Age | Commit message (Collapse) | Author |
|
This is often needed for proper DNSSEC support, and even to handle AAAA records
without falling back to TCP.
If the path between the client and server is fully compliant, this should always
work, however, that is not the case, and overlarge packets will get mysteriously
lost in some cases.
For that reason, we use a similar fallback mechanism as we do for palin EDNS0,
EDNS0+DO, etc.:
The large UDP size feature is different from the other supported feature, as we
cannot simply verify that it works based on receiving a reply (as the server
will usually send us much smaller packets than what we claim to support, so
simply receiving a reply does not mean much).
For that reason, we keep track of the largest UDP packet we ever received, as this
is the smallest known good size (defaulting to the standard 512 bytes). If
announcing the default large size of 4096 fails (in the same way as the other
features), we fall back to the known good size. The same logic of retrying after a
grace-period applies.
|
|
This indicates that we can handle DNSSEC records (per RFC3225), even if
all we do is silently drop them. This feature requires EDNS0 support.
As we do not yet support larger UDP packets, this feature increases the
risk of getting truncated packets.
Similarly to how we fall back to plain UDP if EDNS0 fails, we will fall
back to plain EDNS0 if EDNS0+DO fails (with the same logic of remembering
success and retrying after a grace period after failure).
|
|
This is a minimal implementation of RFC6891. Only default values
are used, so in reality this will be a noop.
EDNS0 support is dependent on the current server's feature level,
so appending the OPT pseudo RR is done when the packet is emitted,
rather than when it is assembled. To handle different feature
levels on retransmission, we strip off the OPT RR again after
sending the packet.
Similarly, to how we fall back to TCP if UDP fails, we fall back
to plain UDP if EDNS0 fails (but if EDNS0 ever succeeded we never
fall back again, and after a timeout we will retry EDNS0).
|
|
This is inspired by the logic in BIND [0], follow-up patches
will implement the reset of that scheme.
If we get a server error back, or if after several attempts we don't
get a reply at all, we switch from UDP to TCP for the given
server for the current and all subsequent requests. However, if
we ever successfully received a reply over UDP, we never fall
back to TCP, and once a grace-period has passed, we try to upgrade
again to using UDP. The grace-period starts off at five minutes
after the current feature level was verified and then grows
exponentially to six hours. This is to mitigate problems due
to temporary lack of network connectivity, but at the same time
avoid flooding the network with retries when the feature attempted
feature level genuinely does not work.
Note that UDP is likely much more commonly supported than TCP,
but depending on the path between the client and the server, we
may have more luck with TCP in case something is wrong. We really
do prefer UDP though, as that is much more lightweight, that is
why TCP is only the last resort.
[0]: <https://kb.isc.org/article/AA-01219/0/Refinements-to-EDNS-fallback-behavior-can-cause-different-outcomes-in-Recursive-Servers.html>
|
|
key per scope
When the zone probing code looks for a transaction to reuse it will
refuse to look at transactions that have been answered from cache or the
zone itself, but insist on the network. This has the effect that there
might be multiple transactions around for the same key on the same
scope. Previously we'd track all transactions in a hashmap, indexed by
the key, which implied that there would be only one transaction per key,
per scope. With this change the hashmap will only store the most recent
transaction per key, and a linked list will be used to track all
transactions per scope, allowing multiple per-key per-scope.
Note that the linked list fields for this actually already existed in
the DnsTransaction structure, but were previously unused.
|
|
Let's track where the data came from: from the network, the cache or the
local zone. This is not only useful for debugging purposes, but is also
useful when the zone probing wants to ensure it's not reusing
transactions that were answered from the cache or the zone itself.
|
|
Let's change the return value to bool. If we encounter an error while
parsing, return "false" instead of the actual parsing error, after all
the specified hostname does not qualify for what the function is
supposed to test.
Dealing with the additional error codes was always cumbersome, and
easily misused, like for example in the DHCP code.
Let's also rename the functions from dns_name_root() to
dns_name_is_root(), to indicate that this function checks something and
returns a bool. Similar for dns_name_is_signal_label().
|
|
This adds support for searching single-label hostnames in a set of
configured search domains.
A new object DnsQueryCandidate is added that links queries to scopes.
It keeps track of the search domain last used for a query on a specific
link. Whenever a host name was unsuccessfuly resolved on a scope all its
transactions are flushed out and replaced by a new set, with the next
search domain appended.
This also adds a new flag SD_RESOLVED_NO_SEARCH to disable search domain
behaviour. The "systemd-resolve-host" tool is updated to make this
configurable via --search=.
Fixes #1697
|
|
With this change, we add a new object to resolved, "DnsSearchDomain="
which wraps a search domain. This is then used to introduce a global
search domain list, in addition to the existing per-link search domain
list which is reword to make use of this new object too.
This is preparation for implement proper unicast DNS search domain
support.
|
|
|
|
Instead of taking a DnsQuestion object (i.e. an array of keys) only take
a single key. This simplifies things a bit, and as DNS/LLMNR require a
single question per query message was unnecessary anyway.
This mimics a similar change that was done a while ago for the dns cache
logic.
|
|
|
|
There are more than enough to deserve their own .c file, hence move them
over.
|
|
|
|
Bring back a return statement 106784eb errornously removed.
Thanks to @phomes for reporting.
|
|
With more protocols to come, switch repetitive if-else blocks with a
switch-case statements.
|
|
Right now we keep track of ongoing transactions in a linked listed for
each scope. Replace this by a hashmap that is indexed by the RR key.
Given that all ongoing transactions will be placed in pretty much the
same scopes usually this should optimize behaviour.
We used to require a list here, since we wanted to do "superset" query
checks, but this became obsolete since transactions are now single-key
instead of multi-key.
|
|
Let's simplify things and only maintain a single RR key per transaction
object, instead of a full DnsQuestion. Unicast DNS and LLMNR don't
support multiple questions per packet anway, and Multicast DNS suggests
coalescing questions beyond a single dns query, across the whole system.
|
|
With this change we'll now also generate synthesized RRs for the local
LLMNR hostname (first label of system hostname), the local mDNS hostname
(first label of system hostname suffixed with .local), the "gateway"
hostname and all the reverse PTRs. This hence takes over part of what
nss-myhostname already implemented.
Local hostnames resolve to the set of local IP addresses. Since the
addresses are possibly on different interfaces it is necessary to change
the internal DnsAnswer object to track per-RR interface indexes, and to
change the bus API to always return the interface per-address rather than
per-reply. This change also patches the existing clients for resolved
accordingly (nss-resolve + systemd-resolve-host).
This also changes the routing logic for queries slightly: we now ensure
that the local hostname is never resolved via LLMNR, thus making it
trustable on the local system.
|
|
We should never allow leaking of "localhost" queries onto the network,
even if there's an explicit domain rotue set for this.
|
|
Rather than fixing this to 5s for unicast DNS and 1s for LLMNR, start
at a tenth of those values and increase exponentially until the old
values are reached. For LLMNR the recommended timeout for IEEE802
networks (which basically means all of the ones we care about) is 100ms,
so that should be uncontroversial. For unicast DNS I have found no
recommended value. However, it seems vastly more likely that hitting a
500ms timeout is casued by a packet loss, rather than the RTT genuinely
being greater than 500ms, so taking this as a startnig value seems
reasonable to me.
In the common case this greatly reduces the latency due to normal packet
loss. Moreover, once we get support for probing for features, this means
that we can send more packets before degrading the feature level whilst
still allowing us to settle on the correct feature level in a reasonable
timeframe.
The timeouts are tracked per server (or per scope for the multicast
protocols), and once a server (or scope) receives a successfull package
the timeout is reset. We also track the largest RTT for the given
server/scope, and always start our timouts at twice the largest
observed RTT.
|
|
We already refuse to resolve "localhost", hence we should also refuse
resolving "127.0.0.1" and friends.
|
|
As we have connect()ed to the desired DNS server, we no longer need to pass
control messages manually when sending packets. Simplify the logic accordingly.
|
|
This function emits the UDP packet via the scope, but first it will
determine the current server (and connect to it) and store the
server in the transaction.
This should not change the behavior, but simplifies the code.
|
|
With access to the server when creating the socket, we can connect()
to the server and hence simplify message sending and receiving in
follow-up patches.
|
|
A transaction can only have one socket at a time, so no need to distinguish these.
|
|
It's not used anymore since 29815b6c608b836cada5e349d06a96b63eaa65f3,
hence let's remove it from the sources.
|
|
We used to have one global socket, use one per transaction instead. This
has the side-effect of giving us a random UDP port per transaction, and
hence increasing the entropy and making cache poisoining significantly
harder to achieve.
We still reuse the same port number for packets belonging to the same
transaction (resent packets).
|
|
We want to discover information about the server and use that in when crafting
packets to be resent.
|
|
Currently we only make sure our links can handle the size of the payload witohut
taking the headers into account.
|
|
The C and T bits in the DNS packet header definitions are specific to LLMNR.
In regular DNS, they are called AA and RD instead. Reflect that by calling
the macros accordingly, and alias LLMNR specific macros.
While at it, define RA, AD and CD getters as well.
|
|
De-duplicate some magic numbers.
|
|
|
|
|
|
|
|
|
|
We were using a space more often than not, and this way is
codified in CODING_STYLE.
|
|
Replace ENOTSUP by EOPNOTSUPP as this is what linux actually uses.
|
|
|
|
nss-myhostname
|
|
Using:
find . -name '*.[ch]' | while read f; do perl -i.mmm -e \
'local $/;
local $_=<>;
s/(if\s*\([^\n]+\))\s*{\n(\s*)(log_[a-z_]*_errno\(\s*([->a-zA-Z_]+)\s*,[^;]+);\s*return\s+\g4;\s+}/\1\n\2return \3;/msg;
print;'
$f
done
And a couple of manual whitespace fixups.
|
|
It corrrectly handles both positive and negative errno values.
|
|
As a followup to 086891e5c1 "log: add an "error" parameter to all
low-level logging calls and intrdouce log_error_errno() as log calls
that take error numbers", use sed to convert the simple cases to use
the new macros:
find . -name '*.[ch]' | xargs sed -r -i -e \
's/log_(debug|info|notice|warning|error|emergency)\("(.*)%s"(.*), strerror\(-([a-zA-Z_]+)\)\);/log_\1_errno(-\4, "\2%m"\3);/'
Multi-line log_*() invocations are not covered.
And we also should add log_unit_*_errno().
|
|
|
|
on_conflict_dispatch() uses hashmap_steal_first() and then does
something non-trivial with it. It may care about the order.
|
|
It is redundant to store 'hash' and 'compare' function pointers in
struct Hashmap separately. The functions always comprise a pair.
Store a single pointer to struct hash_ops instead.
systemd keeps hundreds of hashmaps, so this saves a little bit of
memory.
|
|
|
|
This is supposed to remove some compiler warnings:
http://lists.freedesktop.org/archives/systemd-devel/2014-July/021393.html
|
|
something up
Also, return on which protocol/family/interface we found something.
|
|
|