Age | Commit message (Collapse) | Author |
|
|
|
sd-bus: introduce new sd_bus_flush_close_unref() call
|
|
Running `busctl monitor` currently buffers data for several seconds /
kilobytes before writing stdout. This is highly confusing if you dump in a
file, ^C busctl and then end up with a file with data of the last few
_seconds_ missing.
Fix this by explicitly flushing after each signal.
|
|
sd_bus_flush_close_unref() is a call that simply combines sd_bus_flush()
(which writes all unwritten messages out) + sd_bus_close() (which
terminates the connection, releasing all unread messages) +
sd_bus_unref() (which frees the connection).
The combination of this call is used pretty frequently in systemd tools
right before exiting, and should also be relevant for most external
clients, and is hence useful to cover in a call of its own.
Previously the combination of the three calls was already done in the
_cleanup_bus_close_unref_ macro, but this was only available internally.
Also see #327
|
|
When we get notifications from the kernel, we always turn them into
synthetic dbus1 messages. This means, we do *not* consume the kdbus
message, and as such have to free the offset.
Right now, the translation-helpers told the caller that they consumed the
message, which is wrong. Fix this by explicitly releasing all kernel
messages that are translated.
|
|
This was a left-over from before we supported containers.
|
|
Instead of representing containers as several arrays, make a new
netlink_container struct and keep one array of these structs. We
also introduce netlink_attribute structs that in the future will
hold meta-information about each atribute.
|
|
Also rename from rtnl_* to netlink_*.
|
|
This was an oversight, they are no different from regular containers in this respect.
|
|
The kernel bonding layer allows passing an array of ARP IP targets as
bond-configuration. Due to the weird implementation of arrays in netlink
(which we haven't figure out a generic way to support, yet), we usually
hard-code the supported array-sizes. However, this should not be exported
from sd-netlink.
Instead, make sure the caller just uses it's current hack of enumerating
the types, and the sd-netlink core will have it's own list of supported
array-sizes (to be removed in future extensions, btw!). If either does not
match, we will just return a normal error.
Note that we provide 2 constants for ARP_IP_TARGETS_MAX now. However, both
have very different reasons:
- the constant in netdev-bond.c is used to warn the user that the given
number of targets might not be supported by the kernel (even though the
kernel might increase that number at _any_ time)
- the constant in sd-netlink is solely used due to us missing a proper
array implementation. Once that's supported in the type-system, it can
be removed without notice
Last but not least, this patch turns the log_error() into a log_warning().
Given that the previous condition was off-by-one, anyway, it never hit at
the right time. Thus, it was probably of no real use.
|
|
Explicitly export the root type-system to the type-system callers. This
avoids treating NULL as root, which for one really looks backwards (NULL
is usually a leaf, not root), and secondly prevents us from properly
debugging calling into non-nested types.
Also rename the root to "type_system_root". Once we support more than
rtnl, well will have to revisit that, anyway.
|
|
Empty type-systems are just fine. Avoid the nasty hack in
union-type-systems that treat empty type-systems as invalid. Instead check
for the actual types-array and make sure it's non-NULL (which is even true
for empty type-systems, due to "empty_types" array).
|
|
In sd-netlink-message, we always guarantee that the currently selected
type-system is non-NULL. Otherwise, we would be unable to parse any types
in the current container level. Hence, this assertion must be true:
message->container_type_system[m->n_containers] != NULL
During message_new() we currently do not verify that this assertion is
true. Instead, we blindly access nl_type->type_system and use it (which
might be NULL for basic types and unions). Fix this, by explicitly
checking that the root-level type is nested.
Note that this is *not* a strict requirement of netlink, but it's a strict
requirement for all message types we currently support. Furthermore, all
the callers of message_new() already verify that only supported types are
passed, therefore, this is a pure cosmetic check. However, it might be
needed on the future, so make sure we don't trap into this once we change
the type-system.
|
|
The NETLINK_TYPE_META pseudo-type is actually equivalent to an empty
nested type. Drop it and define an empty type-system instead.
This also has the nice side-effect that m->container_type_system[0] is
never NULL (which has really nasty side-effects if you try to read
attributes).
|
|
Right now we store the maximum type-ID of a type-system. This prevents us
from creating empty type-systems. Store the "count" instead, which should
be treated as max+1.
Note that type_system_union_protocol_get_type_system() currently has a
nasty hack to treat empty type-systems as invalid. This might need some
modification later on as well.
|
|
size_t is usually 64bit and int 32bit on a 64bit machine. This probably
does not matter for netlink message sizes, but nevertheless, avoid
hard-coding it anywhere.
|
|
Same as NLType, move NLTypeSystem into netlink-types.c and hide it from
the outside. Provide an accessor function for the 'max' field that is used
to allocate suitable array sizes.
Note that this will probably be removed later on, anyway. Once we support
bigger type-systems, it just seems impractical to allocate such big arrays
for each container entry. An RBTree would probably do just fine.
|
|
If we extend NLType to support arrays and further extended types, we
really want to avoid hard-coding the type-layout outside of
netlink-types.c. We already avoid accessing nl_type->type_system outside
of netlink-types.c, extend this to also avoid accessing any other fields.
Provide accessor functions for nl_type->type and nl_type->size and then
move NLType away from the type-system header.
With this in place, follow-up patches can safely turn "type_system" and
"type_system_union" into a real "union { }", and then add another type for
arrays.
|
|
Make sure we never access type->type_system or type->type_system_union
directly. This is an implementation detail of the type-system and we
should always use the accessors. Right now, they only exist for 2-level
accesses (type-system to type-system). This patch introduces the 1-level
accessors (type to type-system) and makes use of it.
This patch makes sure the proper assertions are in place, so we never
accidentally access sub-type-systems for non-nested/union types.
Note that this places hard-asserts on the accessors. This should be fine,
as we expect callers to only access sub type-systems if they *know*
they're dealing with nested types.
|
|
The NLA_ names are used to name real datatypes we extract out of netlink
messages. The kernel has an internal enum with the same names
(NLA_foobar), which is *NOT* binary compatible to our types. Furthermore,
we support a different set of types than the kernel (as we try to treat
some kernel peculiarities as our own types to simplify the API).
Rename NLA_ to NETLINK_TYPE_ to make clear that this is our own set of
types.
|
|
This fully synchronizes the content of a "make dist" and a "git archive"
tar ball.
http://lists.freedesktop.org/archives/systemd-devel/2015-June/033214.html
|
|
Fixes #306.
|
|
In kdbus we still have to support org.freedesktop.DBus matches even though
there is no real bus driver. The reason is that bus-control.c turns
NameOwnerChanged matches into proper kdbus matches. If we drop DRIVER
matches early, we will never match on name-changes for kdbus.
Two ways to fix this:
1) Install DRIVER matches on kdbus (which is the simple way our and which
is what this patch does).
2) Properly fix the scope-detection to let NameOwnerChanged matches
through (or better: block anything with Member!=NameOwnerChanged).
|
|
./configure --enable/disable-kdbus can be used to set the default
behavior regarding kdbus.
If no kdbus kernel support is available, dbus-dameon will be used.
With --enable-kdbus, the kernel command line option "kdbus=0" can
be used to disable kdbus.
With --disable-kdbus, the kernel command line option "kdbus=1" is
required to enable kdbus support.
|
|
|
|
Stop talking about the "XDG" version of basename()
|
|
XDG refers to X Desktop Group, a former name for freedesktop.org.
This group is responsible for specifications like basedirs,
.desktop files and icon naming, but as far as I know, it has never
tried to redefine basename().
I think these references were meant to say XPG (X/Open Portability
Guide), a precursor of POSIX. POSIX is better-known and less easily
confused with XDG, and is how the basename(3) man page describes
the libgen.h version of basename().
The other version of basename() is glibc-specific and is described
in basename(3) as "the GNU version"; specifically mention that
version, to disambiguate.
|
|
sd-bus: suppress installing local bus matches server side
|
|
Matches that can only match against messages from the
org.freedesktop.DBus.Local service (or the local interfaces or path)
should never be installed server side, suppress them hence.
Similar, on kdbus matches that can only match driver messages shouldn't
be passed to the kernel.
|
|
sd-event: make errors on EPOLL_CTL_DEL pseudo-fatal
|
|
If we call EPOLL_CTL_DEL, we *REALLY* expect the file-descriptor to be
present in that given epoll-set. We actually track such state via our
s->io.registered flag, so it better be true.
Make sure if that's not true, we treat it similar to assert_return() (ie.,
print a loud warning).
|
|
https://github.com/systemd/systemd/issues/234
|
|
hashmap: fix iterators to not skip entries
|
|
|
|
This ports a lot of manual code over to sigprocmask_many() and friends.
Also, we now consistly check for sigprocmask() failures with
assert_se(), since the call cannot realistically fail unless there's a
programming error.
Also encloses a few sd_event_add_signal() calls with (void) when we
ignore the return values for it knowingly.
|
|
Currently, the HASHMAP iterators stop at the first NULL entry in a
hashmap. This is non-obvious and breaks users like sd-device, which
legitimately store NULL values in a hashmap.
Fix all the iterators by taking a pointer to the value storage, instead of
returning it. The iterators now return a boolean that tells whether the
end of the list was reached.
Current users of HASHMAP_FOREACH() are *NOT* changed to explicitly check
for NULL. If it turns out, there were users that inserted NULL into
hashmaps, but didn't properly check for it during iteration, then we
really want to find those and fix them.
|
|
|
|
Split netlink-socket.c and rtnl-message.c from netlink-message.c.
|
|
AF_NETLINK is not write-buffered, so this was actually never used.
|
|
|
|
sd-rtnl: make joining broadcast groups implicit
|
|
|
|
Lets us simplify the function and drop SO_PASSCRED.
Thanks to Alexander Larsson and David Herrmann.
|
|
Net
|
|
basic/ can be used by everything
cannot use anything outside of basic/
libsystemd/ can use basic/
cannot use shared/
shared/ can use libsystemd/
|
|
|
|
sd-network: allow the state dir to be created after the monitor
|
|
Our bloom-filters support root-path matching. Make sure we properly add
the path_namespace= tag.
|
|
DBus-spec defines two different pattern matchings:
1) Path and namespace prefix matching. In this case, A matches B either
if both are equal, or if B is fully included in the namespace of A.
In other words, A has to be a prefix of B, but end with a separator
character (or the following character in B must be one).
This is used for path_namespace= and arg0namespace=
2) The other pattern matching is used for arg0path= which does a two-way
matching. That is, A must be a prefix of B, or B a prefix of A.
Furthermore, the prefix must end with a separator.
Fix the sd-bus helpers to reflect that. The 'simple_' and 'complex_'
prefixes don't make any sense now, but.. eh..
|
|
Make sure we actually verify our match-rules are executed properly. Right
now all we test is the bloom-matches, which are non-reliable as they leave
through false-positives.
|