Age | Commit message (Collapse) | Author |
|
|
|
|
|
OK to be unsigned
This large patch adds a couple of mechanisms to ensure we get NSEC3 and
proof-of-unsigned support into place. Specifically:
- Each item in an DnsAnswer gets two bit flags now:
DNS_ANSWER_AUTHENTICATED and DNS_ANSWER_CACHEABLE. The former is
necessary since DNS responses might contain signed as well as unsigned
RRsets in one, and we need to remember which ones are signed and which
ones aren't. The latter is necessary, since not we need to keep track
which RRsets may be cached and which ones may not be, even while
manipulating DnsAnswer objects.
- The .n_answer_cachable of DnsTransaction is dropped now (it used to
store how many of the first DnsAnswer entries are cachable), and
replaced by the DNS_ANSWER_CACHABLE flag instead.
- NSEC3 proofs are implemented now (lacking support for the wildcard
part, to be added in a later commit).
- Support for the "AD" bit has been dropped. It's unsafe, and now that
we have end-to-end authentication we don't need it anymore.
- An auxiliary DnsTransaction of a DnsTransactions is now kept around as
least as long as the latter stays around. We no longer remove the
auxiliary DnsTransaction as soon as it completed. THis is necessary,
as we now are interested not only in the RRsets it acquired but also
in its authentication status.
|
|
necessary
|
|
|
|
validation
Specifically, it appears as if the NSEC next domain name should be in
the original casing rather than canonical form, when validating.
|
|
|
|
Check the validity of RR types as we parse or receive data from IPC
clients, and use the same code for all of them.
|
|
section
We later rely that the DnsAnswer object contains all RRs from the
original packet, at least when it comes to the answer and authorization
sections, hence we better make sure we don#t silently end up removing an
OPT RR from these two sections.
|
|
dns_packet_unref()
|
|
When the DNS_RESOURCE_KEY_CACHE_FLUSH flag is not set for an mDNS packet, we should not flush
the cache for RRs with matching keys. However, we were unconditionally flushing the cache
also for these packets.
Now mark all packets as cache_flush by default, except for these mDNS packets, and respect
that flag in the cache handling.
This fixes 90325e8c2e559a21ef0bc2f26b844c140faf8020.
|
|
It's complicated enough, it deserves its own call.
(Also contains some unrelated whitespace, comment and assertion changes)
|
|
Enforce this while parsing RRs.
|
|
As soon as we encounter the OPT RR while parsing, store it in a special
field in the DnsPacket structure. That way, we won't be confused if we
iterate through RRs, and can check that there's really only one of these
RRs around.
|
|
For mDNS, we need to support the TC bit in case the list of known answers
exceed the maximum packet size.
For this, add a 'more' pointer to DnsPacket for an additional packet.
When a packet is unref'ed, the ->more packet is also unrefed, so it
sufficient to only keep track of the 1st packet in a chain.
|
|
We need to support the TC bit in queries in case known answers exceed the
maximum packet size. Factor out the flags compilation to
dns_packet_set_flags() and make it externally available.
|
|
|
|
MDNS has a 'key cache flush' flag for records which must be masked out for
the parsers to do our right thing. We will also use that flag later (in a
different patch) in order to alter the cache behavior.
|
|
Validate mDNS queries and responses by looking at some header fields,
add mDNS flags.
|
|
The setting controls which kind of DNSSEC validation is done: none at
all, trusting the AD bit, or client-side validation.
For now, no validation is implemented, hence the setting doesn't do much
yet, except of toggling the CD bit in the generated messages if full
client-side validation is requested.
|
|
After all, they are for flags and parameters of RRs and already relevant
when dealing with RRs outside of the serialization concept.
|
|
This adds dns_resource_record_to_wire_format() that generates the raw
wire-format of a single DnsResourceRecord object, and caches it in the
object, optionally in DNSSEC canonical form. This call is used later to
generate the RR serialization of RRs to verify.
This adds four new fields to DnsResourceRecord objects:
- wire_format points to the buffer with the wire-format version of the
RR
- wire_format_size stores the size of that buffer
- wire_format_rdata_offset specifies the index into the buffer where the
RDATA of the RR begins (i.e. the size of the key part of the RR).
- wire_format_canonical is a boolean that stores whether the cached wire
format is in DNSSEC canonical form or not.
Note that this patch adds a mode where a DnsPacket is allocated on the
stack (instead of on the heap), so that it is cheaper to reuse the
DnsPacket object for generating this wire format. After all we reuse the
DnsPacket object for this, since it comes with all the dynamic memory
management, and serialization calls we need anyway.
|
|
|
|
When verifying signatures we need to be able to verify the original
data we got for an RR set, and that means we cannot simply drop flags
bits or consider RRs invalid too eagerly. Hence, instead of parsing the
DNSKEY flags store them as-is. Similar, accept the protocol field as it
is, and don't consider it a parsing error if it is not 3.
Of course, this means that the DNSKEY handling code later on needs to
check explicit for protocol != 3.
|
|
|
|
It essentially does the same as dns_packet_append_raw_string(), hence
make it a wrapper around it.
|
|
This indicates that we can handle DNSSEC records (per RFC3225), even if
all we do is silently drop them. This feature requires EDNS0 support.
As we do not yet support larger UDP packets, this feature increases the
risk of getting truncated packets.
Similarly to how we fall back to plain UDP if EDNS0 fails, we will fall
back to plain EDNS0 if EDNS0+DO fails (with the same logic of remembering
success and retrying after a grace period after failure).
|
|
This is a minimal implementation of RFC6891. Only default values
are used, so in reality this will be a noop.
EDNS0 support is dependent on the current server's feature level,
so appending the OPT pseudo RR is done when the packet is emitted,
rather than when it is assembled. To handle different feature
levels on retransmission, we strip off the OPT RR again after
sending the packet.
Similarly, to how we fall back to TCP if UDP fails, we fall back
to plain UDP if EDNS0 fails (but if EDNS0 ever succeeded we never
fall back again, and after a timeout we will retry EDNS0).
|
|
Needed for EDNS0.
|
|
resolved. Fully implement search domains for single-label names
|
|
The assumption that no NSEC bitmap could be empty due to the presence of the bit representing
the record itself turns out to be flawed. See (the admittedly experimental) RFC4956 for a
counter example.
|
|
The new dns_label_escape() call now operates on a buffer passed in,
similar to dns_label_unescape(). This should make decoding a bit faster,
and nicer.
|
|
RFC 6763 is very clear that TXT RRs should allow arbitrary binary
content, hence let's actually accept that. This also means accepting NUL
bytes in the middle of strings.
|
|
|
|
|
|
This partially reverts 106784ebb7b303ae471851100a773ad2aebf5b80, ad
readds separate DNS_PACKET_MAKE_FLAGS() invocations for the LLMNR and
DNS case. This is important since SOme flags have different names and
meanings on LLMNR and on DNS and we should clarify that via the comments
and how we put things together.
|
|
With more protocols to come, switch repetitive if-else blocks with a
switch-case statements.
|
|
We explicitly need to turn off name compression when marshalling or
demarshalling RRs for bus transfer, since they otherwise refer to packet
offsets that reference packets that are not transmitted themselves.
|
|
With this change we'll now also generate synthesized RRs for the local
LLMNR hostname (first label of system hostname), the local mDNS hostname
(first label of system hostname suffixed with .local), the "gateway"
hostname and all the reverse PTRs. This hence takes over part of what
nss-myhostname already implemented.
Local hostnames resolve to the set of local IP addresses. Since the
addresses are possibly on different interfaces it is necessary to change
the internal DnsAnswer object to track per-RR interface indexes, and to
change the bus API to always return the interface per-address rather than
per-reply. This change also patches the existing clients for resolved
accordingly (nss-resolve + systemd-resolve-host).
This also changes the routing logic for queries slightly: we now ensure
that the local hostname is never resolved via LLMNR, thus making it
trustable on the local system.
|
|
|
|
The NSEC type itself must at least be in the bitmap, so NSEC records with empty
bitmaps must be bogus.
|
|
We were tracking the bit offset inside each byte, rather than inside the whole bitmap.
|
|
We were counting the number of bits set rather than the number of bytes they occupied.
|
|
A size_t was being accessed as a char* due to the order of arguments being inverted.
|
|
|
|
We were appending rather than reading the bitmap.
|
|
We can never read past the end of the packet, so this seems impossible
to exploit, but let's error out early as reading past the end of the
current RR is clearly an error.
Found by Lennart, based on patch by Daniel.
|
|
Rename the field to make this clearer.
|
|
Most blobs (keys, signatures, ...) should have a specific size given by
the relevant algorithm. However, as we don't use/verify the algorithms
yet, let's just ensure that we don't read out zero-length data in cases
where this does not make sense.
The only exceptions, where zero-length data is allowed are in the NSEC3
salt field, and the generic data (which we don't know anything about,
so better not make any assumptions).
|
|
resolve: unify memdup() code when parsing RRs
|