systemd-nspawnsystemdDeveloperLennartPoetteringlennart@poettering.netsystemd-nspawn1systemd-nspawnSpawn a namespace container for debugging, testing and buildingsystemd-nspawnOPTIONSCOMMANDARGSsystemd-nspawn-bOPTIONSARGSDescriptionsystemd-nspawn may be used to
run a command or OS in a light-weight namespace
container. In many ways it is similar to
chroot1,
but more powerful since it fully virtualizes the file
system hierarchy, as well as the process tree, the
various IPC subsystems and the host and domain
name.systemd-nspawn limits access
to various kernel interfaces in the container to
read-only, such as /sys,
/proc/sys or
/sys/fs/selinux. Network
interfaces and the system clock may not be changed
from within the container. Device nodes may not be
created. The host system cannot be rebooted and kernel
modules may not be loaded from within the
container.Note that even though these security precautions
are taken systemd-nspawn is not
suitable for secure container setups. Many of the
security features may be circumvented and are hence
primarily useful to avoid accidental changes to the
host system from the container. The intended use of
this program is debugging and testing as well as
building of packages, distributions and software
involved with boot and systems management.In contrast to
chroot1systemd-nspawn
may be used to boot full Linux-based operating systems
in a container.Use a tool like
yum8,
debootstrap8,
or
pacman8
to set up an OS directory tree suitable as file system
hierarchy for systemd-nspawn
containers.Note that systemd-nspawn will
mount file systems private to the container to
/dev,
/run and similar. These will
not be visible outside of the container, and their
contents will be lost when the container exits.Note that running two
systemd-nspawn containers from the
same directory tree will not make processes in them
see each other. The PID namespace separation of the
two containers is complete and the containers will
share very few runtime objects except for the
underlying file system. Use
machinectl1's
login command to request an
additional login prompt in a running container.systemd-nspawn implements the
Container
Interface specification.As a safety check
systemd-nspawn will verify the
existence of /etc/os-release in
the container tree before starting the container (see
os-release5). It
might be necessary to add this file to the container
tree manually if the OS of the container is too old to
contain this file out-of-the-box.Incompatibility with AuditingNote that the kernel auditing subsystem is
currently broken when used together with
containers. We hence recommend turning it off entirely
by booting with audit=0 on the
kernel command line, or by turning it off at kernel
build time. If auditing is enabled in the kernel,
operating systems booted in an nspawn container might
refuse log-in attempts.OptionsIf option is specified, the
arguments are used as arguments for the init
binary. Otherwise, COMMAND
specifies the program to launch in the container, and
the remaining arguments are used as arguments for this
program. If is not used and no
arguments are specifed, a shell is launched in the
container.The following options are understood:Prints a short help
text and exits.Prints a version string
and exits.Directory to use as
file system root for the namespace
container. If omitted, the current
directory will be
used.Automatically search
for an init binary and invoke it
instead of a shell or a user supplied
program. If this option is used, arguments
specified on the command line are used
as arguments for the init binary.
Run the command
under specified user, create home
directory and cd into it. As rest
of systemd-nspawn, this is not
the security feature and limits
against accidental changes only.
Sets the machine name
for this container. This name may be
used to identify this container on the
host, and is used to initialize the
container's hostname (which the
container can choose to override,
however). If not specified, the last
component of the root directory of the
container is used.Make the container
part of the specified slice, instead
of the
machine.slice.Sets the SELinux
security context to be used to label
processes in the container.Sets the SELinux security
context to be used to label files in
the virtual API file systems in the
container.Set the specified UUID
for the container. The init system
will initialize
/etc/machine-id
from this if this file is not set yet.
Turn off networking in
the container. This makes all network
interfaces unavailable in the
container, with the exception of the
loopback device.Mount the root file
system read-only for the
container.List one or more
additional capabilities to grant the
container. Takes a comma-separated
list of capability names, see
capabilities7
for more information. Note that the
following capabilities will be granted
in any way: CAP_CHOWN,
CAP_DAC_OVERRIDE, CAP_DAC_READ_SEARCH,
CAP_FOWNER, CAP_FSETID, CAP_IPC_OWNER,
CAP_KILL, CAP_LEASE,
CAP_LINUX_IMMUTABLE,
CAP_NET_BIND_SERVICE,
CAP_NET_BROADCAST, CAP_NET_RAW,
CAP_SETGID, CAP_SETFCAP, CAP_SETPCAP,
CAP_SETUID, CAP_SYS_ADMIN,
CAP_SYS_CHROOT, CAP_SYS_NICE,
CAP_SYS_PTRACE, CAP_SYS_TTY_CONFIG,
CAP_SYS_RESOURCE, CAP_SYS_BOOT,
CAP_AUDIT_WRITE,
CAP_AUDIT_CONTROL.Specify one or more
additional capabilities to drop for
the container. This allows running the
container with fewer capabilities than
the default (see above).Control whether the
container's journal shall be made
visible to the host system. If enabled,
allows viewing the container's journal
files from the host (but not vice
versa). Takes one of
no,
host,
guest,
auto. If
no, the journal is
not linked. If host,
the journal files are stored on the
host file system (beneath
/var/log/journal/machine-id)
and the subdirectory is bind-mounted
into the container at the same
location. If guest,
the journal files are stored on the
guest file system (beneath
/var/log/journal/machine-id)
and the subdirectory is symlinked into the host
at the same location. If
auto (the default),
and the right subdirectory of
/var/log/journal
exists, it will be bind mounted
into the container. If the
subdirectory does not exist, no
linking is performed. Effectively,
booting a container once with
guest or
host will link the
journal persistently if further on
the default of auto
is used.Equivalent to
.Bind mount a file or
directory from the host into the
container. Either takes a path
argument -- in which case the
specified path will be mounted from
the host to the same path in the
container --, or a colon-separated
pair of paths -- in which case the
first specified path is the source in
the host, and the second path is the
destination in the container. The
option
creates read-only bind
mount.Specifies an
environment variable assignment to
pass to the init process in the
container, in the format
NAME=VALUE. This
may be used to override the default
variables or to set additional
variables. This parameter may be used
more than once.Turns off any status
output by the tool itself. When this
switch is used, then the only output
by nspawn will be the console output
of the container OS
itself.Allows the container
to share certain system facilities
with the host. More specifically, this
turns off PID namespacing, UTS
namespacing and IPC namespacing, and
thus allows the guest to see and
interact more easily with processes
outside of the container. Note that
using this option makes it impossible
to start up a full Operating System in the
container, as an init system cannot
operate in this mode. It is only
useful to run specific programs or
applications this way, without
involving an init
system in the container.Example 1# yum -y --releasever=19 --nogpg --installroot=/srv/mycontainer --disablerepo='*' --enablerepo=fedora install systemd passwd yum fedora-release vim-minimal
# systemd-nspawn -bD /srv/mycontainerThis installs a minimal Fedora distribution into
the directory /srv/mycontainer/ and
then boots an OS in a namespace container in
it.Example 2# debootstrap --arch=amd64 unstable ~/debian-tree/
# systemd-nspawn -D ~/debian-tree/This installs a minimal Debian unstable
distribution into the directory
~/debian-tree/ and then spawns a
shell in a namespace container in it.Example 3# pacstrap -c -d ~/arch-tree/ base
# systemd-nspawn -bD ~/arch-tree/This installs a mimimal Arch Linux distribution into
the directory ~/arch-tree/ and then
boots an OS in a namespace container in it.Example 4# mv ~/arch-tree /var/lib/container/arch
# systemctl enable systemd-nspawn@arch.service
# systemctl start systemd-nspawn@arch.serviceThis makes the Arch Linux container part of the
multi-user.target on the host.
Example 5# btrfs subvolume snapshot / /.tmp
# systemd-nspawn --private-network -D /.tmp -bThis runs a copy of the host system in a
btrfs snapshot.Example 6# chcon system_u:object_r:svirt_sandbox_file_t:s0:c0,c1 -R /srv/container
# systemd-nspawn -L system_u:object_r:svirt_sandbox_file_t:s0:c0,c1 -Z system_u:system_r:svirt_lxc_net_t:s0:c0,c1 -D /srv/container /bin/shThis runs a container with SELinux sandbox security contexts.Exit statusThe exit code of the program executed in the
container is returned.See Alsosystemd1,
chroot1,
yum8,
debootstrap8,
pacman8,
systemd.slice5,
machinectl1