Age | Commit message (Collapse) | Author |
|
Since we should allow registering/unregistering transient units with the
same name in a tight-loop, we need to make the GC more aggressive, so
that dead units are cleaned up immediately instead of later.
hence, execute the GC sweep on every event loop iteration and clean up
units. This of course, means we need to be careful with adding units to
the GC queue, which we already are since we execute check_gc() of each
unit type already when adding something to the queue.
|
|
correctly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Embedded folks don't need the machine registration stuff, hence it's
nice to make this optional. Also, I'd expect that machinectl will grow
additional commands quickly, for example to join existing containers and
suchlike, hence it's better keeping that separate from loginctl.
|
|
|
|
If key mappings are defined in the kernel driver, userspace must
not overwrite them. If something is wrong with the kernel-provided
values, the kernel driver shold be fixed instead.
Some of the matches are not the input device name but the kernel
driver name, which will not match anything.
|
|
In order to prepare things for the single-writer cgroup scheme, let's
make logind use systemd's own primitives for cgroup management.
Every login user now gets his own private slice unit, in which his sessions
live in a scope unit each. Also, add user@$UID.service to the same
slice, and implicitly start it on first login.
|
|
|
|
|
|
|
|
|
|
There are no such strings for input devices in the kernel.
|
|
|
|
|
|
|
|
Since not all unit types know Slice= it belongs in the unit type
specific unit file section.
|
|
creating transient scopes
|
|
Slice/ControlGroup only really makes sense for unit types which actually
have cgroups attached to them, hence move them out of the generic Unit
interface and into the specific unit type interfaces.
These fields will continue to be part of Unit though, simply because
things are a log easier that way. However, regardless how this looks
internally we should keep things clean and independent of the specific
implementation of the inside.
|
|
|
|
"Scope" units are very much like service units, however with the
difference that they are created from pre-existing processes, rather
than processes that systemd itself forks off. This means they are
generated programmatically via the bus API as transient units rather
than from static configuration read from disk. Also, they do not provide
execution-time parameters, as at the time systemd adds the processes to
the scope unit they already exist and the parameters cannot be applied
anymore.
The primary benefit of this new unit type is to create arbitrary cgroups
for worker-processes forked off an existing service.
This commit also adds a a new mode to "systemd-run" to run the specified
processes in a scope rather then a transient service.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Signed-off-by: Martin Pitt <martinpitt@gnome.org>
|
|
Transient units can be created via the bus API. They are configured via
the method call parameters rather than on-disk files. They are subject
to normal GC. Transient units currently may only be created for
services (however, we will extend this), and currently only ExecStart=
and the cgroup parameters can be configured (also to be extended).
Transient units require a unique name, that previously had no
configuration file on disk.
A tool systemd-run is added that makes use of this functionality to run
arbitrary command lines as transient services:
$ systemd-run /bin/ping www.heise.de
Will cause systemd to create a new transient service and run ping in it.
|
|
|
|
|
|
|
|
|
|
|
|
and hook some cgroup attributes up to it
This introduces two bus calls to make runtime changes to selected bus
properties, optionally with persistence.
This currently hooks this up only for three cgroup atributes, but this
brings the infrastructure to add more changable attributes.
This allows setting multiple attributes at once, and takes an array
rather than a dictionary of properties, in order to implement simple
resetting of lists using the same approach as when they are sourced from
unit files. This means, that list properties are appended to by this
call, unless they are first reset via assigning the empty list.
|
|
|
|
|
|
Replace the very generic cgroup hookup with a much simpler one. With
this change only the high-level cgroup settings remain, the ability to
set arbitrary cgroup attributes is removed, so is support for adding
units to arbitrary cgroup controllers or setting arbitrary paths for
them (especially paths that are different for the various controllers).
This also introduces a new -.slice root slice, that is the parent of
system.slice and friends. This enables easy admin configuration of
root-level cgrouo properties.
This replaces DeviceDeny= by DevicePolicy=, and implicitly adds in
/dev/null, /dev/zero and friends if DeviceAllow= is used (unless this is
turned off by DevicePolicy=).
|
|
|
|
It is not allowed.
|
|
When looking at verbose output, additional "work" is required to
pick out the interesting MESSAGE= lines from all the fields.
Also, show long fields in full in verbose output mode when
OUTPUT_FULL_WIDTH is specified.
|
|
check for pid file existance before returning 1
|
|
http://fedoraproject.org/wiki/Packaging:SysVInitScript#Exit_Codes_for_the_Status_Action
https://bugzilla.redhat.com/show_bug.cgi?id=975016
|
|
Corrupted empty files are relatively common. I think they are created
when a coredump for a user who never logged anything before is
attempted to be written, but the write does not succeed because the
coredump is too big, but there are probably other ways to create
those, especially if the machine crashes at the right time.
Non-corrupted empty files can also happen, e.g. if a journal file is
opened, but nothing is ever successfully written to it and it is
rotated because of MaxFileSec=. Either way, each "empty" journal file
costs around 3 MB, and there's little point in keeping them around.
|