udevsystemdDeveloperGregKroah-Hartmanngreg@kroah.comDeveloperKaySieverskay@vrfy.orgudev7udevDynamic device managementDescriptionudev supplies the system software with device events, manages permissions
of device nodes and may create additional symlinks in the /dev
directory, or renames network interfaces. The kernel usually just assigns unpredictable
device names based on the order of discovery. Meaningful symlinks or network device
names provide a way to reliably identify devices based on their properties or
current configuration.The udev daemon, systemd-udevd.service8, receives device uevents directly from
the kernel whenever a device is added or removed from the system, or it changes its
state. When udev receives a device event, it matches its configured set of rules
against various device attributes to identify the device. Rules that match may
provide additional device information to be stored in the udev database or
to be used to create meaningful symlink names.All device information udev processes is stored in the udev database and
sent out to possible event subscribers. Access to all stored data and the event
sources is provided by the library libudev.Rules FilesThe udev rules are read from the files located in the
system rules directory /usr/lib/udev/rules.d,
the volatile runtime directory /run/udev/rules.d
and the local administration directory /etc/udev/rules.d.
All rules files are collectively sorted and processed in lexical order,
regardless of the directories in which they live. However, files with
identical filenames replace each other. Files in /etc
have the highest priority, files in /run take precedence
over files with the same name in /usr/lib. This can be
used to override a system-supplied rules file with a local file if needed;
a symlink in /etc with the same name as a rules file in
/usr/lib, pointing to /dev/null,
disables the rules file entirely. Rule files must have the extension
.rules; other extensions are ignored.Every line in the rules file contains at least one key-value pair.
Except for empty lines or lines beginning with #, which are ignored.
There are two kinds of keys: match and assignment.
If all match keys match against their values, the rule gets applied and the
assignment keys get the specified values assigned.A matching rule may rename a network interface, add symlinks
pointing to the device node, or run a specified program as part of
the event handling.A rule consists of a comma-separated list of one or more key-value pairs.
Each key has a distinct operation, depending on the used operator. Valid
operators are:==Compare for equality.!=Compare for inequality.=Assign a value to a key. Keys that represent a list are reset
and only this single value is assigned.+=Add the value to a key that holds a list of entries.:=Assign a value to a key finally; disallow any later changes.The following key names can be used to match against device properties.
Some of the keys also match against properties of the parent devices in sysfs,
not only the device that has generated the event. If multiple keys that match
a parent device are specified in a single rule, all these keys must match at
one and the same parent device.ACTIONMatch the name of the event action.DEVPATHMatch the devpath of the event device.KERNELMatch the name of the event device.NAMEMatch the name of a network interface. It can be used once the
NAME key has been set in one of the preceding rules.SYMLINKMatch the name of a symlink targeting the node. It can
be used once a SYMLINK key has been set in one of the preceding
rules. There may be multiple symlinks; only one needs to match.
SUBSYSTEMMatch the subsystem of the event device.DRIVERMatch the driver name of the event device. Only set this key for devices
which are bound to a driver at the time the event is generated.ATTR{filename}Match sysfs attribute values of the event device. Trailing
whitespace in the attribute values is ignored unless the specified match
value itself contains trailing whitespace.
KERNELSSearch the devpath upwards for a matching device name.SUBSYSTEMSSearch the devpath upwards for a matching device subsystem name.DRIVERSSearch the devpath upwards for a matching device driver name.ATTRS{filename}Search the devpath upwards for a device with matching sysfs attribute values.
If multiple ATTRS matches are specified, all of them
must match on the same device. Trailing whitespace in the attribute values is ignored
unless the specified match value itself contains trailing whitespace.TAGSSearch the devpath upwards for a device with matching tag.ENV{key}Match against a device property value.TAGMatch against a device tag.TEST{octal mode mask}Test the existence of a file. An octal mode mask can be specified
if needed.PROGRAMExecute a program to determine whether there
is a match; the key is true if the program returns
successfully. The device properties are made available to the
executed program in the environment. The program's stdout
is available in the RESULT key.This can only be used for very short-running foreground tasks. For details
see RUN.RESULTMatch the returned string of the last PROGRAM call. This key can
be used in the same or in any later rule after a PROGRAM call.Most of the fields support shell glob pattern matching. The following
pattern characters are supported:*Matches zero or more characters.?Matches any single character.[]Matches any single character specified within the brackets. For
example, the pattern string tty[SR]
would match either ttyS or ttyR.
Ranges are also supported via the - character.
For example, to match on the range of all digits, the pattern [0-9] could
be used. If the first character following the [ is a
!, any characters not enclosed are matched.The following keys can get values assigned:NAMEThe name to use for a network interface. The name of a device node
cannot be changed by udev, only additional symlinks can be created.SYMLINKThe name of a symlink targeting the node. Every matching rule adds
this value to the list of symlinks to be created.The set of characters to name a symlink is limited. Allowed
characters are 0-9A-Za-z#+-.:=@_/, valid UTF-8 character
sequences, and \x00 hex encoding. All other
characters are replaced by a _ character.Multiple symlinks may be specified by separating the names by the
space character. In case multiple devices claim the same name, the link
always points to the device with the highest link_priority. If the current
device goes away, the links are re-evaluated and the device with the
next highest link_priority becomes the owner of the link. If no
link_priority is specified, the order of the devices (and which one of
them owns the link) is undefined.Symlink names must never conflict with the kernel's default device
node names, as that would result in unpredictable behavior.
OWNER, GROUP, MODEThe permissions for the device node. Every specified value overrides
the compiled-in default value.SECLABEL{module}Applies the specified Linux Security Module label to the device node.ATTR{key}The value that should be written to a sysfs attribute of the
event device.ENV{key}Set a device property value. Property names with a leading .
are neither stored in the database nor exported to events or
external tools (run by, say, the PROGRAM match key).TAGAttach a tag to a device. This is used to filter events for users
of libudev's monitor functionality, or to enumerate a group of tagged
devices. The implementation can only work efficiently if only a few
tags are attached to a device. It is only meant to be used in
contexts with specific device filter requirements, and not as a
general-purpose flag. Excessive use might result in inefficient event
handling.RUN{type}Add a program to the list of programs to be executed after processing all the
rules for a specific event, depending on type:programExecute an external program specified as the assigned
value. If no absolute path is given, the program is expected to live in
/usr/lib/udev, otherwise the absolute path must be specified.This is the default if no type is
specified.builtinAs program, but use one of the built-in programs rather
than an external one.The program name and following arguments are separated by spaces.
Single quotes can be used to specify arguments with spaces.This can only be used for very short-running foreground tasks. Running an
event process for a long period of time may block all further events for
this or a dependent device.Starting daemons or other long running processes is not appropriate
for udev; the forked processes, detached or not, will be unconditionally
killed after the event handling has finished.LABELA named label to which a GOTO may jump.GOTOJumps to the next LABEL with a matching name.IMPORT{type}Import a set of variables as device properties,
depending on type:programExecute an external program specified as the assigned value and
import its output, which must be in environment key
format. Path specification, command/argument separation,
and quoting work like in RUN.builtinSimilar to program, but use one of the
built-in programs rather than an external one.fileImport a text file specified as the assigned value, the content
of which must be in environment key format.dbImport a single property specified as the assigned value from the
current device database. This works only if the database is already populated
by an earlier event.cmdlineImport a single property from the kernel command line. For simple flags
the value of the property is set to 1.parentImport the stored keys from the parent device by reading
the database entry of the parent device. The value assigned to
is used as a filter of key names
to import (with the same shell glob pattern matching used for
comparisons).This can only be used for very short-running foreground tasks. For details
see .WAIT_FORWait for a file to become available or until a timeout of
10 seconds expires. The path is relative to the sysfs device;
if no path is specified, this waits for an attribute to appear.OPTIONSRule and device options:Specify the priority of the created symlinks. Devices with higher
priorities overwrite existing symlinks of other devices. The default is 0.Number of seconds an event waits for operations to finish before
giving up and terminating itself.Usually control and other possibly unsafe characters are replaced
in strings used for device naming. The mode of replacement can be specified
with this option.Apply the permissions specified in this rule to the static device node with
the specified name. Also, for every tag specified in this rule, create a symlink
in the directory
/run/udev/static_node-tags/tag
pointing at the static device node with the specified name. Static device node
creation is performed by systemd-tmpfiles before systemd-udevd is started. The
static nodes might not have a corresponding kernel device; they are used to
trigger automatic kernel module loading when they are accessed.Watch the device node with inotify; when the node is closed after being opened for
writing, a change uevent is synthesized.Disable the watching of a device node with inotify.The NAME, SYMLINK, PROGRAM,
OWNER, GROUP, MODE and RUN
fields support simple string substitutions. The RUN
substitutions are performed after all rules have been processed, right before the program
is executed, allowing for the use of device properties set by earlier matching
rules. For all other fields, substitutions are performed while the individual rule is
being processed. The available substitutions are:, The kernel name for this device., The kernel number for this device. For example,
sda3 has kernel number 3., The devpath of the device., The name of the device matched while searching the devpath upwards for
, , and .
The driver name of the device matched while searching the devpath upwards for
, , and .
, The value of a sysfs attribute found at the device where
all keys of the rule have matched. If the matching device does not have
such an attribute, and a previous KERNELS, SUBSYSTEMS, DRIVERS, or
ATTRS test selected a parent device, then the attribute from that
parent device is used.If the attribute is a symlink, the last element of the symlink target is
returned as the value., A device property value., The kernel major number for the device., The kernel minor number for the device., The string returned by the external program requested with PROGRAM.
A single part of the string, separated by a space character, may be selected
by specifying the part number as an attribute: %c{N}.
If the number is followed by the + character, this part plus all remaining parts
of the result string are substituted: %c{N+}., The node name of the parent device.The current name of the device. If not changed by a rule, it is the
name of the kernel device.A space-separated list of the current symlinks. The value is
only set during a remove event or if an earlier rule assigned a value., The udev_root value., The sysfs mount point., The name of the device node.The % character itself.The $ character itself.Hardware Database FilesThe hwdb files are read from the files located in the
system hwdb directory /usr/lib/udev/hwdb.d,
the volatile runtime directory /run/udev/hwdb.d
and the local administration directory /etc/udev/hwdb.d.
All hwdb files are collectively sorted and processed in lexical order,
regardless of the directories in which they live. However, files with
identical filenames replace each other. Files in /etc
have the highest priority, files in /run take precedence
over files with the same name in /usr/lib. This can be
used to override a system-supplied hwdb file with a local file if needed;
a symlink in /etc with the same name as a hwdb file in
/usr/lib, pointing to /dev/null,
disables the hwdb file entirely. hwdb files must have the extension
.hwdb; other extensions are ignored.The hwdb file contains data records consisting of matches and
associated key-value pairs. Every record in the hwdb starts with one or
more match string, specifying a shell glob to compare the database
lookup string against. Multiple match lines are specified in additional
consecutive lines. Every match line is compared indivdually, they are
combined by OR. Every match line must start at the first character of
the line.The match lines are followed by one or more key-value pair lines, which
are recognized by a leading space character. The key name and value are separated
by =. An empty line signifies the end
of a record. Lines beginning with # are ignored.The content of all hwdb files is read by
udevadm8
and compiled to a binary database located at /etc/udev/hwdb.bin.
During runtime only the binary database is used.Network Link ConfigurationNetwork link configuration is performed by the net_setup_link
udev builtin.The link files are read from the files located in the
system network directory /usr/lib/systemd/network,
the volatile runtime network directory /run/systemd/network
and the local administration network directory /etc/systemd/network.
Link files must have the extension .link; other extensions are ignored.
All link files are collectively sorted and processed in lexical order,
regardless of the directories in which they live. However, files with
identical filenames replace each other. Files in /etc
have the highest priority, files in /run take precedence
over files with the same name in /usr/lib. This can be
used to override a system-supplied link file with a local file if needed;
a symlink in /etc with the same name as a link file in
/usr/lib, pointing to /dev/null,
disables the link file entirely.The link file contains a [Match] section, which
determines if a given link file may be applied to a given device; and a
[Link] section specifying how the device should be
configured. The first (in lexical order) of the link files that matches
a given device is applied.A link file is said to match a device if each of the entries in the
[Match] section matches, or if the section is empty.
The following keys are accepted:MACAddressThe hardware address.
PathThe persistent path, as exposed by the udev property ID_PATH.DriverThe driver currently bound to the device, as exposed by the udev property DRIVER.TypeThe device type, as exposed by the udev property DEVTYPE, or
ethernet to match a device without a DEVTYPE.The [Link] section accepts the following keys:DescriptionA description of the device.AliasThe ifalias is set to this value.MACAddressPolicyThe policy by which the MAC address should be set. The available policies are:persistentIf the hardware has a persistent MAC address, as most hardware should, and this is used by
the kernel, nothing is done. Otherwise, a new MAC address is generated which is guaranteed to be
the same on every boot for the given machine and the given device, but which is otherwise random.
randomIf the kernel is using a random MAC address, nothing is done. Otherwise, a new address is
randomly generated each time the device appears, typically at boot.MACAddressThe MAC address to use, if no MACAddressPolicy is specified.NamePolicyAn ordered, space-separated list of policies by which the interface name should be set.
NamePolicy may be disabeld by specifying net.ifnames=0 on the
kernel commandline. Each of the policies may fail, and the first successfull one is used. The name
is not set directly, but exported to udev as the property ID_NET_NAME, which is
by default used by an udev rule to set NAME. The available policies are:onboardThe name is set based on information given by the firmware for on-board devices, as
exported by the udev property ID_NET_NAME_ONBOARD.slotThe name is set based on information given by the firmware for hot-plug devices, as
exported by the udev property ID_NET_NAME_SLOT.pathThe name is set based on the device's physical location, as exported by the udev
property ID_NET_NAME_PATH.macThe name is set based on the device's persistent MAC address, as exported by the udev
property ID_NET_NAME_MAC.NameThe interface name to use in case all the policies specified in NamePolicy
fail, or in case NamePolicy is missing or disabled.MTUThe MTU to set for the device.SpeedMBytesThe speed to set for the device.DuplexThe duplex mode to set for the device. The accepted values are half and
full.WakeOnLanThe Wake-On-Lan policy to set for the device. The supported values are:phyWake on PHY activity.magicWake on receipt of magic packet.offNever wake.See Alsosystemd-udevd.service8,
udevadm8