Age | Commit message (Collapse) | Author |
|
We don't use set.h so no need to include it. We used to include it for
temporary refs on all idev devices of a session, but that never was pushed
upstream.
|
|
The idev-keyboard object provides keyboard devices to the idev interface.
It uses libxkbcommon to provide proper keymap support.
So far, the keyboard implementation is pretty straightforward with one
keyboard device per matching evdev element. We feed everything into the
system keymap and provide proper high-level keyboard events to the
application. Compose-features and IM need to be added later.
|
|
The evdev-element provides linux evdev interfaces as idev-elements. This
way, all real input hardware devices on linux can be used with the idev
interface.
We use libevdev to interface with the kernel. It's a simple wrapper
library around the kernel evdev API that takes care to resync devices
after kernel-queue overflows, which is a rather non-trivial task.
Furthermore, it's a well tested interface used by all other major input
users (Xorg, weston, libinput, ...).
Last but not least, it provides nice keycode to keyname lookup tables (and
vice versa), which is really nice for debugging input problems.
|
|
The idev-interface provides input drivers for all libsystemd-terminal
based applications. It is split into 4 main objects:
idev_context: The context object tracks global state of the input
interface. This will include data like system-keymaps,
xkb contexts and more.
idev_session: A session serves as controller for a set of devices.
Each session on an idev-context is independent of each
other. The session is also the main notification object.
All events raised via idev are reported through the
session interface. Apart of that, the session is a
pretty dumb object that just contains devices.
idev_element: Elements provide real hardware in the idev stack. For
each hardware device, one element is added. Elements
have no knowledge of higher-level device types, they
only provide raw input data to the upper levels. For
example, each evdev device is represented by a different
element in an idev session.
idev_device: Devices are objects that the application deals with. An
application is usually not interested in elements (and
those are hidden to applications), instead, they want
high-level input devices like keyboard, touchpads, mice
and more. Device are the high-level interface provided
by idev. Each device might be fed by a set of elements.
Elements drive the device. If elements are removed,
devices are destroyed. If elements are added, suitable
devices are created.
Applications should monitor the system for sessions and hardware devices.
For each session they want to operate on, they create an idev_session
object and add hardware to that object. The idev interface requires the
application to monitor the system (preferably via sysview_*, but not
required) for hardware devices. Whenever hardware is added to the idev
session, new devices *might* be created. The relationship between hardware
and high-level idev-devices is hidden in the idev-session and not exposed.
Internally, the idev elements and devices are virtual objects. Each real
hardware and device type inherits those virtual objects and provides real
elements and devices. Those types will be added in follow-up commits.
Data flow from hardware to the application is done via idev_*_feed()
functions. Data flow from applications to hardware is done via
idev_*_feedback() functions. Feedback is usually used for LEDs, FF and
similar operations.
|