Age | Commit message (Collapse) | Author |
|
It's primarily just a property of the Manager object after all, and we
try to refer to PID 1 as "manager" instead of "systemd", hence let's to
stick to this here too.
|
|
|
|
This adds support for showing the accumulated consumed CPU time per-unit
in the "systemctl status" output. The property is also readable via the
bus.
|
|
https://github.com/docker/docker/issues/10280
|
|
|
|
|
|
|
|
systemd[1]: Failed to set memory.limit_in_bytes on : Invalid argument
|
|
mounted read-only
|
|
|
|
for leaf units
Otherwise a slice or delegation unit might move PIDs around ignoring the
fact that it is attached to a subcgroup.
|
|
it's not quite as destructive as it sounds nowadays
|
|
If a cgroup fails to be destroyed (most likely because there are still
processes running as part of a service after the main pid exits), don't
free and remove the cgroup unit from the manager. This fixes a
regression introduced by the cgroup rework in v205 where systemd would
forget about processes still running after the unit becomes inactive.
(This can happen when the main pid exits and KillMode=process or none).
|
|
Using the same scripts as in f647962d64e "treewide: yet more log_*_errno
+ return simplifications".
|
|
If the format string contains %m, clearly errno must have a meaningful
value, so we might as well use log_*_errno to have ERRNO= logged.
Using:
find . -name '*.[ch]' | xargs sed -r -i -e \
's/log_(debug|info|notice|warning|error|emergency)\((".*%m.*")/log_\1_errno(errno, \2/'
Plus some whitespace, linewrap, and indent adjustments.
|
|
|
|
It corrrectly handles both positive and negative errno values.
|
|
As a followup to 086891e5c1 "log: add an "error" parameter to all
low-level logging calls and intrdouce log_error_errno() as log calls
that take error numbers", use sed to convert the simple cases to use
the new macros:
find . -name '*.[ch]' | xargs sed -r -i -e \
's/log_(debug|info|notice|warning|error|emergency)\("(.*)%s"(.*), strerror\(-([a-zA-Z_]+)\)\);/log_\1_errno(-\4, "\2%m"\3);/'
Multi-line log_*() invocations are not covered.
And we also should add log_unit_*_errno().
|
|
subhierarchies
For priviliged units this resource control property ensures that the
processes have all controllers systemd manages enabled.
For unpriviliged services (those with User= set) this ensures that
access rights to the service cgroup is granted to the user in question,
to create further subgroups. Note that this only applies to the
name=systemd hierarchy though, as access to other controllers is not
safe for unpriviliged processes.
Delegate=yes should be set for container scopes where a systemd instance
inside the container shall manage the hierarchies below its own cgroup
and have access to all controllers.
Delegate=yes should also be set for user@.service, so that systemd
--user can run, controlling its own cgroup tree.
This commit changes machined, systemd-nspawn@.service and user@.service
to set this boolean, in order to ensure that container management will
just work, and the user systemd instance can run fine.
|
|
systemctl would print 'CPUQuotaPerSecUSec=(null)' for no limit. This
does not look right.
Since USEC_INFINITY is one of the valid values, format_timespan()
could return NULL, and we should wrap every use of it in strna() or
similar. But most callers didn't do that, and it seems more robust to
return a string ("infinity") that makes sense most of the time, even
if in some places the result will not be grammatically correct.
|
|
We'll stay in "initializing" until basic.target has reached, at which
point we will enter "starting".
This is preparation so that we can change the startip timeout to only
apply to the first phase of startup, not the full procedure.
|
|
|
|
|
|
|
|
Also add a bit of debugging output to help diagnose problems,
add missing units, and simplify cppflags.
Move test-engine to normal tests from manual tests, it should now
work without destroying the system.
|
|
Only accept cpu quota values in percentages, get rid of period
definition.
It's not clear whether the CFS period controllable per-cgroup even has a
future in the kernel, hence let's simplify all this, hardcode the period
to 100ms and only accept percentage based quota values.
|
|
This is the behaviour the kernel cgroup rework exposes for all
controllers, hence let's do this already now for all cases.
|
|
Introduce a (unsigned long) -1 as "unset" state for cpu shares/block io
weights, and keep the startup unit set around all the time.
|
|
Similar to CPUShares= and BlockIOWeight= respectively. However only
assign the specified weight during startup. Each control group
attribute is re-assigned as weight by CPUShares=weight and
BlockIOWeight=weight after startup. If not CPUShares= or
BlockIOWeight= be specified, then the attribute is re-assigned to each
default attribute value. (default cpu.shares=1024, blkio.weight=1000)
If only CPUShares=weight or BlockIOWeight=weight be specified, then
that implies StartupCPUShares=weight and StartupBlockIOWeight=weight.
|
|
|
|
We should no longer pretend that we can run in any sensible way
without the kernel supporting us with cgroups functionality.
|
|
|
|
if PrivateDevices=yes is used we need to make sure we can still
create /dev/null and so on.
|
|
safe_close() automatically becomes a NOP when a negative fd is passed,
and returns -1 unconditionally. This makes it easy to write lines like
this:
fd = safe_close(fd);
Which will close an fd if it is open, and reset the fd variable
correctly.
By making use of this new scheme we can drop a > 200 lines of code that
was required to test for non-negative fds or to reset the closed fd
variable afterwards.
|
|
|
|
hence don't bother
|
|
particular devices nodes
|
|
|
|
Resolve spotted issues related to missing or extraneous commas, dashes.
|
|
enabled when enabling/disabling cgroup controllers for units
|
|
Previously a cgroup setting down tree would result in cgroup membership
additions being propagated up the tree and to the siblings, however a
unit could never lose cgroup memberships again. With this change we'll
make sure that both cgroup additions and removals propagate properly.
|
|
|
|
If the unit already was in the hashmap, path would be leaked.
|
|
|
|
This way cleaning up the cgroup tree on shutdown is a lot easier since
we are in the root dir. Also PID 1 was previously artificially placed in
system.slice, even though our rule actually was not to have processes in
slices. The root slice otoh is magic anyway, so having PID 1 in there
sounds less surprising.
Of course, this means that PID is scheduled against the three top-level
slices.
|
|
each invocation
We can determine the list entry type via the typeof() gcc construct, and
so we should to make the macros much shorter to use.
|
|
controllers
Previously we did operations like attach, trim or migrate only on the
controllers that were enabled for a specific unit. With this changes we
will now do them for all supproted controllers, and fall back to all
possible prefix paths if the specified paths do not exist.
This fixes issues if a controller is being disabled for a unit where it
was previously enabled, and makes sure that all processes stay as "far
down" the tree as groups exist.
|
|
hierarchy
The non-hierarchial mode contradicts the whole idea of a cgroup tree so
let's not support this. In the future the kernel will only support the
hierarchial logic anyway.
|
|
The cgroup attribute memory.soft_limit_in_bytes is unlikely to stay
around in the kernel for good, so let's not expose it for now. We can
readd something like it later when the kernel guys decided on a final
API for this.
|
|
|