svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0) + ksize); + svg_ps_bars(); + svg("</g>\n\n"); + + svg("<g transform=\"translate(10, 0)\">\n"); + svg_title(); + svg("</g>\n\n"); + + svg("<g transform=\"translate(10,200)\">\n"); + svg_top_ten_cpu(); + svg("</g>\n\n"); + + if (entropy) { + svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0) + ksize + psize); + svg_entropy_bar(); + svg("</g>\n\n"); + } + + if (pss) { + svg("<g transform=\"translate(10,%.03f)\">\n", 400.0 + (scale_y * 28.0) + ksize + psize + esize); + svg_pss_graph(); + svg("</g>\n\n"); + + svg("<g transform=\"translate(410,200)\">\n"); + svg_top_ten_pss(); + svg("</g>\n\n"); + } + + /* svg footer */ + svg("\n</svg>\n"); } |