systemdsystemdDeveloperLennartPoetteringlennart@poettering.netsystemd1systemdinitsystemd System and Session Managersystemd OPTIONSinit OPTIONSCOMMANDDescriptionsystemd is a system and session manager for
Linux operating systems. When run as first process on
boot (as PID 1), it acts as init system that brings
up and maintains userspace services.For compatibility with SysV, if systemd is called
as init and a PID that is not
1, it will execute telinit and pass
all command line arguments unmodified. That means
init and telinit
are mostly equivalent when invoked from normal login sessions. See
telinit8
for more information.OptionsThe following options are understood:Prints a short help
text and exits.Set default unit to
activate on startup. If not specified
defaults to
default.target.Tell systemd to run in
a particular mode. Argument is one of
,
. Normally it
should not be necessary to pass this
option, as systemd automatically
detects the mode it is started
in. This call is hence of little use
except for
debugging.Determine startup
sequence, dump it and exit. This is an
option useful for debugging
only.Dump understood unit
configuration items. This outputs a
terse but complete list of
configuration items understood in unit
definition files.Ask for confirmation when spawning processes.Extract D-Bus
interface introspection data. This is
mostly useful at build at install time
to generate data suitable for the
D-Bus interfaces
repository. Optionally the interface
name for the introspection data may be
specified. If omitted, the
introspection data for all interfaces
is dumped.Set log level. As
argument this accepts a numerical log
level or the well-known syslog3
symbolic names (lowercase):
,
,
,
,
,
,
,
.Set log
target. Argument must be one of
,
,
,
,
.Highlight important
log messages. Argument is a boolean
value. If the argument is omitted it
defaults to
.Include code location
in log messages. This is mostly
relevant for debugging
purposes. Argument is a boolean
value. If the argument is omitted
it defaults to
.Conceptssystemd provides a dependency system between
various entities called "units". Units encapsulate
various objects that are relevant for system boot-up
and maintainance. The majority of units are configured
in unit configuration files, whose syntax and basic
set of options is described in
systemd.unit5,
however some are created automatically from other
configuration or dynamically from system state. Units
may be active (meaning started, bound, plugged in, ...
depending on the unit type), or inactive (meaning
stopped, unbound, unplugged, ...), as well is in the
process of being activated or deactivated,
i.e. between the two states. The following unit types
are available:Service units, which control
daemons and the processes they consist of. For
details see
systemd.service5.Socket units, which
encapsulate local IPC or network sockets in
the system, useful for socket-based
activation. For details about socket units see
systemd.socket5,
for details on socket-based activation and
other forms of activation, see
daemon7.Target units are useful to
group units, or provide well-known
synchronization points during boot-up, see
systemd.target5.Device units expose kernel
devices in systemd and may be used to
implement device-based activation. For details
see
systemd.device5.Mount units control mount
points in the file system, for details see
systemd.mount5.Automount units provide
automount capabilities, for on-demand mounting
of file systems as well as parallelized
boot-up. See
systemd.automount5.Snapshot units can be used to
temporarily save the state of the set of
systemd units, which later may be restored by
activating the saved snapshot unit. For more
information see
systemd.automount5.Timer units are useful for
triggering activation of other units based on
timers. You may find details in
systemd.timer5.Swap units are very similar to
mount units and encapsulated memory swap
partitions or files of the operating
systemd. They are described in systemd.swap5.Path units may be used
activate other services when file system
objects change or are modified. See
systemd.path5.Units are named as their configuration
files. Some units have special semantics. A detailed
list you may find in
systemd.special7.On boot systemd activates the target unit
default.target whose job it is to
activate on-boot services and other on-boot units by
pulling them in via dependencies. Usually the unit
name is just an alias (symlink) for either
graphical.target (for
fully-featured boots into the UI) or
multi-user.target (for limited
console-only boots for use in embedded or server
environments, or similar; a subset of
graphical.target). However it is at the discretion of
the administrator to configure it as an alias to any
other target unit. See
systemd.special7
for details about these target units.Processes systemd spawns ared placed in
individual Linux control groups named after the unit
which they belong to in the private systemd
hierarchy. (see cgroups.txt
for more information about control groups, or short
"cgroups"). systemd uses this to effectively keep
track of processes. Control group information is
maintained in the kernel, and is accessible via the
file system hierarchy (beneath
/cgroup/systemd/), or in tools
such as
ps1
(ps xawf -eo pid,user,cgroup,args
is particularly useful to list all processes and the
systemd units they belong to.).systemd is compatible with the SysV init system
to a large degree: SysV init scripts are supported and
simply read as an alternative (though limited)
configuration file format. The SysV
/dev/initctl interface is
provided, and comaptibility implementations of the
various SysV client tools available. In addition to
that various established Unix functionality such as
/etc/fstab or the
utmp database are
supported.systemd has a minimal transaction system: if a
unit is requested to start up or shut down it will add
it and all its dependencies to a temporary
transaction. Then, it will verify if the transaction
is consistent (i.e. whether the ordering of all units
is cycle-free). If it is not, systemd will try to fix
it up, and removes non-essential jobs from the
transaction that might remove the loop. Also, systemd
tries to suppress non-essential jobs in the
transaction that would stop a running service. Finally
it is checked whether the jobs of the transaction
contradict jobs that have already been queued, and
optionally the transaction is aborted then. If all
worked out and the transaction is consistent and
minimized in its impact it is merged with all already
outstanding jobs and added to the run
queue. Effectively this means that before executing a
requested operation, systemd will verify that it makes
sense, fixing it if possible, and only failing if it
really cannot work.Systemd contains native implementations of
various tasks that need to be executed as part of the
boot process. For example, it sets the host name or
configures the loopback network device. It also sets
up and mounts various API file systems, such as
/sys or
/proc.For more information about the concepts and
ideas behind systemd please refer to the Original
Design Document.DirectoriesSystem unit directoriesThe systemd system
manager reads unit configuration from
various directories. Packages that
want to install unit files shall place
them in the directory returned by
pkg-config systemd
--variable=systemdsystemunitdir. Other
directories checked are
/usr/local/share/systemd/system
and
/usr/share/systemd/system. User
configuration always takes
precedence. pkg-config
systemd
--variable=systemdsystemconfdir
returns the path of the system
configuration directory. Packages
should alter the content of these directories
only with the
systemd-install1
tool.Session unit directoriesSimilar rules apply
for the session unit
directories. However, here the XDG
Base Directory specification
is followed to find
units. Applications should place their
unit files in the directory returned
by pkg-config systemd
--variable=systemdsessionunitdir. Global
configuration is done in the
directory reported by
pkg-config systemd
--variable=systemdsessionconfdir. The
systemd-install1
tool can handle both global (i.e. for
all users) and private (for one user)
enabling/disabling of
units.SysV init scripts directoryThe location of the
SysV init script directory varies
between distributions. If systemd
cannot find a native unit file for a
requested service, it will look for a
SysV init script of the same name
(with the
.service suffix
removed).SysV runlevel link farm directoryThe location of the
SysV runlevel link farm directory
varies between distributions. systemd
will take the link farm into account
when figuring out whether a service
shall be enabled. Note that a service
unit with a native unit configuration
file can be started by activating it
in the SysV runlevel link
farm.SignalsSIGTERMUpon receiving this
signal the systemd system manager
serializes its state, reexecutes
itself and deserializes the saved
state again. This is mostly equivalent
to systemctl
daemon-reexec.systemd session managers will
start the
exit.target unit
when this signal is received. This is
mostly equivalent to
systemctl --session start
exit.target.SIGINTUpon receiving this
signal the systemd system manager will
start the
ctrl-alt-del.target unit. This
is mostly equivalent to
systemctl start
ctl-alt-del.target.systemd session managers
treat this signal the same way as
SIGTERM.SIGWINCHWhen this signal is
received the systemd system manager
will start the
kbrequest.target
unit. This is mostly equivalent to
systemctl start
kbrequest.target.This signal is ignored by
systemd session
managers.SIGPWRWhen this signal is
received the systemd manager
will start the
sigpwr.target
unit. This is mostly equivalent to
systemctl start
sigpwr.target.SIGUSR1When this signal is
received the systemd manager will try
to reconnect to the D-Bus
bus.SIGUSR2When this signal is
received the systemd manager will log
its complete state in human readable
form. The data logged is the same as
printed by systemctl
dump.SIGHUPReloads the complete
daemon configuration. This is mostly
equivalent to systemctl
daemon-reload.SIGRTMIN+0Enters default mode, starts the
default.target
unit. This is mostly equivalent to
systemctl start
default.target.SIGRTMIN+1Enters rescue mode,
starts the
rescue.target
unit. This is mostly equivalent to
systemctl isolate
rescue.target.SIGRTMIN+2Enters emergency mode,
starts the
emergency.service
unit. This is mostly equivalent to
systemctl isolate
emergency.service.SIGRTMIN+3Halts the machine,
starts the
halt.target
unit. This is mostly equivalent to
systemctl start
halt.target.SIGRTMIN+4Powers off the machine,
starts the
poweroff.target
unit. This is mostly equivalent to
systemctl start
poweroff.target.SIGRTMIN+5Reboots the machine,
starts the
reboot.target
unit. This is mostly equivalent to
systemctl start
reboot.target.Environment$SYSTEMD_LOG_LEVELsystemd reads the
log level from this environment
variable. This can be overridden with
.$SYSTEMD_LOG_TARGETsystemd reads the
log target from this environment
variable. This can be overridden with
.$SYSTEMD_LOG_COLORControls whether
systemd highlights important log
messages. This can be overridden with
.$SYSTEMD_LOG_LOCATIONControls whether
systemd prints the code location along
with log messages. This can be
overridden with
.$XDG_CONFIG_HOME$XDG_CONFIG_DIRS$XDG_DATA_HOME$XDG_DATA_DIRSThe systemd session
manager uses these variables in
accordance to the XDG
Base Directory specification
to find its configuration.$SYSTEMD_UNIT_PATHControls where systemd
looks for unit
files.$SYSTEMD_SYSVINIT_PATHControls where systemd
looks for SysV init scripts.$SYSTEMD_SYSVRCND_PATHControls where systemd
looks for SysV init script runlevel link
farms.$LISTEN_PID$LISTEN_FDSSet by systemd for
supervised processes during
socket-based activation. See
sd_listen_fds3
for more information.
$NOTIFY_SOCKETSet by systemd for
supervised processes for status and
start-up completion notification. See
sd_notify3
for more information.
Sockets and FIFOs@/org/freedesktop/systemd1/notifyDaemon status
notification socket. This is an AF_UNIX
datagram socket in the Linux abstract
namespace, and is used to implement
the daemon notification logic as
implemented by
sd_notify3.@/org/freedesktop/systemd1/loggerUsed internally by the
systemd-logger.service
unit to connect STDOUT and/or STDERR
of spawned processes to
syslog3
or the kernel log buffer. This is an
AF_UNIX stream socket in the Linux
abstract namespace.@/org/freedesktop/systemd1/privateUsed internally as
communication channel between
systemctl1
and the systemd process. This is an
AF_UNIX stream socket in the Linux
abstract namespace. This interface is
private to systemd and should not be
used in external
projects./dev/initctlLimited compatibility
support for the SysV client interface,
as implemented by the
systemd-initctl.service
unit. This is a named pipe in the file
system. This interface is obsolete and
should not be used in new
applications.See Alsosystemctl1,
systemadm1,
systemd-install1,
systemd-notify1,
daemon7,
sd-daemon7,
systemd.unit5,
systemd.special5,
pkg-config1