Age | Commit message (Collapse) | Author |
|
In order to add a name to a bus tracking object we need to do some bus
operations: we need to check if the name already exists and add match for it.
Both are synchronous bus calls. While processing those we need to make sure
that the tracking object is not dispatched yet, as it might still be empty, but
is not going to be empty for very long.
hence, block dispatching by removing the object from the dispatch queue while
adding it, and readding it on error.
|
|
When a bus connection is closed we dispatch all reply callbacks. Do so in a new
function if its own.
No behaviour changes.
|
|
|
|
Also, make major improvements to the an page in general.
|
|
|
|
It is useful for clients to be able to read the last CPU usage counter value of
a unit even if the unit is already terminated. Hence, before destroying a
cgroup's cgroup cache the last CPU usage counter and return it if the cgroup is
gone.
|
|
Make sure we return proper errors for types not understood yet.
|
|
Instead of ignoring empty strings retrieved via the bus, treat them as NULL, as
it's customary in systemd.
|
|
Let's make sure we can read the exit code/status properties exposed by PID 1
properly. Let's reuse the existing code for unsigned fields, as we just use it
to copy words around, and don't calculate it.
|
|
This adds two (privileged) bus calls Ref() and Unref() to the Unit interface.
The two calls may be used by clients to pin a unit into memory, so that various
runtime properties aren't flushed out by the automatic GC. This is necessary
to permit clients to race-freely acquire runtime results (such as process exit
status/code or accumulated CPU time) on successful service termination.
Ref() and Unref() are fully recursive, hence act like the usual reference
counting concept in C. Taking a reference is a privileged operation, as this
allows pinning units into memory which consumes resources.
Transient units may also gain a reference at the time of creation, via the new
AddRef property (that is only defined for transient units at the time of
creation).
|
|
And while ware at it, also drop some references to kdbus, and stop claiming
sd-bus wasn't stable yet. Also order man page references in the main sd-bus man
page alphabetically.
|
|
This adds an optional "recursive" counting mode to sd_bus_track. If enabled
adding the same name multiple times to an sd_bus_track object is counted
individually, so that it also has to be removed the same number of times before
it is gone again from the tracking object.
This functionality is useful for implementing local ref counted objects that
peers make take references on.
|
|
|
|
A lot of basic code wants to know the stack size, and it is safe if they do,
hence let's permit getrlimit() (but not setrlimit()) by default.
See: #3970
|
|
to prevent:
src/mount/mount-tool.c: In function ‘acquire_description’:
src/mount/mount-tool.c:728:24: warning: return makes integer from pointer without a cast [-Wint-conversion]
return NULL;
^~~~
warning.
Additionally we don't set Description property in a case when
arg_description is NULL.
|
|
https://bugs.freedesktop.org/show_bug.cgi?id=97433
|
|
|
|
When told to enable a template unit, and the DefaultInstance specified in that
unit was masked, we would do this. Such a unit cannot be started or loaded, so
reporting successful enabling is misleading and unexpected.
$ systemctl mask getty@tty1
Created symlink /etc/systemd/system/getty@tty1.service → /dev/null.
$ systemctl --root=/ enable getty@tty1
(unchanged)
Failed to enable unit, unit /etc/systemd/system/getty@tty1.service is masked.
$ systemctl --root=/ enable getty@
(before)
Created symlink /etc/systemd/system/getty.target.wants/getty@tty1.service → /usr/lib/systemd/system/getty@.service.
(now)
Failed to enable unit, unit /etc/systemd/system/getty@tty1.service is masked.
The same error is emitted for enable and preset. And an error is emmited, not a
warning, so the failure to enable DefaultInstance is treated the same as if the
instance was specified on the command line. I think that this makes most sense,
for most template units.
Fixes #2513.
|
|
Fixes #3922.
|
|
|
|
systemctl: kill all units specified on the command line, not just the…
|
|
|
|
|
|
After the call of the isatty() we check its result twice in the
open_terminal(). There are no sense to check result of isatty() that
it is less than zero and return -errno, because as described in
documentation:
isatty() returns 1 if fd is an open file descriptor referring to a
terminal; otherwise 0 is returned, and errno is set to indicate the
error.
So it can't be less than zero.
|
|
add a new tool for creating transient mount and automount units
|
|
Rework console color setup
|
|
Fix preset-all
|
|
Add documentation to #3924
|
|
(#3995)
As suggested:
https://github.com/systemd/systemd/pull/3958#issuecomment-240410958
Let's document that we try hard to pass system state from the initrd to the
host, and even compare the systemd binary paths.
|
|
Trivial fixes to udev and condition tests
|
|
This changes the semantics a bit: before, SYSTEMD_COLORS= would be treated as
"yes", same as SYSTEMD_COLORS=xxx and SYSTEMD_COLORS=1, and only
SYSTEMD_COLORS=0 would be treated as "no". Now, only valid booleans are treated
as "yes". This actually matches how $SYSTEMD_COLORS was announced in NEWS.
|
|
When started by the kernel, we are connected to the console, and we'll set TERM
properly to some value in fixup_environment(). We'll then enable or disable
colors based on the value of $SYSTEMD_COLORS and $TERM.
When reexecuting, TERM should be already set, so we can use this value.
Effectively, behaviour is the same as before affd7ed1a was reverted, but instead
of reopening the console before configuring color output, we just ignore what
stdout is connected to and decide based on the variables only.
|
|
some hostname fixes, triggered by #3979
|
|
|
|
Our tests should test for OOM too explicitly, hence fix the test accordingly
|
|
A masked unit is listed in Also=:
$ systemctl cat test1 test2
→# /etc/systemd/system/test1.service
[Unit]
Description=test service 1
[Service]
Type=oneshot
ExecStart=/usr/bin/true
[Install]
WantedBy=multi-user.target
Also=test2.service
Alias=alias1.service
→# /dev/null
$ systemctl --root=/ enable test1
(before)
Created symlink /etc/systemd/system/alias1.service → /etc/systemd/system/test1.service.
Created symlink /etc/systemd/system/multi-user.target.wants/test1.service → /etc/systemd/system/test1.service.
The unit files have no installation config (WantedBy, RequiredBy, Also, Alias
settings in the [Install] section, and DefaultInstance for template units).
This means they are not meant to be enabled using systemctl.
Possible reasons for having this kind of units are:
1) A unit may be statically enabled by being symlinked from another unit's
.wants/ or .requires/ directory.
2) A unit's purpose may be to act as a helper for some other unit which has
a requirement dependency on it.
3) A unit may be started when needed via activation (socket, path, timer,
D-Bus, udev, scripted systemctl call, ...).
4) In case of template units, the unit is meant to be enabled with some
instance name specified.
(after)
Created symlink /etc/systemd/system/alias1.service → /etc/systemd/system/test1.service.
Created symlink /etc/systemd/system/multi-user.target.wants/test1.service → /etc/systemd/system/test1.service.
Unit /etc/systemd/system/test2.service is masked, ignoring.
|
|
This was causing preset-all --global to create symlinks:
$ systemctl preset-all --global --root=/var/tmp/inst1
Created symlink /var/tmp/inst1/etc/systemd/user/shutdown.target → /usr/lib/systemd/user/../system/shutdown.target.
Created symlink /var/tmp/inst1/etc/systemd/user/sockets.target → /usr/lib/systemd/user/../system/sockets.target.
Created symlink /var/tmp/inst1/etc/systemd/user/timers.target → /usr/lib/systemd/user/../system/timers.target.
Created symlink /var/tmp/inst1/etc/systemd/user/paths.target → /usr/lib/systemd/user/../system/paths.target.
Created symlink /var/tmp/inst1/etc/systemd/user/bluetooth.target → /usr/lib/systemd/user/../system/bluetooth.target.
Created symlink /var/tmp/inst1/etc/systemd/user/printer.target → /usr/lib/systemd/user/../system/printer.target.
Created symlink /var/tmp/inst1/etc/systemd/user/sound.target → /usr/lib/systemd/user/../system/sound.target.
Created symlink /var/tmp/inst1/etc/systemd/user/smartcard.target → /usr/lib/systemd/user/../system/smartcard.target.
Created symlink /var/tmp/inst1/etc/systemd/user/busnames.target → /usr/lib/systemd/user/../system/busnames.target.
It is better to create units in a state that completely matches the presets, i.e.
preset-all should do nothing when invoked immediately after installation.
I'm sure it was confusing to users too, suggesting that system and user units
may somehow alias each other.
|
|
Enable reboot.target and disable exit.target: the first is used on normal
machines, the second only in containers, and the more general one
should be enabled by default.
Also fix the Makefile to match what preset-all does.
With this and the previous commits, doing "make instal DESTDIR=…" followed
by "systemctl preset-all --root=…" doesn't result in any changes.
|
|
journal-remote stuff
The preset for systemd-networkd-wait-online.service should match
whatever we do for systemd-networkd.service. s-n-wait-online.service
is only pulled in when some other unit pulls in network-online.target,
otherwise it's not used. But if something pulls in network-online.target,
they should expect s-n-wait-online.service to be active iff
systemd-networkd.service is active.
OTOH, the journal-remote and journal-upload services should be disabled
by default, since they don't do anything without additional configuration.
|
|
Running preset-all on a system installed from rpms or even created
using make install would remove and recreate a lot of symlinks, changing
relative to absolute symlinks. In general relative symlinks are nicer,
so there is no reason to change them, and those spurious changes were
obscuring more interesting stuff.
$ make install DESTDIR=/var/tmp/inst1
$ systemctl preset-all --root=/var/tmp/inst1
(before)
Removed /var/tmp/inst1/etc/systemd/system/network-online.target.wants/systemd-networkd-wait-online.service.
Created symlink /var/tmp/inst1/etc/systemd/system/ctrl-alt-del.target → /usr/lib/systemd/system/exit.target.
Removed /var/tmp/inst1/etc/systemd/system/multi-user.target.wants/remote-fs.target.
Created symlink /var/tmp/inst1/etc/systemd/system/multi-user.target.wants/remote-fs.target → /usr/lib/systemd/system/remote-fs.target.
Created symlink /var/tmp/inst1/etc/systemd/system/multi-user.target.wants/machines.target → /usr/lib/systemd/system/machines.target.
Created symlink /var/tmp/inst1/etc/systemd/system/sockets.target.wants/systemd-journal-remote.socket → /usr/lib/systemd/system/systemd-journal-remote.socket.
Removed /var/tmp/inst1/etc/systemd/system/sockets.target.wants/systemd-networkd.socket.
Created symlink /var/tmp/inst1/etc/systemd/system/sockets.target.wants/systemd-networkd.socket → /usr/lib/systemd/system/systemd-networkd.socket.
Removed /var/tmp/inst1/etc/systemd/system/getty.target.wants/getty@tty1.service.
Created symlink /var/tmp/inst1/etc/systemd/system/getty.target.wants/getty@tty1.service → /usr/lib/systemd/system/getty@.service.
Created symlink /var/tmp/inst1/etc/systemd/system/multi-user.target.wants/systemd-journal-upload.service → /usr/lib/systemd/system/systemd-journal-upload.service.
Removed /var/tmp/inst1/etc/systemd/system/sysinit.target.wants/systemd-timesyncd.service.
Created symlink /var/tmp/inst1/etc/systemd/system/sysinit.target.wants/systemd-timesyncd.service → /usr/lib/systemd/system/systemd-timesyncd.service.
Removed /var/tmp/inst1/etc/systemd/system/multi-user.target.wants/systemd-resolved.service.
Created symlink /var/tmp/inst1/etc/systemd/system/multi-user.target.wants/systemd-resolved.service → /usr/lib/systemd/system/systemd-resolved.service.
Removed /var/tmp/inst1/etc/systemd/system/multi-user.target.wants/systemd-networkd.service.
Created symlink /var/tmp/inst1/etc/systemd/system/multi-user.target.wants/systemd-networkd.service → /usr/lib/systemd/system/systemd-networkd.service.
(after)
Removed /var/tmp/inst1/etc/systemd/system/network-online.target.wants/systemd-networkd-wait-online.service.
Created symlink /var/tmp/inst1/etc/systemd/system/ctrl-alt-del.target → /usr/lib/systemd/system/exit.target.
Created symlink /var/tmp/inst1/etc/systemd/system/multi-user.target.wants/machines.target → /usr/lib/systemd/system/machines.target.
Created symlink /var/tmp/inst1/etc/systemd/system/sockets.target.wants/systemd-journal-remote.socket → /usr/lib/systemd/system/systemd-journal-remote.socket.
Created symlink /var/tmp/inst1/etc/systemd/system/multi-user.target.wants/systemd-journal-upload.service → /usr/lib/systemd/system/systemd-journal-upload.service.
|
|
No functional change intended.
|
|
real names
The man pages didn't ever mention that symlinks to units can be created, and what
exactly this means. Fix that omission, and disallow presets on alias names.
|
|
Before, when interating over unit files during preset-all, behaviour was the
following:
- if we hit the real unit name first, presets were queried for that name, and
that unit was enabled or disabled accordingly,
- if we hit an alias first (one of the symlinks chaining to the real unit), we
checked the presets using the symlink name, and then proceeded to enable or
disable the real unit.
E.g. for systemd-networkd.service we have the alias dbus-org.freedesktop.network1.service
(/usr/lib/systemd/system/dbus-org.freedesktop.network1.service), but the preset
is only for the systemd-networkd.service name. The service would be enabled or
disabled pseudorandomly depending on the order of iteration.
For "preset", behaviour was analogous: preset on the alias name disabled the
service (following the default disable policy), preset on the "real" name
applied the presets.
With the patch, for "preset" and "preset-all" we silently skip symlinks. This
gives mostly the right behaviour, with the limitation that presets on aliases
are ignored. I think that presets on aliases are not that common (at least my
preset files on Fedora don't exhibit any such usage), and should not be
necessary, since whoever installs the preset can just refer to the real unit
file. It would be possible to overcome this limitation by gathering a list of
names of a unit first, and then checking whether *any* of the names matches the
presets list. That would require a significant redesign of the code, and be
a lot slower (since we would have to fully read all unit directories to preset
one unit) to so I'm not doing that for now.
With this patch, two properties are satisfied:
- preset-all and preset are idempotent, and the second and subsequent invocations
do not produce any changes,
- preset-all and preset for a specific name produce the same state for that unit.
Fixes #3616.
|
|
|
|
If the directory is missing, we can assume that those pesky symlinks are gone too.
|
|
I think I am developing OCD... Let's fix this before this actually gets used in
the wild.
A follow-up for #3986 (5fc9e4abb41e7f58f6c308f54881c596713fba75).
|
|
|
|
Let's make sure the man page actually documents what is implemented, i.e.
"Lennart's PC" turns into "LennartsPC" when we clean up the name.
|
|
|
|
Let's add one more test that came up during the discussion of an issue.
The selected name with 69 chars is above the Linux hostname limit of 64.
|