Age | Commit message (Collapse) | Author |
|
|
|
Event processes now get re-used after they handled an event. This reduces
pressure on the CPU significantly because cloned event processes no longer
cause page faults in the main daemon. After the events have settled, the
no longer needed worker processes get killed.
|
|
|
|
Directory lookups show up in profiling. The queue files are responsible
for a large proportion of file-related system calls in udev coldplug.
Instead of creating a file for each event, append their details to a
log file. The file is periodically rebuilt (garbage-collected) to
prevent it from growing indefinitely.
This single queue file replaces both the queue directory and the
uevent_seqnum file. On desktop systems the file tends not to grow
beyond one page. So it should also save a small amount of memory in
tmpfs.
Tests on a running EeePC indicate average savings of 5% *udevd* cpu time
as measured by oprofile. __link_path_walk is reduced from 1.5% to
1.3%. It is not completely clear where the rest of the gains come from.
In tests running ~400 events, the queue file is rebuilt about 5 times.
Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
|
|
|
|
|
|
UDev follows the kernel given name, and re-uses the kernel created
device node. If the kernel and spcecified udev rules disagree, the
udev specified node node is created and the kernel-created on is
deleted.
|
|
|
|
|
|
Messages send back by the udev daemon to the netlink socket are
multiplexed by the kernel and delivered to multiple clients. The
clients can upload a socket filter to let the kernel drop messages
not belonging to a certain subsystem. This prevent needless wakeups
and message processing for users who are only interested in a
subset of available events.
Recent kernels allow untrusted users to listen to the netlink
messages.
The messages send by the udev daemon are versioned, to prevent any
custom software reading them without libudev. The message wire format
may change with any udev version update.
|
|
The netlink socket is now used by udev event processes. We should take
care not to pass it to the programs they execute. This is the same way
the inotify fd was handled.
Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
|
|
|
|
There's still a slight race condition when using udevadm settle, if the
udev daemon has a pending inotify event but hasn't yet generated the
"change" uevent for it, the kernel and udev sequence numbers will match
and settle will exit.
Now udevadm settle will send a control message to udevd, which will
respond by sending SIGUSR1 back to the waiting udevadm settle once it
has completed the main loop iteration in which it received the control
message.
If there were no pending inotify events, this will simply wake up the
udev daemon and allow settle to continue. If there are pending inotify
events, they are handled first in the main loop so when settle is
continued they will have been turned into uevents and the kernel
sequence number will have been incremented.
Since the inotify event is pending for udevd when the close() system
call returns (it's queued as part of the kernel handling for that system
call), and since the kernel sequence number is incremented by writing to
the uevent file (as udevd does), this solves the race.
When the settle continues, if there were pending inotify events that
udevd had not read, they are now pending uevents which settle can wait
for.
Signed-off-by: Scott James Remnant <scott@ubuntu.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|