Age | Commit message (Collapse) | Author |
|
This is our own header, we should include use the local-include syntax
("" not <>), to make it clear we are including the one from the build tree.
All other includes of files from src/systemd/ use this scheme.
|
|
|
|
For caching negative replies we need the SOA TTL information. Hence,
let's authenticate all auxiliary SOA RRs through DS requests on all
negative requests.
|
|
This is the most important piece of information of replies, hence show
this in the first log message about it.
(Wireshark shows it too in the short summary, hence this definitely
makes sense...)
|
|
Retrying a transaction via TCP is a good approach for mitigating
packet loss. However, it's not a good away way to fix a bad RCODE if we
already downgraded to UDP level for it. Hence, don't do this.
This is a small tweak only, but shortens the time we spend on
downgrading when a specific domain continously returns a bad rcode.
|
|
When we are doing a TCP transaction the kernel will automatically resend
all packets for us, there's no need to do that ourselves. Hence:
increase the timeout for TCP transactions substantially, to give the
kernel enough time to connect to the peer, without interrupting it when
we become impatient.
|
|
Embedding sd_id128_t's in constant strings was rather cumbersome. We had
SD_ID128_CONST_STR which returned a const char[], but it had two problems:
- it wasn't possible to statically concatanate this array with a normal string
- gcc wasn't really able to optimize this, and generated code to perform the
"conversion" at runtime.
Because of this, even our own code in coredumpctl wasn't using
SD_ID128_CONST_STR.
Add a new macro to generate a constant string: SD_ID128_MAKE_STR.
It is not as elegant as SD_ID128_CONST_STR, because it requires a repetition
of the numbers, but in practice it is more convenient to use, and allows gcc
to generate smarter code:
$ size .libs/systemd{,-logind,-journald}{.old,}
text data bss dec hex filename
1265204 149564 4808 1419576 15a938 .libs/systemd.old
1260268 149564 4808 1414640 1595f0 .libs/systemd
246805 13852 209 260866 3fb02 .libs/systemd-logind.old
240973 13852 209 255034 3e43a .libs/systemd-logind
146839 4984 34 151857 25131 .libs/systemd-journald.old
146391 4984 34 151409 24f71 .libs/systemd-journald
It is also much easier to check if a certain binary uses a certain MESSAGE_ID:
$ strings .libs/systemd.old|grep MESSAGE_ID
MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x
MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x
MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x
MESSAGE_ID=%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x
$ strings .libs/systemd|grep MESSAGE_ID
MESSAGE_ID=c7a787079b354eaaa9e77b371893cd27
MESSAGE_ID=b07a249cd024414a82dd00cd181378ff
MESSAGE_ID=641257651c1b4ec9a8624d7a40a9e1e7
MESSAGE_ID=de5b426a63be47a7b6ac3eaac82e2f6f
MESSAGE_ID=d34d037fff1847e6ae669a370e694725
MESSAGE_ID=7d4958e842da4a758f6c1cdc7b36dcc5
MESSAGE_ID=1dee0369c7fc4736b7099b38ecb46ee7
MESSAGE_ID=39f53479d3a045ac8e11786248231fbf
MESSAGE_ID=be02cf6855d2428ba40df7e9d022f03d
MESSAGE_ID=7b05ebc668384222baa8881179cfda54
MESSAGE_ID=9d1aaa27d60140bd96365438aad20286
|
|
We don't actually make use of the return value for now, but it matches
our coding style elsewhere, and it actually shortens our code quite a
bit.
Also, add a missing OOM check after dns_answer_new().
|
|
|
|
Fixes: #4264
|
|
resolved: remove unneeded braces
Signed-off-by: Dmitry Rozhkov <dmitry.rozhkov@linux.intel.com>
|
|
See the section 10.2 of RFC6762 for details.
Signed-off-by: Dmitry Rozhkov <dmitry.rozhkov@linux.intel.com>
|
|
Signed-off-by: Dmitry Rozhkov <dmitry.rozhkov@linux.intel.com>
|
|
Otherwise we fail an assertion down the path since t->timeout_event_source is NULL
and it's the "other" transaction that's supposed to have the event source.
Signed-off-by: Dmitry Rozhkov <dmitry.rozhkov@linux.intel.com>
|
|
Currently resolving mDNS requests doesn't work because in
dns_transaction_process_reply() no answer gets installed into
mDNS transactions.
When receiving a mDNS reply we should not check for query section
equivalence of the request and its corresponsing response. But still
we need to install answers to mDNS transactions to make it possible
to actually resolve mDNS requests.
Signed-off-by: Dmitry Rozhkov <dmitry.rozhkov@linux.intel.com>
|
|
|
|
resolved fixes for handling SERVFAIL errors from servers
|
|
In some cases, caching DNS results locally is not desirable, a it makes DNS
cache poisoning attacks a tad easier and also allows users on the system to
determine whether or not a particular domain got visited by another user. Thus
provide a new "Cache" resolved.conf option to disable it.
|
|
SERVFAIL
Some upstream DNS servers return SERVFAIL if we ask them for DNSSEC RRs, which
some forwarding DNS servers pass on to us as SERVFAIL (other though as
NOERROR...). This is should not be considered a problem, as long as the domain
in question didn't have DNSSEC enabled. Hence: when making use of auxiliary
transactions accept those that return SERVFAIL.
|
|
There might be two reasons why we get a SERVFAIL response from our selected DNS
server: because this DNS server itself is bad, or because the DNS server
actually serving the zone upstream is bad. So far we immediately downgraded our
server feature level when getting SERVFAIL, under the assumption that the first
case is the only possible case. However, this meant we'd downgrade immediately
even if we encountered the second case described above.
With this commit handling of SERVFAIL is reworked. As soon as we get a SERVFAIL
on a transaction we retry the transaction with a lower feature level, without
changing the feature level tracked for the DNS server itself. If that fails
too, we downgrade further, and so on. If during this downgrading the SERVFAIL
goes away we assume that the DNS server we are talking to is bad, but the zone
is fine and propagate the detected feature level to the information we track
about the DNS server. Should the SERVFAIL not go away this way we let the
transaction fail and accept the SERVFAIL.
|
|
In order to improve compatibility with local clients that speak DNS directly
(and do not use NSS or our bus API) listen locally on 127.0.0.53:53 and process
any queries made that way.
Note that resolved does not implement a full DNS server on this port, but
simply enough to allow normal, local clients to resolve RRs through resolved.
Specifically it does not implement queries without the RD bit set (these are
requests where recursive lookups are explicitly disabled), and neither queries
with DNSSEC DO set in combination with DNSSEC CD (i.e. DNSSEC lookups with
validation turned off). It also refuses zone transfers and obsolete RR types.
All lookups done this way will be rejected with a clean error code, so that the
client side can repeat the query with a reduced feature set.
The code will set the DNSSEC AD flag however, depending on whether the data
resolved has been validated (or comes from a local, trusted source).
Lookups made via this mechanisms are propagated to LLMNR and mDNS as necessary,
but this is only partially useful as DNS packets cannot carry IP scope data
(i.e. the ifindex), and hence link-local addresses returned cannot be used
properly (and given that LLMNR/mDNS are mostly about link-local communication
this is quite a limitation). Also, given that DNS tends to use IDNA for
non-ASCII names, while LLMNR/mDNS uses UTF-8 lookups cannot be mapped 1:1.
In general this should improve compatibility with clients bypassing NSS but
it is highly recommended for clients to instead use NSS or our native bus API.
This patch also beefs up the DnsStream logic, as it reuses the code for local
TCP listening. DnsStream now provides proper reference counting for its
objects.
In order to avoid feedback loops resolved will no silently ignore 127.0.0.53
specified as DNS server when reading configuration.
resolved listens on 127.0.0.53:53 instead of 127.0.0.1:53 in order to leave
the latter free for local, external DNS servers or forwarders.
This also changes the "etc.conf" tmpfiles snippet to create a symlink from
/etc/resolv.conf to /usr/lib/systemd/resolv.conf by default, thus making this
stub the default mode of operation if /etc is not populated.
|
|
When we return the full RR wire data, let's make sure the TTL included in it is
adjusted by the time the RR sat in the cache.
As an optimization we do this only for ResolveRecord() and not for
ResolveHostname() and friends, since adjusting the TTL means copying the RR
object, and we don#t want to do that if there's no reason to.
(ResolveHostname() and friends don't return the TTL hence there's no reason to
in that case)
|
|
(#3553)
dns_transaction_maybe_restart() is supposed to return 1 if the the transaction
has been restarted and 0 otherwise. dns_transaction_process_dnssec() relies on
this behaviour. Before this change in case of restart we'd call
dns_transaction_go() when restarting the lookup, returning its return value
unmodified. This is wrong however, as that function returns 1 if the
transaction is pending, and 0 if it completed immediately, which is a very
different set of return values. Fix this, by always returning 1 on redirection.
The wrong return value resulted in all kinds of bad memory accesses as we might
continue processing a transaction that was redirected and completed immediately
(and thus freed).
This patch also adds comments to the two functions to clarify the return values
for the future.
Most likely fixes: #2942 #3475 #3484
|
|
Previously, after checking the local zone for a reply and finding one we'd not
initialize the answer ifindex from that. Let's fix that.
|
|
incapdns.net returns NXDOMAIN for the SOA of the zone itself but is not a
terminal. This is against the specs, but we really should be able to deal with
this.
Previously, when verifying whether an NXDOMAIN response for a SOA/NS lookup is
rightfully unsigned we'd issue a SOA lookup for the parent's domain, to derive
the state from that. If the parent SOA would get an NXDOMAIN, we'd continue
upwards, until we hit a signed top-level domain, which suggests that the domain
actually exists.
With this change whenver we need to authenticate an NXDOMAIN SOA reply, we'll
request the DS RR for the zone first, and use for validation, since that this
must be from the parent's zone, not the incorrect lower zone.
Fixes: #2894
|
|
CID #1349699-1349700.
|
|
resolved iteration fix
|
|
Throughout the tree there's spurious use of spaces separating ++ and --
operators from their respective operands. Make ++ and -- operator
consistent with the majority of existing uses; discard the spaces.
|
|
When a transaction is complete, and we notify its owners, make sure we deal
correctly with the requesters removing themselves from the list of owners while
we continue iterating.
This was previously already dealt with with transactions that require other
transactions for DNSSEC purposes, fix this for other possibly transaction
owners too now.
Since iterating through "Set" objects is not safe regarding removal of entries
from it, rework the logic to use two Sets, and move each entry we notified from
one set to the other set before we dispatch the notification. This move operation
requires no additional memory, and enables us to ensure that we don't notify
any object twice.
Fixes: #2676
|
|
When the buffer is allocated on the stack we do not have to check for
failure everywhere. This is especially useful in debug statements, because
we can put dns_resource_key_to_string() call in the debug statement, and
we do not need a seperate if (log_level >= LOG_DEBUG) for the conversion.
dns_resource_key_to_string() is changed not to provide any whitespace
padding. Most callers were stripping the whitespace with strstrip(),
and it did not look to well anyway. systemd-resolve output is not column
aligned anymore.
The result of the conversion is not stored in DnsTransaction object
anymore. It is used only for debugging, so it seems fine to generate it
when needed.
Various debug statements are extended to provide more information.
|
|
This fixes formatting of root domain in debug messages:
Old:
systemd-resolved[10049]: Requesting DS to validate transaction 19313 (., DNSKEY with key tag: 19036).
New:
systemd-resolved[10049]: Requesting DS to validate transaction 19313 (, DNSKEY with key tag: 19036).
|
|
With two nested loops and a switch statements, it's quite hard to
understand what break and continue mean.
|
|
|
|
This should be handled fine now by .dir-locals.el, so need to carry that
stuff in every file.
|
|
Previously, if a hostanem is resolved with AF_UNSPEC specified, this would be used as indication to resolve both an
AF_INET and an AF_INET6 address. With this change this logic is altered: an AF_INET address is only resolved if there's
actually a routable IPv4 address on the specific interface, and similar an AF_INET6 address is only resolved if there's
a routable IPv6 address. With this in place, it's ensured that the returned data is actually connectable by
applications. This logic mimics glibc's resolver behaviour.
Note that if the client asks explicitly for AF_INET or AF_INET6 it will get what it asked for.
This also simplifies the logic how it is determined whether a specific lookup shall take place on a scope.
Specifically, the checks with dns_scope_good_key() are now moved out of the transaction code and into the query code,
so that we don't even create a transaction object on a specific scope if we cannot execute the resolution on it anyway.
|
|
|
|
DNS response
If we encounter NXDOMAIN, but find at least one matching RR in a response, then patch it to become SUCCESS. This should
clean up handling of CNAME/DNAMEs, and makes sure broken servers and those conforming to RFC 6604 are treated the same
way. The new behaviour opposes the logic suggested in RFC 6604, but given that some servers don't implement it
correctly, and given that in some ways the CNAME/DNAME chains will be incomplete anyway, and given that DNSSEC
generally only allows us to prove the first element of a CNAME/DNAME chain, this should simplify things for us.
|
|
So far, abritrary NSEC and NSEC3 RRs were implicitly consider "primary" for any transaction, meaning we'd abort the
transaction immediately if we couldn't validate it. With this patch this logic is removed, and the NSEC/NSEC3 RRs will
not be considered primary anymore. This has the effect that they will be dropped from the message if they don't
validate, but processing continues. This is safe to do, as they are required anyway to validate positive wildcard and
negative responses, and if they are missing then, then message will be considered unsigned, which hence means the
outcome is effectively the same.
This is benefical in case the server sends us NSEC/NSEC3 RRs that are not directly related to the lookup we did, but
simply auxiliary information. Previously, if we couldn't authenticate those RRs we'd fail the entire lookup while with
this change we'll simply drop the auxiliary information and proceed without it.
|
|
Whenever we encounter an OS error we did not expect, we so far put the transaction into DNS_TRANSACTION_RESOURCES
state. Rename this state to DNS_TRANSACTION_ERRNO, and save + propagate the actual system error to the caller. This
should make error messages triggered by system errors much more readable by the user.
|
|
If we downgrade from DNSSEC to non-DNSSEC mode, let's log about this in a recognizable way (i.e. with a message ID),
after all, this is of major importance.
|
|
The LLMNR spec suggests to do do reverse address lookups by doing direct LLMNR/TCP connections to the indicated
address, instead of doing any LLMNR multicast queries. When we do this and the peer doesn't actually implement LLMNR
this will result in a TCP connection error, which we need to handle. In contrast to most LLMNR lookups this will give
us a quick response on whether we can find a suitable name. Report this as new transaction state, since this should
mostly be treated like an NXDOMAIN rcode, except that it's not one.
|
|
Also, don't consider RRs that aren't primary to the lookups we do as relevant to the lookups.
|
|
an invalid packet event
|
|
We already maintain statistics about positive DNSSEC proofs, and count them up by 1 for each validated RRset. Now,
update the same counters each time we validated a negative query, so that the statistics are the combined result of all
validation checks, both positive and negative.
|
|
the network is down
|
|
|
|
When we restart a transaction because of an incompatible server, pick a new transaction ID.
This should increase compatibility with DNS servers that don't like if they get different requests with the same
transaction ID.
|
|
given that DNSSEC lookups may result in quite a number of auxiliary transactions, let's better be safe than sorry and
also enforce a limit on the number of total transactions, not just on the number of queries.
|
|
Previously, when getting notified about a completed auxiliary DNSSEC transaction we'd immediately act on it, and
possibly abort the main transaction. This is problematic, as DNS transactions that already completed at the time we
started using them will never get the notification event, and hence never be acted on in the same way.
Hence, introduce a new call dns_transaction_dnssec_ready() that checks the state of auxiliary DNSSEC transactions, and
returns 1 when we are ready for the actual DNSSEC validation step. Then, make sure this is invoked when the auxiliary
transactions are first acquired (and thus possibly reused) as well when the notifications explained above take place.
This fixes problems particularly when doing combined A and AAAA lookups where the auxiliary DNSSEC transactions get
reused between them, and where we got confused if we reused an auxiliary DNSSEC transaction from one when it already
got completed from the other.
|
|
If we have a signed DNAME RR response, there's no need to insist on a signature for a CNAME RR response, after all it
is unlikely to be signed, given the implicit synthethis of CNAME through DNAME RRs.
|