Age | Commit message (Collapse) | Author |
|
Cgroup namespace
|
|
Let's lot at LOG_NOTICE about any processes that we are going to
SIGKILL/SIGABRT because clean termination of them didn't work.
This turns the various boolean flag parameters to cg_kill(), cg_migrate() and
related calls into a single binary flags parameter, simply because the function
now gained even more parameters and the parameter listed shouldn't get too
long.
Logging for killing processes is done either when the kill signal is SIGABRT or
SIGKILL, or on explicit request if KILL_TERMINATE_AND_LOG instead of LOG_TERMINATE
is passed. This isn't used yet in this patch, but is made use of in a later
patch.
|
|
- define CLONE_NEWCGROUP
- add fun to detect whether cgroup namespaces are supported
|
|
cgroup IO controller supports maximum limits for both bandwidth and IOPS but
systemd resource control currently only supports bandwidth limits. This patch
adds support for IOReadIOPSMax and IOWriteIOPSMax when unified cgroup hierarchy
is in use.
It isn't difficult to also add BlockIOReadIOPS and BlockIOWriteIOPS for legacy
hierarchies but IO control on legacy hierarchies is half-broken anyway, so
let's leave it alone for now.
|
|
Currently, there are two cgroup IO limits, bandwidth max for read and write,
and they are hard-coded in various places. This is fine for two limits but IO
is expected to grow more limits - low, high and max limits for bandwidth and
IOPS - and hard-coding each limit won't make sense.
This patch replaces hard-coded limits with an array indexed by
CGroupIOLimitType and accompanying string and default value tables so that new
limits can be added trivially.
|
|
On the unified hierarchy, blkio controller is renamed to io and the interface
is changed significantly.
* blkio.weight and blkio.weight_device are consolidated into io.weight which
uses the standardized weight range [1, 10000] with 100 as the default value.
* blkio.throttle.{read|write}_{bps|iops}_device are consolidated into io.max.
Expansion of throttling features is being worked on to support
work-conserving absolute limits (io.low and io.high).
* All stats are consolidated into io.stats.
This patchset adds support for the new interface. As the interface has been
revamped and new features are expected to be added, it seems best to treat it
as a separate controller rather than trying to expand the blkio settings
although we might add automatic translation if only blkio settings are
specified.
* io.weight handling is mostly identical to blkio.weight[_device] handling
except that the weight range is different.
* Both read and write bandwidth settings are consolidated into
CGroupIODeviceLimit which describes all limits applicable to the device.
This makes it less painful to add new limits.
* "max" can be used to specify the maximum limit which is equivalent to no
config for max limits and treated as such. If a given CGroupIODeviceLimit
doesn't contain any non-default configs, the config struct is discarded once
the no limit config is applied to cgroup.
* lookup_blkio_device() is renamed to lookup_block_device().
Signed-off-by: Tejun Heo <htejun@fb.com>
|
|
Earlier during the development of unified hierarchy, the populated event was
reported through by the dedicated "cgroup.populated" file; however, the
interface was updated so that it's reported through the "populated" field of
"cgroup.events" file. Update populated event handling logic accordingly.
|
|
Support for net_cls.class_id through the NetClass= configuration directive
has been added in v227 in preparation for a per-unit packet filter mechanism.
However, it turns out the kernel people have decided to deprecate the net_cls
and net_prio controllers in v2. Tejun provides a comprehensive justification
for this in his commit, which has landed during the merge window for kernel
v4.5:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=bd1060a1d671
As we're aiming for full support for the v2 cgroup hierarchy, we can no
longer support this feature. Userspace tool such as nftables are moving over
to setting rules that are specific to the full cgroup path of a task, which
obsoletes these controllers anyway.
This commit removes support for tweaking details in the net_cls controller,
but keeps the NetClass= directive around for legacy compatibility reasons.
|
|
This should be handled fine now by .dir-locals.el, so need to carry that
stuff in every file.
|
|
My previous patch to only include what we use accidentially placed
the added inlcudes in non-sorted order.
|
|
This is a cleaned up result of running iwyu but without forward
declarations on src/basic.
|
|
This is a continuation of the previous include sort patch, which
only sorted for .c files.
|
|
Add a new config directive called NetClass= to CGroup enabled units.
Allowed values are positive numbers for fix assignments and "auto" for
picking a free value automatically, for which we need to keep track of
dynamically assigned net class IDs of units. Introduce a hash table for
this, and also record the last ID that was given out, so the allocator
can start its search for the next 'hole' from there. This could
eventually be optimized with something like an irb.
The class IDs up to 65536 are considered reserved and won't be
assigned automatically by systemd. This barrier can be made a config
directive in the future.
Values set in unit files are stored in the CGroupContext of the
unit and considered read-only. The actually assigned number (which
may have been chosen dynamically) is stored in the unit itself and
is guaranteed to remain stable as long as the unit is active.
In the CGroup controller, set the configured CGroup net class to
net_cls.classid. Multiple unit may share the same net class ID,
and those which do are linked together.
|
|
Let's stop using the "unsigned long" type for weights/shares, and let's
just use uint64_t for this, as that's what we expose on the bus.
Unify parsers, and always validate the range for these fields.
Correct the default blockio weight to 500, since that's what the kernel
actually uses.
When parsing the weight/shares settings from unit files accept the empty
string as a way to reset the weight/shares value. When getting it via
the bus, uniformly map (uint64_t) -1 to unset.
Open up StartupCPUShares= and StartupBlockIOWeight= to transient units.
|
|
This adds support for the new "pids" cgroup controller of 4.3 kernels.
It allows accounting the number of tasks in a cgroup and enforcing
limits on it.
This adds two new setting TasksAccounting= and TasksMax= to each unit,
as well as a gloabl option DefaultTasksAccounting=.
This also updated "cgtop" to optionally make use of the new
kernel-provided accounting.
systemctl has been updated to show the number of tasks for each service
if it is available.
This patch also adds correct support for undoing memory limits for units
using a MemoryLimit=infinity syntax. We do the same for TasksMax= now
and hence keep things in sync here.
|
|
the controller in the kernel
Follow-up to 5bf8002a3a6723ce50331c024122078552fb600a.
|
|
This patch set adds full support the new unified cgroup hierarchy logic
of modern kernels.
A new kernel command line option "systemd.unified_cgroup_hierarchy=1" is
added. If specified the unified hierarchy is mounted to /sys/fs/cgroup
instead of a tmpfs. No further hierarchies are mounted. The kernel
command line option defaults to off. We can turn it on by default as
soon as the kernel's APIs regarding this are stabilized (but even then
downstream distros might want to turn this off, as this will break any
tools that access cgroupfs directly).
It is possibly to choose for each boot individually whether the unified
or the legacy hierarchy is used. nspawn will by default provide the
legacy hierarchy to containers if the host is using it, and the unified
otherwise. However it is possible to run containers with the unified
hierarchy on a legacy host and vice versa, by setting the
$UNIFIED_CGROUP_HIERARCHY environment variable for nspawn to 1 or 0,
respectively.
The unified hierarchy provides reliable cgroup empty notifications for
the first time, via inotify. To make use of this we maintain one
manager-wide inotify fd, and each cgroup to it.
This patch also removes cg_delete() which is unused now.
On kernel 4.2 only the "memory" controller is compatible with the
unified hierarchy, hence that's the only controller systemd exposes when
booted in unified heirarchy mode.
This introduces a new enum for enumerating supported controllers, plus a
related enum for the mask bits mapping to it. The core is changed to
make use of this everywhere.
This moves PID 1 into a new "init.scope" implicit scope unit in the root
slice. This is necessary since on the unified hierarchy cgroups may
either contain subgroups or processes but not both. PID 1 hence has to
move out of the root cgroup (strictly speaking the root cgroup is the
only one where processes and subgroups are still allowed, but in order
to support containers nicey, we move PID 1 into the new scope in all
cases.) This new unit is also used on legacy hierarchy setups. It's
actually pretty useful on all systems, as it can then be used to filter
journal messages coming from PID 1, and so on.
The root slice ("-.slice") is now implicitly created and started (and
does not require a unit file on disk anymore), since
that's where "init.scope" is located and the slice needs to be started
before the scope can.
To check whether we are in unified or legacy hierarchy mode we use
statfs() on /sys/fs/cgroup. If the .f_type field reports tmpfs we are in
legacy mode, if it reports cgroupfs we are in unified mode.
This patch set carefuly makes sure that cgls and cgtop continue to work
as desired.
When invoking nspawn as a service it will implicitly create two
subcgroups in the cgroup it is using, one to move the nspawn process
into, the other to move the actual container processes into. This is
done because of the requirement that cgroups may either contain
processes or other subgroups.
|
|
In all cases where the function (or cg_is_empty_recursive()) ignoring
the calling process is actually wrong, as a process keeps a cgroup busy
regardless if its the current one or another. Hence, let's simplify
things and drop the "ignore_self" parameter.
|
|
basic/ can be used by everything
cannot use anything outside of basic/
libsystemd/ can use basic/
cannot use shared/
shared/ can use libsystemd/
|