summaryrefslogtreecommitdiff
path: root/src/resolve/resolved-dns-server.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/resolve/resolved-dns-server.c')
-rw-r--r--src/resolve/resolved-dns-server.c354
1 files changed, 298 insertions, 56 deletions
diff --git a/src/resolve/resolved-dns-server.c b/src/resolve/resolved-dns-server.c
index d565f99c09..43ec92f4f0 100644
--- a/src/resolve/resolved-dns-server.c
+++ b/src/resolve/resolved-dns-server.c
@@ -19,6 +19,8 @@
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
+#include <sd-messages.h>
+
#include "alloc-util.h"
#include "resolved-dns-server.h"
#include "resolved-resolv-conf.h"
@@ -68,8 +70,8 @@ int dns_server_new(
s->n_ref = 1;
s->manager = m;
- s->verified_features = _DNS_SERVER_FEATURE_LEVEL_INVALID;
- s->possible_features = DNS_SERVER_FEATURE_LEVEL_BEST;
+ s->verified_feature_level = _DNS_SERVER_FEATURE_LEVEL_INVALID;
+ s->possible_feature_level = DNS_SERVER_FEATURE_LEVEL_BEST;
s->features_grace_period_usec = DNS_SERVER_FEATURE_GRACE_PERIOD_MIN_USEC;
s->received_udp_packet_max = DNS_PACKET_UNICAST_SIZE_MAX;
s->type = type;
@@ -135,6 +137,7 @@ DnsServer* dns_server_unref(DnsServer *s) {
if (s->n_ref > 0)
return NULL;
+ free(s->server_string);
free(s);
return NULL;
}
@@ -224,43 +227,75 @@ void dns_server_move_back_and_unmark(DnsServer *s) {
}
}
-void dns_server_packet_received(DnsServer *s, DnsServerFeatureLevel features, usec_t rtt, size_t size) {
+static void dns_server_verified(DnsServer *s, DnsServerFeatureLevel level) {
assert(s);
- if (features == DNS_SERVER_FEATURE_LEVEL_LARGE) {
- /* even if we successfully receive a reply to a request announcing
- support for large packets, that does not mean we can necessarily
- receive large packets. */
- if (s->verified_features < DNS_SERVER_FEATURE_LEVEL_LARGE - 1) {
- s->verified_features = DNS_SERVER_FEATURE_LEVEL_LARGE - 1;
- assert_se(sd_event_now(s->manager->event, clock_boottime_or_monotonic(), &s->verified_usec) >= 0);
- }
- } else if (s->verified_features < features) {
- s->verified_features = features;
- assert_se(sd_event_now(s->manager->event, clock_boottime_or_monotonic(), &s->verified_usec) >= 0);
+ if (s->verified_feature_level > level)
+ return;
+
+ if (s->verified_feature_level != level) {
+ log_debug("Verified we get a response at feature level %s from DNS server %s.",
+ dns_server_feature_level_to_string(level),
+ dns_server_string(s));
+ s->verified_feature_level = level;
}
- if (s->possible_features == features)
- s->n_failed_attempts = 0;
+ assert_se(sd_event_now(s->manager->event, clock_boottime_or_monotonic(), &s->verified_usec) >= 0);
+}
+
+void dns_server_packet_received(DnsServer *s, int protocol, DnsServerFeatureLevel level, usec_t rtt, size_t size) {
+ assert(s);
+
+ if (protocol == IPPROTO_UDP) {
+ if (s->possible_feature_level == level)
+ s->n_failed_udp = 0;
+
+ /* If the RRSIG data is missing, then we can only validate EDNS0 at max */
+ if (s->packet_rrsig_missing && level >= DNS_SERVER_FEATURE_LEVEL_DO)
+ level = DNS_SERVER_FEATURE_LEVEL_DO - 1;
+
+ /* If the OPT RR got lost, then we can only validate UDP at max */
+ if (s->packet_bad_opt && level >= DNS_SERVER_FEATURE_LEVEL_EDNS0)
+ level = DNS_SERVER_FEATURE_LEVEL_EDNS0 - 1;
+
+ /* Even if we successfully receive a reply to a request announcing support for large packets,
+ that does not mean we can necessarily receive large packets. */
+ if (level == DNS_SERVER_FEATURE_LEVEL_LARGE)
+ level = DNS_SERVER_FEATURE_LEVEL_LARGE - 1;
+
+ } else if (protocol == IPPROTO_TCP) {
+
+ if (s->possible_feature_level == level)
+ s->n_failed_tcp = 0;
+
+ /* Successful TCP connections are only useful to verify the TCP feature level. */
+ level = DNS_SERVER_FEATURE_LEVEL_TCP;
+ }
+
+ dns_server_verified(s, level);
/* Remember the size of the largest UDP packet we received from a server,
we know that we can always announce support for packets with at least
this size. */
- if (s->received_udp_packet_max < size)
+ if (protocol == IPPROTO_UDP && s->received_udp_packet_max < size)
s->received_udp_packet_max = size;
if (s->max_rtt < rtt) {
s->max_rtt = rtt;
- s->resend_timeout = MIN(MAX(DNS_TIMEOUT_MIN_USEC, s->max_rtt * 2), DNS_TIMEOUT_MAX_USEC);
+ s->resend_timeout = CLAMP(s->max_rtt * 2, DNS_TIMEOUT_MIN_USEC, DNS_TIMEOUT_MAX_USEC);
}
}
-void dns_server_packet_lost(DnsServer *s, DnsServerFeatureLevel features, usec_t usec) {
+void dns_server_packet_lost(DnsServer *s, int protocol, DnsServerFeatureLevel level, usec_t usec) {
assert(s);
assert(s->manager);
- if (s->possible_features == features)
- s->n_failed_attempts ++;
+ if (s->possible_feature_level == level) {
+ if (protocol == IPPROTO_UDP)
+ s->n_failed_udp ++;
+ else if (protocol == IPPROTO_TCP)
+ s->n_failed_tcp ++;
+ }
if (s->resend_timeout > usec)
return;
@@ -268,14 +303,52 @@ void dns_server_packet_lost(DnsServer *s, DnsServerFeatureLevel features, usec_t
s->resend_timeout = MIN(s->resend_timeout * 2, DNS_TIMEOUT_MAX_USEC);
}
-void dns_server_packet_failed(DnsServer *s, DnsServerFeatureLevel features) {
+void dns_server_packet_failed(DnsServer *s, DnsServerFeatureLevel level) {
assert(s);
- assert(s->manager);
- if (s->possible_features != features)
+ /* Invoked whenever we get a FORMERR, SERVFAIL or NOTIMP rcode from a server. */
+
+ if (s->possible_feature_level != level)
+ return;
+
+ s->packet_failed = true;
+}
+
+void dns_server_packet_truncated(DnsServer *s, DnsServerFeatureLevel level) {
+ assert(s);
+
+ /* Invoked whenever we get a packet with TC bit set. */
+
+ if (s->possible_feature_level != level)
+ return;
+
+ s->packet_truncated = true;
+}
+
+void dns_server_packet_rrsig_missing(DnsServer *s, DnsServerFeatureLevel level) {
+ assert(s);
+
+ if (level < DNS_SERVER_FEATURE_LEVEL_DO)
+ return;
+
+ /* If the RRSIG RRs are missing, we have to downgrade what we previously verified */
+ if (s->verified_feature_level >= DNS_SERVER_FEATURE_LEVEL_DO)
+ s->verified_feature_level = DNS_SERVER_FEATURE_LEVEL_DO-1;
+
+ s->packet_rrsig_missing = true;
+}
+
+void dns_server_packet_bad_opt(DnsServer *s, DnsServerFeatureLevel level) {
+ assert(s);
+
+ if (level < DNS_SERVER_FEATURE_LEVEL_EDNS0)
return;
- s->n_failed_attempts = (unsigned) -1;
+ /* If the OPT RR got lost, we have to downgrade what we previously verified */
+ if (s->verified_feature_level >= DNS_SERVER_FEATURE_LEVEL_EDNS0)
+ s->verified_feature_level = DNS_SERVER_FEATURE_LEVEL_EDNS0-1;
+
+ s->packet_bad_opt = true;
}
static bool dns_server_grace_period_expired(DnsServer *s) {
@@ -297,35 +370,199 @@ static bool dns_server_grace_period_expired(DnsServer *s) {
return true;
}
-DnsServerFeatureLevel dns_server_possible_features(DnsServer *s) {
+static void dns_server_reset_counters(DnsServer *s) {
assert(s);
- if (s->possible_features != DNS_SERVER_FEATURE_LEVEL_BEST &&
+ s->n_failed_udp = 0;
+ s->n_failed_tcp = 0;
+ s->packet_failed = false;
+ s->packet_truncated = false;
+ s->verified_usec = 0;
+
+ /* Note that we do not reset s->packet_bad_opt and s->packet_rrsig_missing here. We reset them only when the
+ * grace period ends, but not when lowering the possible feature level, as a lower level feature level should
+ * not make RRSIGs appear or OPT appear, but rather make them disappear. If the reappear anyway, then that's
+ * indication for a differently broken OPT/RRSIG implementation, and we really don't want to support that
+ * either.
+ *
+ * This is particularly important to deal with certain Belkin routers which break OPT for certain lookups (A),
+ * but pass traffic through for others (AAAA). If we detect the broken behaviour on one lookup we should not
+ * reenable it for another, because we cannot validate things anyway, given that the RRSIG/OPT data will be
+ * incomplete. */
+}
+
+DnsServerFeatureLevel dns_server_possible_feature_level(DnsServer *s) {
+ assert(s);
+
+ if (s->possible_feature_level != DNS_SERVER_FEATURE_LEVEL_BEST &&
dns_server_grace_period_expired(s)) {
- _cleanup_free_ char *ip = NULL;
-
- s->possible_features = DNS_SERVER_FEATURE_LEVEL_BEST;
- s->n_failed_attempts = 0;
- s->verified_usec = 0;
-
- in_addr_to_string(s->family, &s->address, &ip);
- log_info("Grace period over, resuming full feature set for DNS server %s", strna(ip));
- } else if (s->possible_features <= s->verified_features)
- s->possible_features = s->verified_features;
- else if (s->n_failed_attempts >= DNS_SERVER_FEATURE_RETRY_ATTEMPTS &&
- s->possible_features > DNS_SERVER_FEATURE_LEVEL_WORST) {
- _cleanup_free_ char *ip = NULL;
-
- s->possible_features --;
- s->n_failed_attempts = 0;
- s->verified_usec = 0;
-
- in_addr_to_string(s->family, &s->address, &ip);
- log_warning("Using degraded feature set (%s) for DNS server %s",
- dns_server_feature_level_to_string(s->possible_features), strna(ip));
+
+ s->possible_feature_level = DNS_SERVER_FEATURE_LEVEL_BEST;
+
+ dns_server_reset_counters(s);
+
+ s->packet_bad_opt = false;
+ s->packet_rrsig_missing = false;
+
+ log_info("Grace period over, resuming full feature set (%s) for DNS server %s.",
+ dns_server_feature_level_to_string(s->possible_feature_level),
+ dns_server_string(s));
+
+ } else if (s->possible_feature_level <= s->verified_feature_level)
+ s->possible_feature_level = s->verified_feature_level;
+ else {
+ DnsServerFeatureLevel p = s->possible_feature_level;
+
+ if (s->n_failed_tcp >= DNS_SERVER_FEATURE_RETRY_ATTEMPTS &&
+ s->possible_feature_level == DNS_SERVER_FEATURE_LEVEL_TCP) {
+
+ /* We are at the TCP (lowest) level, and we tried a couple of TCP connections, and it didn't
+ * work. Upgrade back to UDP again. */
+ log_debug("Reached maximum number of failed TCP connection attempts, trying UDP again...");
+ s->possible_feature_level = DNS_SERVER_FEATURE_LEVEL_UDP;
+
+ } else if (s->packet_bad_opt &&
+ s->possible_feature_level >= DNS_SERVER_FEATURE_LEVEL_EDNS0) {
+
+ /* A reply to one of our EDNS0 queries didn't carry a valid OPT RR, then downgrade to below
+ * EDNS0 levels. After all, some records generate different responses with and without OPT RR
+ * in the request. Example:
+ * https://open.nlnetlabs.nl/pipermail/dnssec-trigger/2014-November/000376.html */
+
+ log_debug("Server doesn't support EDNS(0) properly, downgrading feature level...");
+ s->possible_feature_level = DNS_SERVER_FEATURE_LEVEL_UDP;
+
+ } else if (s->packet_rrsig_missing &&
+ s->possible_feature_level >= DNS_SERVER_FEATURE_LEVEL_DO) {
+
+ /* RRSIG data was missing on a EDNS0 packet with DO bit set. This means the server doesn't
+ * augment responses with DNSSEC RRs. If so, let's better not ask the server for it anymore,
+ * after all some servers generate different replies depending if an OPT RR is in the query or
+ * not. */
+
+ log_debug("Detected server responses lack RRSIG records, downgrading feature level...");
+ s->possible_feature_level = DNS_SERVER_FEATURE_LEVEL_EDNS0;
+
+ } else if (s->n_failed_udp >= DNS_SERVER_FEATURE_RETRY_ATTEMPTS &&
+ s->possible_feature_level >= DNS_SERVER_FEATURE_LEVEL_UDP) {
+
+ /* We lost too many UDP packets in a row, and are on a feature level of UDP or higher. If the
+ * packets are lost, maybe the server cannot parse them, hence downgrading sounds like a good
+ * idea. We might downgrade all the way down to TCP this way. */
+
+ log_debug("Lost too many UDP packets, downgrading feature level...");
+ s->possible_feature_level--;
+
+ } else if (s->packet_failed &&
+ s->possible_feature_level > DNS_SERVER_FEATURE_LEVEL_UDP) {
+
+ /* We got a failure packet, and are at a feature level above UDP. Note that in this case we
+ * downgrade no further than UDP, under the assumption that a failure packet indicates an
+ * incompatible packet contents, but not a problem with the transport. */
+
+ log_debug("Got server failure, downgrading feature level...");
+ s->possible_feature_level--;
+
+ } else if (s->n_failed_tcp >= DNS_SERVER_FEATURE_RETRY_ATTEMPTS &&
+ s->packet_truncated &&
+ s->possible_feature_level > DNS_SERVER_FEATURE_LEVEL_UDP) {
+
+ /* We got too many TCP connection failures in a row, we had at least one truncated packet, and
+ * are on a feature level above UDP. By downgrading things and getting rid of DNSSEC or EDNS0
+ * data we hope to make the packet smaller, so that it still works via UDP given that TCP
+ * appears not to be a fallback. Note that if we are already at the lowest UDP level, we don't
+ * go further down, since that's TCP, and TCP failed too often after all. */
+
+ log_debug("Got too many failed TCP connection failures and truncated UDP packets, downgrading feature level...");
+ s->possible_feature_level--;
+ }
+
+ if (p != s->possible_feature_level) {
+
+ /* We changed the feature level, reset the counting */
+ dns_server_reset_counters(s);
+
+ log_warning("Using degraded feature set (%s) for DNS server %s.",
+ dns_server_feature_level_to_string(s->possible_feature_level),
+ dns_server_string(s));
+ }
}
- return s->possible_features;
+ return s->possible_feature_level;
+}
+
+int dns_server_adjust_opt(DnsServer *server, DnsPacket *packet, DnsServerFeatureLevel level) {
+ size_t packet_size;
+ bool edns_do;
+ int r;
+
+ assert(server);
+ assert(packet);
+ assert(packet->protocol == DNS_PROTOCOL_DNS);
+
+ /* Fix the OPT field in the packet to match our current feature level. */
+
+ r = dns_packet_truncate_opt(packet);
+ if (r < 0)
+ return r;
+
+ if (level < DNS_SERVER_FEATURE_LEVEL_EDNS0)
+ return 0;
+
+ edns_do = level >= DNS_SERVER_FEATURE_LEVEL_DO;
+
+ if (level >= DNS_SERVER_FEATURE_LEVEL_LARGE)
+ packet_size = DNS_PACKET_UNICAST_SIZE_LARGE_MAX;
+ else
+ packet_size = server->received_udp_packet_max;
+
+ return dns_packet_append_opt(packet, packet_size, edns_do, NULL);
+}
+
+const char *dns_server_string(DnsServer *server) {
+ assert(server);
+
+ if (!server->server_string)
+ (void) in_addr_to_string(server->family, &server->address, &server->server_string);
+
+ return strna(server->server_string);
+}
+
+bool dns_server_dnssec_supported(DnsServer *server) {
+ assert(server);
+
+ /* Returns whether the server supports DNSSEC according to what we know about it */
+
+ if (server->possible_feature_level < DNS_SERVER_FEATURE_LEVEL_DO)
+ return false;
+
+ if (server->packet_bad_opt)
+ return false;
+
+ if (server->packet_rrsig_missing)
+ return false;
+
+ /* DNSSEC servers need to support TCP properly (see RFC5966), if they don't, we assume DNSSEC is borked too */
+ if (server->n_failed_tcp >= DNS_SERVER_FEATURE_RETRY_ATTEMPTS)
+ return false;
+
+ return true;
+}
+
+void dns_server_warn_downgrade(DnsServer *server) {
+ assert(server);
+
+ if (server->warned_downgrade)
+ return;
+
+ log_struct(LOG_NOTICE,
+ LOG_MESSAGE_ID(SD_MESSAGE_DNSSEC_DOWNGRADE),
+ LOG_MESSAGE("Server %s does not support DNSSEC, downgrading to non-DNSSEC mode.", dns_server_string(server)),
+ "DNS_SERVER=%s", dns_server_string(server),
+ "DNS_SERVER_FEATURE_LEVEL=%s", dns_server_feature_level_to_string(server->possible_feature_level),
+ NULL);
+
+ server->warned_downgrade = true;
}
static void dns_server_hash_func(const void *p, struct siphash *state) {
@@ -419,12 +656,10 @@ DnsServer *manager_set_dns_server(Manager *m, DnsServer *s) {
if (m->current_dns_server == s)
return s;
- if (s) {
- _cleanup_free_ char *ip = NULL;
-
- in_addr_to_string(s->family, &s->address, &ip);
- log_info("Switching to system DNS server %s.", strna(ip));
- }
+ if (s)
+ log_info("Switching to %s DNS server %s.",
+ dns_server_type_to_string(s->type),
+ dns_server_string(s));
dns_server_unref(m->current_dns_server);
m->current_dns_server = dns_server_ref(s);
@@ -442,7 +677,7 @@ DnsServer *manager_get_dns_server(Manager *m) {
/* Try to read updates resolv.conf */
manager_read_resolv_conf(m);
- /* If no DNS server was chose so far, pick the first one */
+ /* If no DNS server was chosen so far, pick the first one */
if (!m->current_dns_server)
manager_set_dns_server(m, m->dns_servers);
@@ -490,6 +725,13 @@ void manager_next_dns_server(Manager *m) {
manager_set_dns_server(m, m->dns_servers);
}
+static const char* const dns_server_type_table[_DNS_SERVER_TYPE_MAX] = {
+ [DNS_SERVER_SYSTEM] = "system",
+ [DNS_SERVER_FALLBACK] = "fallback",
+ [DNS_SERVER_LINK] = "link",
+};
+DEFINE_STRING_TABLE_LOOKUP(dns_server_type, DnsServerType);
+
static const char* const dns_server_feature_level_table[_DNS_SERVER_FEATURE_LEVEL_MAX] = {
[DNS_SERVER_FEATURE_LEVEL_TCP] = "TCP",
[DNS_SERVER_FEATURE_LEVEL_UDP] = "UDP",