/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/ /*** This file is part of systemd. Copyright 2012 Lennart Poettering systemd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with systemd; If not, see <http://www.gnu.org/licenses/>. ***/ #define __STDC_FORMAT_MACROS #include <errno.h> #include <string.h> #include <stdlib.h> #include <stdint.h> #include <unistd.h> #include <alloca.h> #include <getopt.h> #include "path-util.h" #include "util.h" #include "hashmap.h" #include "cgroup-util.h" #include "build.h" #include "fileio.h" typedef struct Group { char *path; bool n_tasks_valid:1; bool cpu_valid:1; bool memory_valid:1; bool io_valid:1; unsigned n_tasks; unsigned cpu_iteration; uint64_t cpu_usage; struct timespec cpu_timestamp; double cpu_fraction; uint64_t memory; unsigned io_iteration; uint64_t io_input, io_output; struct timespec io_timestamp; uint64_t io_input_bps, io_output_bps; } Group; static unsigned arg_depth = 3; static unsigned arg_iterations = 0; static bool arg_batch = false; static usec_t arg_delay = 1*USEC_PER_SEC; static enum { ORDER_PATH, ORDER_TASKS, ORDER_CPU, ORDER_MEMORY, ORDER_IO } arg_order = ORDER_CPU; static enum { CPU_PERCENT, CPU_TIME, } arg_cpu_type = CPU_PERCENT; static void group_free(Group *g) { assert(g); free(g->path); free(g); } static void group_hashmap_clear(Hashmap *h) { Group *g; while ((g = hashmap_steal_first(h))) group_free(g); } static void group_hashmap_free(Hashmap *h) { group_hashmap_clear(h); hashmap_free(h); } static int process(const char *controller, const char *path, Hashmap *a, Hashmap *b, unsigned iteration) { Group *g; int r; FILE *f; pid_t pid; unsigned n; assert(controller); assert(path); assert(a); g = hashmap_get(a, path); if (!g) { g = hashmap_get(b, path); if (!g) { g = new0(Group, 1); if (!g) return -ENOMEM; g->path = strdup(path); if (!g->path) { group_free(g); return -ENOMEM; } r = hashmap_put(a, g->path, g); if (r < 0) { group_free(g); return r; } } else { assert_se(hashmap_move_one(a, b, path) == 0); g->cpu_valid = g->memory_valid = g->io_valid = g->n_tasks_valid = false; } } /* Regardless which controller, let's find the maximum number * of processes in any of it */ r = cg_enumerate_processes(controller, path, &f); if (r < 0) return r; n = 0; while (cg_read_pid(f, &pid) > 0) n++; fclose(f); if (n > 0) { if (g->n_tasks_valid) g->n_tasks = MAX(g->n_tasks, n); else g->n_tasks = n; g->n_tasks_valid = true; } if (streq(controller, "cpuacct")) { uint64_t new_usage; char *p, *v; struct timespec ts; r = cg_get_path(controller, path, "cpuacct.usage", &p); if (r < 0) return r; r = read_one_line_file(p, &v); free(p); if (r < 0) return r; r = safe_atou64(v, &new_usage); free(v); if (r < 0) return r; assert_se(clock_gettime(CLOCK_MONOTONIC, &ts) == 0); if (g->cpu_iteration == iteration - 1) { uint64_t x, y; x = ((uint64_t) ts.tv_sec * 1000000000ULL + (uint64_t) ts.tv_nsec) - ((uint64_t) g->cpu_timestamp.tv_sec * 1000000000ULL + (uint64_t) g->cpu_timestamp.tv_nsec); y = new_usage - g->cpu_usage; if (y > 0) { g->cpu_fraction = (double) y / (double) x; g->cpu_valid = true; } } g->cpu_usage = new_usage; g->cpu_timestamp = ts; g->cpu_iteration = iteration; } else if (streq(controller, "memory")) { char *p, *v; r = cg_get_path(controller, path, "memory.usage_in_bytes", &p); if (r < 0) return r; r = read_one_line_file(p, &v); free(p); if (r < 0) return r; r = safe_atou64(v, &g->memory); free(v); if (r < 0) return r; if (g->memory > 0) g->memory_valid = true; } else if (streq(controller, "blkio")) { char *p; uint64_t wr = 0, rd = 0; struct timespec ts; r = cg_get_path(controller, path, "blkio.io_service_bytes", &p); if (r < 0) return r; f = fopen(p, "re"); free(p); if (!f) return -errno; for (;;) { char line[LINE_MAX], *l; uint64_t k, *q; if (!fgets(line, sizeof(line), f)) break; l = strstrip(line); l += strcspn(l, WHITESPACE); l += strspn(l, WHITESPACE); if (first_word(l, "Read")) { l += 4; q = &rd; } else if (first_word(l, "Write")) { l += 5; q = ≀ } else continue; l += strspn(l, WHITESPACE); r = safe_atou64(l, &k); if (r < 0) continue; *q += k; } fclose(f); assert_se(clock_gettime(CLOCK_MONOTONIC, &ts) == 0); if (g->io_iteration == iteration - 1) { uint64_t x, yr, yw; x = ((uint64_t) ts.tv_sec * 1000000000ULL + (uint64_t) ts.tv_nsec) - ((uint64_t) g->io_timestamp.tv_sec * 1000000000ULL + (uint64_t) g->io_timestamp.tv_nsec); yr = rd - g->io_input; yw = wr - g->io_output; if (yr > 0 || yw > 0) { g->io_input_bps = (yr * 1000000000ULL) / x; g->io_output_bps = (yw * 1000000000ULL) / x; g->io_valid = true; } } g->io_input = rd; g->io_output = wr; g->io_timestamp = ts; g->io_iteration = iteration; } return 0; } static int refresh_one( const char *controller, const char *path, Hashmap *a, Hashmap *b, unsigned iteration, unsigned depth) { DIR *d = NULL; int r; assert(controller); assert(path); assert(a); if (depth > arg_depth) return 0; r = process(controller, path, a, b, iteration); if (r < 0) return r; r = cg_enumerate_subgroups(controller, path, &d); if (r < 0) { if (r == -ENOENT) return 0; return r; } for (;;) { char *fn, *p; r = cg_read_subgroup(d, &fn); if (r <= 0) goto finish; p = strjoin(path, "/", fn, NULL); free(fn); if (!p) { r = -ENOMEM; goto finish; } path_kill_slashes(p); r = refresh_one(controller, p, a, b, iteration, depth + 1); free(p); if (r < 0) goto finish; } finish: if (d) closedir(d); return r; } static int refresh(Hashmap *a, Hashmap *b, unsigned iteration) { int r; assert(a); r = refresh_one("name=systemd", "/", a, b, iteration, 0); if (r < 0) if (r != -ENOENT) return r; r = refresh_one("cpuacct", "/", a, b, iteration, 0); if (r < 0) if (r != -ENOENT) return r; r = refresh_one("memory", "/", a, b, iteration, 0); if (r < 0) if (r != -ENOENT) return r; r = refresh_one("blkio", "/", a, b, iteration, 0); if (r < 0) if (r != -ENOENT) return r; return 0; } static int group_compare(const void*a, const void *b) { const Group *x = *(Group**)a, *y = *(Group**)b; if (path_startswith(y->path, x->path)) return -1; if (path_startswith(x->path, y->path)) return 1; if (arg_order == ORDER_CPU) { if (arg_cpu_type == CPU_PERCENT) { if (x->cpu_valid && y->cpu_valid) { if (x->cpu_fraction > y->cpu_fraction) return -1; else if (x->cpu_fraction < y->cpu_fraction) return 1; } else if (x->cpu_valid) return -1; else if (y->cpu_valid) return 1; } else { if (x->cpu_usage > y->cpu_usage) return -1; else if (x->cpu_usage < y->cpu_usage) return 1; } } if (arg_order == ORDER_TASKS) { if (x->n_tasks_valid && y->n_tasks_valid) { if (x->n_tasks > y->n_tasks) return -1; else if (x->n_tasks < y->n_tasks) return 1; } else if (x->n_tasks_valid) return -1; else if (y->n_tasks_valid) return 1; } if (arg_order == ORDER_MEMORY) { if (x->memory_valid && y->memory_valid) { if (x->memory > y->memory) return -1; else if (x->memory < y->memory) return 1; } else if (x->memory_valid) return -1; else if (y->memory_valid) return 1; } if (arg_order == ORDER_IO) { if (x->io_valid && y->io_valid) { if (x->io_input_bps + x->io_output_bps > y->io_input_bps + y->io_output_bps) return -1; else if (x->io_input_bps + x->io_output_bps < y->io_input_bps + y->io_output_bps) return 1; } else if (x->io_valid) return -1; else if (y->io_valid) return 1; } return strcmp(x->path, y->path); } #define ON ANSI_HIGHLIGHT_ON #define OFF ANSI_HIGHLIGHT_OFF static int display(Hashmap *a) { Iterator i; Group *g; Group **array; signed path_columns; unsigned rows, n = 0, j, maxtcpu = 0, maxtpath = 0; char buffer[MAX3(21, FORMAT_BYTES_MAX, FORMAT_TIMESPAN_MAX)]; assert(a); /* Set cursor to top left corner and clear screen */ if (on_tty()) fputs("\033[H" "\033[2J", stdout); array = alloca(sizeof(Group*) * hashmap_size(a)); HASHMAP_FOREACH(g, a, i) if (g->n_tasks_valid || g->cpu_valid || g->memory_valid || g->io_valid) array[n++] = g; qsort(array, n, sizeof(Group*), group_compare); /* Find the longest names in one run */ for (j = 0; j < n; j++) { unsigned cputlen, pathtlen; format_timespan(buffer, sizeof(buffer), (nsec_t) (array[j]->cpu_usage / NSEC_PER_USEC), 0); cputlen = strlen(buffer); maxtcpu = MAX(maxtcpu, cputlen); pathtlen = strlen(array[j]->path); maxtpath = MAX(maxtpath, pathtlen); } if (arg_cpu_type == CPU_PERCENT) snprintf(buffer, sizeof(buffer), "%6s", "%CPU"); else snprintf(buffer, sizeof(buffer), "%*s", maxtcpu, "CPU Time"); rows = lines(); if (rows <= 10) rows = 10; if (on_tty()) { path_columns = columns() - 36 - strlen(buffer); if (path_columns < 10) path_columns = 10; printf("%s%-*s%s %s%7s%s %s%s%s %s%8s%s %s%8s%s %s%8s%s\n\n", arg_order == ORDER_PATH ? ON : "", path_columns, "Path", arg_order == ORDER_PATH ? OFF : "", arg_order == ORDER_TASKS ? ON : "", "Tasks", arg_order == ORDER_TASKS ? OFF : "", arg_order == ORDER_CPU ? ON : "", buffer, arg_order == ORDER_CPU ? OFF : "", arg_order == ORDER_MEMORY ? ON : "", "Memory", arg_order == ORDER_MEMORY ? OFF : "", arg_order == ORDER_IO ? ON : "", "Input/s", arg_order == ORDER_IO ? OFF : "", arg_order == ORDER_IO ? ON : "", "Output/s", arg_order == ORDER_IO ? OFF : ""); } else path_columns = maxtpath; for (j = 0; j < n; j++) { char *p; if (on_tty() && j + 5 > rows) break; g = array[j]; p = ellipsize(g->path, path_columns, 33); printf("%-*s", path_columns, p ? p : g->path); free(p); if (g->n_tasks_valid) printf(" %7u", g->n_tasks); else fputs(" -", stdout); if (arg_cpu_type == CPU_PERCENT) { if (g->cpu_valid) printf(" %6.1f", g->cpu_fraction*100); else fputs(" -", stdout); } else printf(" %*s", maxtcpu, format_timespan(buffer, sizeof(buffer), (nsec_t) (g->cpu_usage / NSEC_PER_USEC), 0)); if (g->memory_valid) printf(" %8s", format_bytes(buffer, sizeof(buffer), g->memory)); else fputs(" -", stdout); if (g->io_valid) { printf(" %8s", format_bytes(buffer, sizeof(buffer), g->io_input_bps)); printf(" %8s", format_bytes(buffer, sizeof(buffer), g->io_output_bps)); } else fputs(" - -", stdout); putchar('\n'); } return 0; } static void help(void) { printf("%s [OPTIONS...]\n\n" "Show top control groups by their resource usage.\n\n" " -h --help Show this help\n" " --version Print version and exit\n" " -p Order by path\n" " -t Order by number of tasks\n" " -c Order by CPU load\n" " -m Order by memory load\n" " -i Order by IO load\n" " --cpu[=TYPE] Show CPU usage as time or percentage (default)\n" " -d --delay=DELAY Delay between updates\n" " -n --iterations=N Run for N iterations before exiting\n" " -b --batch Run in batch mode, accepting no input\n" " --depth=DEPTH Maximum traversal depth (default: %d)\n", program_invocation_short_name, arg_depth); } static void version(void) { puts(PACKAGE_STRING " cgtop"); } static int parse_argv(int argc, char *argv[]) { enum { ARG_VERSION = 0x100, ARG_DEPTH, ARG_CPU_TYPE }; static const struct option options[] = { { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, ARG_VERSION }, { "delay", required_argument, NULL, 'd' }, { "iterations", required_argument, NULL, 'n' }, { "batch", no_argument, NULL, 'b' }, { "depth", required_argument, NULL, ARG_DEPTH }, { "cpu", optional_argument, NULL, ARG_CPU_TYPE}, { NULL, 0, NULL, 0 } }; int c; int r; assert(argc >= 1); assert(argv); while ((c = getopt_long(argc, argv, "hptcmin:bd:", options, NULL)) >= 0) { switch (c) { case 'h': help(); return 0; case ARG_VERSION: version(); return 0; case ARG_CPU_TYPE: if (optarg) { if (strcmp(optarg, "time") == 0) arg_cpu_type = CPU_TIME; else if (strcmp(optarg, "percentage") == 0) arg_cpu_type = CPU_PERCENT; else return -EINVAL; } break; case ARG_DEPTH: r = safe_atou(optarg, &arg_depth); if (r < 0) { log_error("Failed to parse depth parameter."); return -EINVAL; } break; case 'd': r = parse_sec(optarg, &arg_delay); if (r < 0 || arg_delay <= 0) { log_error("Failed to parse delay parameter."); return -EINVAL; } break; case 'n': r = safe_atou(optarg, &arg_iterations); if (r < 0) { log_error("Failed to parse iterations parameter."); return -EINVAL; } break; case 'b': arg_batch = true; break; case 'p': arg_order = ORDER_PATH; break; case 't': arg_order = ORDER_TASKS; break; case 'c': arg_order = ORDER_CPU; break; case 'm': arg_order = ORDER_MEMORY; break; case 'i': arg_order = ORDER_IO; break; case '?': return -EINVAL; default: log_error("Unknown option code %c", c); return -EINVAL; } } if (optind < argc) { log_error("Too many arguments."); return -EINVAL; } return 1; } int main(int argc, char *argv[]) { int r; Hashmap *a = NULL, *b = NULL; unsigned iteration = 0; usec_t last_refresh = 0; bool quit = false, immediate_refresh = false; log_parse_environment(); log_open(); r = parse_argv(argc, argv); if (r <= 0) goto finish; a = hashmap_new(string_hash_func, string_compare_func); b = hashmap_new(string_hash_func, string_compare_func); if (!a || !b) { r = log_oom(); goto finish; } signal(SIGWINCH, columns_lines_cache_reset); if (!on_tty()) arg_iterations = 1; while (!quit) { Hashmap *c; usec_t t; char key; char h[FORMAT_TIMESPAN_MAX]; t = now(CLOCK_MONOTONIC); if (t >= last_refresh + arg_delay || immediate_refresh) { r = refresh(a, b, iteration++); if (r < 0) goto finish; group_hashmap_clear(b); c = a; a = b; b = c; last_refresh = t; immediate_refresh = false; } r = display(b); if (r < 0) goto finish; if (arg_iterations && iteration >= arg_iterations) break; if (arg_batch) { usleep(last_refresh + arg_delay - t); } else { r = read_one_char(stdin, &key, last_refresh + arg_delay - t, NULL); if (r == -ETIMEDOUT) continue; if (r < 0) { log_error("Couldn't read key: %s", strerror(-r)); goto finish; } } fputs("\r \r", stdout); fflush(stdout); if (arg_batch) continue; switch (key) { case ' ': immediate_refresh = true; break; case 'q': quit = true; break; case 'p': arg_order = ORDER_PATH; break; case 't': arg_order = ORDER_TASKS; break; case 'c': arg_order = ORDER_CPU; break; case 'm': arg_order = ORDER_MEMORY; break; case 'i': arg_order = ORDER_IO; break; case '%': arg_cpu_type = arg_cpu_type == CPU_TIME ? CPU_PERCENT : CPU_TIME; break; case '+': if (arg_delay < USEC_PER_SEC) arg_delay += USEC_PER_MSEC*250; else arg_delay += USEC_PER_SEC; fprintf(stdout, "\nIncreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0)); fflush(stdout); sleep(1); break; case '-': if (arg_delay <= USEC_PER_MSEC*500) arg_delay = USEC_PER_MSEC*250; else if (arg_delay < USEC_PER_MSEC*1250) arg_delay -= USEC_PER_MSEC*250; else arg_delay -= USEC_PER_SEC; fprintf(stdout, "\nDecreased delay to %s.", format_timespan(h, sizeof(h), arg_delay, 0)); fflush(stdout); sleep(1); break; case '?': case 'h': fprintf(stdout, "\t<" ON "P" OFF "> By path; <" ON "T" OFF "> By tasks; <" ON "C" OFF "> By CPU; <" ON "M" OFF "> By memory; <" ON "I" OFF "> By I/O\n" "\t<" ON "+" OFF "> Increase delay; <" ON "-" OFF "> Decrease delay; <" ON "%%" OFF "> Toggle time\n" "\t<" ON "Q" OFF "> Quit; <" ON "SPACE" OFF "> Refresh"); fflush(stdout); sleep(3); break; default: fprintf(stdout, "\nUnknown key '%c'. Ignoring.", key); fflush(stdout); sleep(1); break; } } r = 0; finish: group_hashmap_free(a); group_hashmap_free(b); if (r < 0) { log_error("Exiting with failure: %s", strerror(-r)); return EXIT_FAILURE; } return EXIT_SUCCESS; }