/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
/***
This file is part of systemd.
Copyright 2010 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see .
***/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef HAVE_SECCOMP
#include
#include "set.h"
#endif
#undef basename
#ifdef HAVE_PAM
#include
#endif
#ifdef HAVE_SELINUX
#include
#endif
#include "execute.h"
#include "strv.h"
#include "macro.h"
#include "capability.h"
#include "util.h"
#include "log.h"
#include "sd-messages.h"
#include "ioprio.h"
#include "securebits.h"
#include "namespace.h"
#include "tcpwrap.h"
#include "exit-status.h"
#include "missing.h"
#include "utmp-wtmp.h"
#include "def.h"
#include "path-util.h"
#include "env-util.h"
#include "fileio.h"
#include "unit.h"
#include "async.h"
#include "selinux-util.h"
#define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
#define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
/* This assumes there is a 'tty' group */
#define TTY_MODE 0620
#define SNDBUF_SIZE (8*1024*1024)
static int shift_fds(int fds[], unsigned n_fds) {
int start, restart_from;
if (n_fds <= 0)
return 0;
/* Modifies the fds array! (sorts it) */
assert(fds);
start = 0;
for (;;) {
int i;
restart_from = -1;
for (i = start; i < (int) n_fds; i++) {
int nfd;
/* Already at right index? */
if (fds[i] == i+3)
continue;
if ((nfd = fcntl(fds[i], F_DUPFD, i+3)) < 0)
return -errno;
close_nointr_nofail(fds[i]);
fds[i] = nfd;
/* Hmm, the fd we wanted isn't free? Then
* let's remember that and try again from here*/
if (nfd != i+3 && restart_from < 0)
restart_from = i;
}
if (restart_from < 0)
break;
start = restart_from;
}
return 0;
}
static int flags_fds(const int fds[], unsigned n_fds, bool nonblock) {
unsigned i;
int r;
if (n_fds <= 0)
return 0;
assert(fds);
/* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags */
for (i = 0; i < n_fds; i++) {
if ((r = fd_nonblock(fds[i], nonblock)) < 0)
return r;
/* We unconditionally drop FD_CLOEXEC from the fds,
* since after all we want to pass these fds to our
* children */
if ((r = fd_cloexec(fds[i], false)) < 0)
return r;
}
return 0;
}
_pure_ static const char *tty_path(const ExecContext *context) {
assert(context);
if (context->tty_path)
return context->tty_path;
return "/dev/console";
}
static void exec_context_tty_reset(const ExecContext *context) {
assert(context);
if (context->tty_vhangup)
terminal_vhangup(tty_path(context));
if (context->tty_reset)
reset_terminal(tty_path(context));
if (context->tty_vt_disallocate && context->tty_path)
vt_disallocate(context->tty_path);
}
static bool is_terminal_output(ExecOutput o) {
return
o == EXEC_OUTPUT_TTY ||
o == EXEC_OUTPUT_SYSLOG_AND_CONSOLE ||
o == EXEC_OUTPUT_KMSG_AND_CONSOLE ||
o == EXEC_OUTPUT_JOURNAL_AND_CONSOLE;
}
static int open_null_as(int flags, int nfd) {
int fd, r;
assert(nfd >= 0);
fd = open("/dev/null", flags|O_NOCTTY);
if (fd < 0)
return -errno;
if (fd != nfd) {
r = dup2(fd, nfd) < 0 ? -errno : nfd;
close_nointr_nofail(fd);
} else
r = nfd;
return r;
}
static int connect_logger_as(const ExecContext *context, ExecOutput output, const char *ident, const char *unit_id, int nfd) {
int fd, r;
union sockaddr_union sa = {
.un.sun_family = AF_UNIX,
.un.sun_path = "/run/systemd/journal/stdout",
};
assert(context);
assert(output < _EXEC_OUTPUT_MAX);
assert(ident);
assert(nfd >= 0);
fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd < 0)
return -errno;
r = connect(fd, &sa.sa, offsetof(struct sockaddr_un, sun_path) + strlen(sa.un.sun_path));
if (r < 0) {
close_nointr_nofail(fd);
return -errno;
}
if (shutdown(fd, SHUT_RD) < 0) {
close_nointr_nofail(fd);
return -errno;
}
fd_inc_sndbuf(fd, SNDBUF_SIZE);
dprintf(fd,
"%s\n"
"%s\n"
"%i\n"
"%i\n"
"%i\n"
"%i\n"
"%i\n",
context->syslog_identifier ? context->syslog_identifier : ident,
unit_id,
context->syslog_priority,
!!context->syslog_level_prefix,
output == EXEC_OUTPUT_SYSLOG || output == EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
output == EXEC_OUTPUT_KMSG || output == EXEC_OUTPUT_KMSG_AND_CONSOLE,
is_terminal_output(output));
if (fd != nfd) {
r = dup2(fd, nfd) < 0 ? -errno : nfd;
close_nointr_nofail(fd);
} else
r = nfd;
return r;
}
static int open_terminal_as(const char *path, mode_t mode, int nfd) {
int fd, r;
assert(path);
assert(nfd >= 0);
if ((fd = open_terminal(path, mode | O_NOCTTY)) < 0)
return fd;
if (fd != nfd) {
r = dup2(fd, nfd) < 0 ? -errno : nfd;
close_nointr_nofail(fd);
} else
r = nfd;
return r;
}
static bool is_terminal_input(ExecInput i) {
return
i == EXEC_INPUT_TTY ||
i == EXEC_INPUT_TTY_FORCE ||
i == EXEC_INPUT_TTY_FAIL;
}
static int fixup_input(ExecInput std_input, int socket_fd, bool apply_tty_stdin) {
if (is_terminal_input(std_input) && !apply_tty_stdin)
return EXEC_INPUT_NULL;
if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
return EXEC_INPUT_NULL;
return std_input;
}
static int fixup_output(ExecOutput std_output, int socket_fd) {
if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
return EXEC_OUTPUT_INHERIT;
return std_output;
}
static int setup_input(const ExecContext *context, int socket_fd, bool apply_tty_stdin) {
ExecInput i;
assert(context);
i = fixup_input(context->std_input, socket_fd, apply_tty_stdin);
switch (i) {
case EXEC_INPUT_NULL:
return open_null_as(O_RDONLY, STDIN_FILENO);
case EXEC_INPUT_TTY:
case EXEC_INPUT_TTY_FORCE:
case EXEC_INPUT_TTY_FAIL: {
int fd, r;
fd = acquire_terminal(tty_path(context),
i == EXEC_INPUT_TTY_FAIL,
i == EXEC_INPUT_TTY_FORCE,
false,
(usec_t) -1);
if (fd < 0)
return fd;
if (fd != STDIN_FILENO) {
r = dup2(fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
close_nointr_nofail(fd);
} else
r = STDIN_FILENO;
return r;
}
case EXEC_INPUT_SOCKET:
return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
default:
assert_not_reached("Unknown input type");
}
}
static int setup_output(const ExecContext *context, int fileno, int socket_fd, const char *ident, const char *unit_id, bool apply_tty_stdin) {
ExecOutput o;
ExecInput i;
int r;
assert(context);
assert(ident);
i = fixup_input(context->std_input, socket_fd, apply_tty_stdin);
o = fixup_output(context->std_output, socket_fd);
if (fileno == STDERR_FILENO) {
ExecOutput e;
e = fixup_output(context->std_error, socket_fd);
/* This expects the input and output are already set up */
/* Don't change the stderr file descriptor if we inherit all
* the way and are not on a tty */
if (e == EXEC_OUTPUT_INHERIT &&
o == EXEC_OUTPUT_INHERIT &&
i == EXEC_INPUT_NULL &&
!is_terminal_input(context->std_input) &&
getppid () != 1)
return fileno;
/* Duplicate from stdout if possible */
if (e == o || e == EXEC_OUTPUT_INHERIT)
return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
o = e;
} else if (o == EXEC_OUTPUT_INHERIT) {
/* If input got downgraded, inherit the original value */
if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
return open_terminal_as(tty_path(context), O_WRONLY, fileno);
/* If the input is connected to anything that's not a /dev/null, inherit that... */
if (i != EXEC_INPUT_NULL)
return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
/* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
if (getppid() != 1)
return fileno;
/* We need to open /dev/null here anew, to get the right access mode. */
return open_null_as(O_WRONLY, fileno);
}
switch (o) {
case EXEC_OUTPUT_NULL:
return open_null_as(O_WRONLY, fileno);
case EXEC_OUTPUT_TTY:
if (is_terminal_input(i))
return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
/* We don't reset the terminal if this is just about output */
return open_terminal_as(tty_path(context), O_WRONLY, fileno);
case EXEC_OUTPUT_SYSLOG:
case EXEC_OUTPUT_SYSLOG_AND_CONSOLE:
case EXEC_OUTPUT_KMSG:
case EXEC_OUTPUT_KMSG_AND_CONSOLE:
case EXEC_OUTPUT_JOURNAL:
case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
r = connect_logger_as(context, o, ident, unit_id, fileno);
if (r < 0) {
log_struct_unit(LOG_CRIT, unit_id,
"MESSAGE=Failed to connect std%s of %s to the journal socket: %s",
fileno == STDOUT_FILENO ? "out" : "err",
unit_id, strerror(-r),
"ERRNO=%d", -r,
NULL);
r = open_null_as(O_WRONLY, fileno);
}
return r;
case EXEC_OUTPUT_SOCKET:
assert(socket_fd >= 0);
return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
default:
assert_not_reached("Unknown error type");
}
}
static int chown_terminal(int fd, uid_t uid) {
struct stat st;
assert(fd >= 0);
/* This might fail. What matters are the results. */
(void) fchown(fd, uid, -1);
(void) fchmod(fd, TTY_MODE);
if (fstat(fd, &st) < 0)
return -errno;
if (st.st_uid != uid || (st.st_mode & 0777) != TTY_MODE)
return -EPERM;
return 0;
}
static int setup_confirm_stdio(int *_saved_stdin,
int *_saved_stdout) {
int fd = -1, saved_stdin, saved_stdout = -1, r;
assert(_saved_stdin);
assert(_saved_stdout);
saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
if (saved_stdin < 0)
return -errno;
saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
if (saved_stdout < 0) {
r = errno;
goto fail;
}
fd = acquire_terminal(
"/dev/console",
false,
false,
false,
DEFAULT_CONFIRM_USEC);
if (fd < 0) {
r = fd;
goto fail;
}
r = chown_terminal(fd, getuid());
if (r < 0)
goto fail;
if (dup2(fd, STDIN_FILENO) < 0) {
r = -errno;
goto fail;
}
if (dup2(fd, STDOUT_FILENO) < 0) {
r = -errno;
goto fail;
}
if (fd >= 2)
close_nointr_nofail(fd);
*_saved_stdin = saved_stdin;
*_saved_stdout = saved_stdout;
return 0;
fail:
if (saved_stdout >= 0)
close_nointr_nofail(saved_stdout);
if (saved_stdin >= 0)
close_nointr_nofail(saved_stdin);
if (fd >= 0)
close_nointr_nofail(fd);
return r;
}
_printf_(1, 2) static int write_confirm_message(const char *format, ...) {
int fd;
va_list ap;
assert(format);
fd = open_terminal("/dev/console", O_WRONLY|O_NOCTTY|O_CLOEXEC);
if (fd < 0)
return fd;
va_start(ap, format);
vdprintf(fd, format, ap);
va_end(ap);
close_nointr_nofail(fd);
return 0;
}
static int restore_confirm_stdio(int *saved_stdin,
int *saved_stdout) {
int r = 0;
assert(saved_stdin);
assert(saved_stdout);
release_terminal();
if (*saved_stdin >= 0)
if (dup2(*saved_stdin, STDIN_FILENO) < 0)
r = -errno;
if (*saved_stdout >= 0)
if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
r = -errno;
if (*saved_stdin >= 0)
close_nointr_nofail(*saved_stdin);
if (*saved_stdout >= 0)
close_nointr_nofail(*saved_stdout);
return r;
}
static int ask_for_confirmation(char *response, char **argv) {
int saved_stdout = -1, saved_stdin = -1, r;
char *line;
r = setup_confirm_stdio(&saved_stdin, &saved_stdout);
if (r < 0)
return r;
line = exec_command_line(argv);
if (!line)
return -ENOMEM;
r = ask(response, "yns", "Execute %s? [Yes, No, Skip] ", line);
free(line);
restore_confirm_stdio(&saved_stdin, &saved_stdout);
return r;
}
static int enforce_groups(const ExecContext *context, const char *username, gid_t gid) {
bool keep_groups = false;
int r;
assert(context);
/* Lookup and set GID and supplementary group list. Here too
* we avoid NSS lookups for gid=0. */
if (context->group || username) {
if (context->group) {
const char *g = context->group;
if ((r = get_group_creds(&g, &gid)) < 0)
return r;
}
/* First step, initialize groups from /etc/groups */
if (username && gid != 0) {
if (initgroups(username, gid) < 0)
return -errno;
keep_groups = true;
}
/* Second step, set our gids */
if (setresgid(gid, gid, gid) < 0)
return -errno;
}
if (context->supplementary_groups) {
int ngroups_max, k;
gid_t *gids;
char **i;
/* Final step, initialize any manually set supplementary groups */
assert_se((ngroups_max = (int) sysconf(_SC_NGROUPS_MAX)) > 0);
if (!(gids = new(gid_t, ngroups_max)))
return -ENOMEM;
if (keep_groups) {
if ((k = getgroups(ngroups_max, gids)) < 0) {
free(gids);
return -errno;
}
} else
k = 0;
STRV_FOREACH(i, context->supplementary_groups) {
const char *g;
if (k >= ngroups_max) {
free(gids);
return -E2BIG;
}
g = *i;
r = get_group_creds(&g, gids+k);
if (r < 0) {
free(gids);
return r;
}
k++;
}
if (setgroups(k, gids) < 0) {
free(gids);
return -errno;
}
free(gids);
}
return 0;
}
static int enforce_user(const ExecContext *context, uid_t uid) {
assert(context);
/* Sets (but doesn't lookup) the uid and make sure we keep the
* capabilities while doing so. */
if (context->capabilities) {
_cleanup_cap_free_ cap_t d = NULL;
static const cap_value_t bits[] = {
CAP_SETUID, /* Necessary so that we can run setresuid() below */
CAP_SETPCAP /* Necessary so that we can set PR_SET_SECUREBITS later on */
};
/* First step: If we need to keep capabilities but
* drop privileges we need to make sure we keep our
* caps, while we drop privileges. */
if (uid != 0) {
int sb = context->secure_bits | 1<capabilities);
if (!d)
return -errno;
if (cap_set_flag(d, CAP_EFFECTIVE, ELEMENTSOF(bits), bits, CAP_SET) < 0 ||
cap_set_flag(d, CAP_PERMITTED, ELEMENTSOF(bits), bits, CAP_SET) < 0)
return -errno;
if (cap_set_proc(d) < 0)
return -errno;
}
/* Third step: actually set the uids */
if (setresuid(uid, uid, uid) < 0)
return -errno;
/* At this point we should have all necessary capabilities but
are otherwise a normal user. However, the caps might got
corrupted due to the setresuid() so we need clean them up
later. This is done outside of this call. */
return 0;
}
#ifdef HAVE_PAM
static int null_conv(
int num_msg,
const struct pam_message **msg,
struct pam_response **resp,
void *appdata_ptr) {
/* We don't support conversations */
return PAM_CONV_ERR;
}
static int setup_pam(
const char *name,
const char *user,
uid_t uid,
const char *tty,
char ***pam_env,
int fds[], unsigned n_fds) {
static const struct pam_conv conv = {
.conv = null_conv,
.appdata_ptr = NULL
};
pam_handle_t *handle = NULL;
sigset_t ss, old_ss;
int pam_code = PAM_SUCCESS;
int err;
char **e = NULL;
bool close_session = false;
pid_t pam_pid = 0, parent_pid;
int flags = 0;
assert(name);
assert(user);
assert(pam_env);
/* We set up PAM in the parent process, then fork. The child
* will then stay around until killed via PR_GET_PDEATHSIG or
* systemd via the cgroup logic. It will then remove the PAM
* session again. The parent process will exec() the actual
* daemon. We do things this way to ensure that the main PID
* of the daemon is the one we initially fork()ed. */
if (log_get_max_level() < LOG_PRI(LOG_DEBUG))
flags |= PAM_SILENT;
pam_code = pam_start(name, user, &conv, &handle);
if (pam_code != PAM_SUCCESS) {
handle = NULL;
goto fail;
}
if (tty) {
pam_code = pam_set_item(handle, PAM_TTY, tty);
if (pam_code != PAM_SUCCESS)
goto fail;
}
pam_code = pam_acct_mgmt(handle, flags);
if (pam_code != PAM_SUCCESS)
goto fail;
pam_code = pam_open_session(handle, flags);
if (pam_code != PAM_SUCCESS)
goto fail;
close_session = true;
e = pam_getenvlist(handle);
if (!e) {
pam_code = PAM_BUF_ERR;
goto fail;
}
/* Block SIGTERM, so that we know that it won't get lost in
* the child */
if (sigemptyset(&ss) < 0 ||
sigaddset(&ss, SIGTERM) < 0 ||
sigprocmask(SIG_BLOCK, &ss, &old_ss) < 0)
goto fail;
parent_pid = getpid();
pam_pid = fork();
if (pam_pid < 0)
goto fail;
if (pam_pid == 0) {
int sig;
int r = EXIT_PAM;
/* The child's job is to reset the PAM session on
* termination */
/* This string must fit in 10 chars (i.e. the length
* of "/sbin/init"), to look pretty in /bin/ps */
rename_process("(sd-pam)");
/* Make sure we don't keep open the passed fds in this
child. We assume that otherwise only those fds are
open here that have been opened by PAM. */
close_many(fds, n_fds);
/* Drop privileges - we don't need any to pam_close_session
* and this will make PR_SET_PDEATHSIG work in most cases.
* If this fails, ignore the error - but expect sd-pam threads
* to fail to exit normally */
if (setresuid(uid, uid, uid) < 0)
log_error("Error: Failed to setresuid() in sd-pam: %s", strerror(-r));
/* Wait until our parent died. This will only work if
* the above setresuid() succeeds, otherwise the kernel
* will not allow unprivileged parents kill their privileged
* children this way. We rely on the control groups kill logic
* to do the rest for us. */
if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
goto child_finish;
/* Check if our parent process might already have
* died? */
if (getppid() == parent_pid) {
for (;;) {
if (sigwait(&ss, &sig) < 0) {
if (errno == EINTR)
continue;
goto child_finish;
}
assert(sig == SIGTERM);
break;
}
}
/* If our parent died we'll end the session */
if (getppid() != parent_pid) {
pam_code = pam_close_session(handle, flags);
if (pam_code != PAM_SUCCESS)
goto child_finish;
}
r = 0;
child_finish:
pam_end(handle, pam_code | flags);
_exit(r);
}
/* If the child was forked off successfully it will do all the
* cleanups, so forget about the handle here. */
handle = NULL;
/* Unblock SIGTERM again in the parent */
if (sigprocmask(SIG_SETMASK, &old_ss, NULL) < 0)
goto fail;
/* We close the log explicitly here, since the PAM modules
* might have opened it, but we don't want this fd around. */
closelog();
*pam_env = e;
e = NULL;
return 0;
fail:
if (pam_code != PAM_SUCCESS) {
log_error("PAM failed: %s", pam_strerror(handle, pam_code));
err = -EPERM; /* PAM errors do not map to errno */
} else {
log_error("PAM failed: %m");
err = -errno;
}
if (handle) {
if (close_session)
pam_code = pam_close_session(handle, flags);
pam_end(handle, pam_code | flags);
}
strv_free(e);
closelog();
if (pam_pid > 1) {
kill(pam_pid, SIGTERM);
kill(pam_pid, SIGCONT);
}
return err;
}
#endif
static void rename_process_from_path(const char *path) {
char process_name[11];
const char *p;
size_t l;
/* This resulting string must fit in 10 chars (i.e. the length
* of "/sbin/init") to look pretty in /bin/ps */
p = basename(path);
if (isempty(p)) {
rename_process("(...)");
return;
}
l = strlen(p);
if (l > 8) {
/* The end of the process name is usually more
* interesting, since the first bit might just be
* "systemd-" */
p = p + l - 8;
l = 8;
}
process_name[0] = '(';
memcpy(process_name+1, p, l);
process_name[1+l] = ')';
process_name[1+l+1] = 0;
rename_process(process_name);
}
#ifdef HAVE_SECCOMP
static int apply_seccomp(ExecContext *c) {
uint32_t action = SCMP_ACT_ALLOW;
Iterator i;
void *id;
assert(c);
c->syscall_filter = seccomp_init(c->syscall_filter_default_action);
if (!c->syscall_filter)
return -1;
if (c->syscall_filter_default_action == SCMP_ACT_ALLOW)
action = SCMP_ACT_KILL;
SET_FOREACH(id, c->filtered_syscalls, i) {
int r = seccomp_rule_add(c->syscall_filter, action, PTR_TO_INT(id) - 1, 0);
if (r < 0) {
log_error("Failed to add syscall filter");
return r;
}
}
return seccomp_load(c->syscall_filter);
}
#endif
static void do_idle_pipe_dance(int idle_pipe[4]) {
assert(idle_pipe);
if (idle_pipe[1] >= 0)
close_nointr_nofail(idle_pipe[1]);
if (idle_pipe[2] >= 0)
close_nointr_nofail(idle_pipe[2]);
if (idle_pipe[0] >= 0) {
int r;
r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
/* Signal systemd that we are bored and want to continue. */
write(idle_pipe[3], "x", 1);
/* Wait for systemd to react to the signal above. */
fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
}
close_nointr_nofail(idle_pipe[0]);
}
if (idle_pipe[3] >= 0)
close_nointr_nofail(idle_pipe[3]);
}
static int build_environment(
ExecContext *c,
unsigned n_fds,
usec_t watchdog_usec,
const char *home,
const char *username,
const char *shell,
char ***ret) {
_cleanup_strv_free_ char **our_env = NULL;
unsigned n_env = 0;
char *x;
assert(c);
assert(ret);
our_env = new0(char*, 10);
if (!our_env)
return -ENOMEM;
if (n_fds > 0) {
if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid()) < 0)
return -ENOMEM;
our_env[n_env++] = x;
if (asprintf(&x, "LISTEN_FDS=%u", n_fds) < 0)
return -ENOMEM;
our_env[n_env++] = x;
}
if (watchdog_usec > 0) {
if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid()) < 0)
return -ENOMEM;
our_env[n_env++] = x;
if (asprintf(&x, "WATCHDOG_USEC=%llu", (unsigned long long) watchdog_usec) < 0)
return -ENOMEM;
our_env[n_env++] = x;
}
if (home) {
x = strappend("HOME=", home);
if (!x)
return -ENOMEM;
our_env[n_env++] = x;
}
if (username) {
x = strappend("LOGNAME=", username);
if (!x)
return -ENOMEM;
our_env[n_env++] = x;
x = strappend("USER=", username);
if (!x)
return -ENOMEM;
our_env[n_env++] = x;
}
if (shell) {
x = strappend("SHELL=", shell);
if (!x)
return -ENOMEM;
our_env[n_env++] = x;
}
if (is_terminal_input(c->std_input) ||
c->std_output == EXEC_OUTPUT_TTY ||
c->std_error == EXEC_OUTPUT_TTY ||
c->tty_path) {
x = strdup(default_term_for_tty(tty_path(c)));
if (!x)
return -ENOMEM;
our_env[n_env++] = x;
}
our_env[n_env++] = NULL;
assert(n_env <= 10);
*ret = our_env;
our_env = NULL;
return 0;
}
int exec_spawn(ExecCommand *command,
char **argv,
ExecContext *context,
int fds[], unsigned n_fds,
char **environment,
bool apply_permissions,
bool apply_chroot,
bool apply_tty_stdin,
bool confirm_spawn,
CGroupControllerMask cgroup_supported,
const char *cgroup_path,
const char *unit_id,
usec_t watchdog_usec,
int idle_pipe[4],
ExecRuntime *runtime,
pid_t *ret) {
_cleanup_strv_free_ char **files_env = NULL;
int socket_fd;
char *line;
pid_t pid;
int r;
assert(command);
assert(context);
assert(ret);
assert(fds || n_fds <= 0);
if (context->std_input == EXEC_INPUT_SOCKET ||
context->std_output == EXEC_OUTPUT_SOCKET ||
context->std_error == EXEC_OUTPUT_SOCKET) {
if (n_fds != 1)
return -EINVAL;
socket_fd = fds[0];
fds = NULL;
n_fds = 0;
} else
socket_fd = -1;
r = exec_context_load_environment(context, &files_env);
if (r < 0) {
log_struct_unit(LOG_ERR,
unit_id,
"MESSAGE=Failed to load environment files: %s", strerror(-r),
"ERRNO=%d", -r,
NULL);
return r;
}
if (!argv)
argv = command->argv;
line = exec_command_line(argv);
if (!line)
return log_oom();
log_struct_unit(LOG_DEBUG,
unit_id,
"EXECUTABLE=%s", command->path,
"MESSAGE=About to execute: %s", line,
NULL);
free(line);
pid = fork();
if (pid < 0)
return -errno;
if (pid == 0) {
_cleanup_strv_free_ char **our_env = NULL, **pam_env = NULL, **final_env = NULL, **final_argv = NULL;
const char *username = NULL, *home = NULL, *shell = NULL;
unsigned n_dont_close = 0;
int dont_close[n_fds + 3];
uid_t uid = (uid_t) -1;
gid_t gid = (gid_t) -1;
sigset_t ss;
int i, err;
/* child */
rename_process_from_path(command->path);
/* We reset exactly these signals, since they are the
* only ones we set to SIG_IGN in the main daemon. All
* others we leave untouched because we set them to
* SIG_DFL or a valid handler initially, both of which
* will be demoted to SIG_DFL. */
default_signals(SIGNALS_CRASH_HANDLER,
SIGNALS_IGNORE, -1);
if (context->ignore_sigpipe)
ignore_signals(SIGPIPE, -1);
assert_se(sigemptyset(&ss) == 0);
if (sigprocmask(SIG_SETMASK, &ss, NULL) < 0) {
err = -errno;
r = EXIT_SIGNAL_MASK;
goto fail_child;
}
if (idle_pipe)
do_idle_pipe_dance(idle_pipe);
/* Close sockets very early to make sure we don't
* block init reexecution because it cannot bind its
* sockets */
log_forget_fds();
if (socket_fd >= 0)
dont_close[n_dont_close++] = socket_fd;
if (n_fds > 0) {
memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
n_dont_close += n_fds;
}
if (runtime) {
if (runtime->netns_storage_socket[0] >= 0)
dont_close[n_dont_close++] = runtime->netns_storage_socket[0];
if (runtime->netns_storage_socket[1] >= 0)
dont_close[n_dont_close++] = runtime->netns_storage_socket[1];
}
err = close_all_fds(dont_close, n_dont_close);
if (err < 0) {
r = EXIT_FDS;
goto fail_child;
}
if (!context->same_pgrp)
if (setsid() < 0) {
err = -errno;
r = EXIT_SETSID;
goto fail_child;
}
if (context->tcpwrap_name) {
if (socket_fd >= 0)
if (!socket_tcpwrap(socket_fd, context->tcpwrap_name)) {
err = -EACCES;
r = EXIT_TCPWRAP;
goto fail_child;
}
for (i = 0; i < (int) n_fds; i++) {
if (!socket_tcpwrap(fds[i], context->tcpwrap_name)) {
err = -EACCES;
r = EXIT_TCPWRAP;
goto fail_child;
}
}
}
exec_context_tty_reset(context);
if (confirm_spawn) {
char response;
err = ask_for_confirmation(&response, argv);
if (err == -ETIMEDOUT)
write_confirm_message("Confirmation question timed out, assuming positive response.\n");
else if (err < 0)
write_confirm_message("Couldn't ask confirmation question, assuming positive response: %s\n", strerror(-err));
else if (response == 's') {
write_confirm_message("Skipping execution.\n");
err = -ECANCELED;
r = EXIT_CONFIRM;
goto fail_child;
} else if (response == 'n') {
write_confirm_message("Failing execution.\n");
err = r = 0;
goto fail_child;
}
}
/* If a socket is connected to STDIN/STDOUT/STDERR, we
* must sure to drop O_NONBLOCK */
if (socket_fd >= 0)
fd_nonblock(socket_fd, false);
err = setup_input(context, socket_fd, apply_tty_stdin);
if (err < 0) {
r = EXIT_STDIN;
goto fail_child;
}
err = setup_output(context, STDOUT_FILENO, socket_fd, basename(command->path), unit_id, apply_tty_stdin);
if (err < 0) {
r = EXIT_STDOUT;
goto fail_child;
}
err = setup_output(context, STDERR_FILENO, socket_fd, basename(command->path), unit_id, apply_tty_stdin);
if (err < 0) {
r = EXIT_STDERR;
goto fail_child;
}
if (cgroup_path) {
err = cg_attach_everywhere(cgroup_supported, cgroup_path, 0);
if (err < 0) {
r = EXIT_CGROUP;
goto fail_child;
}
}
if (context->oom_score_adjust_set) {
char t[16];
snprintf(t, sizeof(t), "%i", context->oom_score_adjust);
char_array_0(t);
if (write_string_file("/proc/self/oom_score_adj", t) < 0) {
err = -errno;
r = EXIT_OOM_ADJUST;
goto fail_child;
}
}
if (context->nice_set)
if (setpriority(PRIO_PROCESS, 0, context->nice) < 0) {
err = -errno;
r = EXIT_NICE;
goto fail_child;
}
if (context->cpu_sched_set) {
struct sched_param param = {
.sched_priority = context->cpu_sched_priority,
};
r = sched_setscheduler(0,
context->cpu_sched_policy |
(context->cpu_sched_reset_on_fork ?
SCHED_RESET_ON_FORK : 0),
¶m);
if (r < 0) {
err = -errno;
r = EXIT_SETSCHEDULER;
goto fail_child;
}
}
if (context->cpuset)
if (sched_setaffinity(0, CPU_ALLOC_SIZE(context->cpuset_ncpus), context->cpuset) < 0) {
err = -errno;
r = EXIT_CPUAFFINITY;
goto fail_child;
}
if (context->ioprio_set)
if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
err = -errno;
r = EXIT_IOPRIO;
goto fail_child;
}
if (context->timer_slack_nsec != (nsec_t) -1)
if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
err = -errno;
r = EXIT_TIMERSLACK;
goto fail_child;
}
if (context->utmp_id)
utmp_put_init_process(context->utmp_id, getpid(), getsid(0), context->tty_path);
if (context->user) {
username = context->user;
err = get_user_creds(&username, &uid, &gid, &home, &shell);
if (err < 0) {
r = EXIT_USER;
goto fail_child;
}
if (is_terminal_input(context->std_input)) {
err = chown_terminal(STDIN_FILENO, uid);
if (err < 0) {
r = EXIT_STDIN;
goto fail_child;
}
}
}
#ifdef HAVE_PAM
if (cgroup_path && context->user && context->pam_name) {
err = cg_set_task_access(SYSTEMD_CGROUP_CONTROLLER, cgroup_path, 0644, uid, gid);
if (err < 0) {
r = EXIT_CGROUP;
goto fail_child;
}
err = cg_set_group_access(SYSTEMD_CGROUP_CONTROLLER, cgroup_path, 0755, uid, gid);
if (err < 0) {
r = EXIT_CGROUP;
goto fail_child;
}
}
#endif
if (apply_permissions) {
err = enforce_groups(context, username, gid);
if (err < 0) {
r = EXIT_GROUP;
goto fail_child;
}
}
umask(context->umask);
#ifdef HAVE_PAM
if (apply_permissions && context->pam_name && username) {
err = setup_pam(context->pam_name, username, uid, context->tty_path, &pam_env, fds, n_fds);
if (err < 0) {
r = EXIT_PAM;
goto fail_child;
}
}
#endif
if (context->private_network && runtime && runtime->netns_storage_socket[0] >= 0) {
err = setup_netns(runtime->netns_storage_socket);
if (err < 0) {
r = EXIT_NETWORK;
goto fail_child;
}
}
if (!strv_isempty(context->read_write_dirs) ||
!strv_isempty(context->read_only_dirs) ||
!strv_isempty(context->inaccessible_dirs) ||
context->mount_flags != 0 ||
(context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir)) ||
context->private_devices) {
char *tmp = NULL, *var = NULL;
/* The runtime struct only contains the parent
* of the private /tmp, which is
* non-accessible to world users. Inside of it
* there's a /tmp that is sticky, and that's
* the one we want to use here. */
if (context->private_tmp && runtime) {
if (runtime->tmp_dir)
tmp = strappenda(runtime->tmp_dir, "/tmp");
if (runtime->var_tmp_dir)
var = strappenda(runtime->var_tmp_dir, "/tmp");
}
err = setup_namespace(
context->read_write_dirs,
context->read_only_dirs,
context->inaccessible_dirs,
tmp,
var,
context->private_devices,
context->mount_flags);
if (err < 0) {
r = EXIT_NAMESPACE;
goto fail_child;
}
}
if (apply_chroot) {
if (context->root_directory)
if (chroot(context->root_directory) < 0) {
err = -errno;
r = EXIT_CHROOT;
goto fail_child;
}
if (chdir(context->working_directory ? context->working_directory : "/") < 0) {
err = -errno;
r = EXIT_CHDIR;
goto fail_child;
}
} else {
_cleanup_free_ char *d = NULL;
if (asprintf(&d, "%s/%s",
context->root_directory ? context->root_directory : "",
context->working_directory ? context->working_directory : "") < 0) {
err = -ENOMEM;
r = EXIT_MEMORY;
goto fail_child;
}
if (chdir(d) < 0) {
err = -errno;
r = EXIT_CHDIR;
goto fail_child;
}
}
/* We repeat the fd closing here, to make sure that
* nothing is leaked from the PAM modules */
err = close_all_fds(fds, n_fds);
if (err >= 0)
err = shift_fds(fds, n_fds);
if (err >= 0)
err = flags_fds(fds, n_fds, context->non_blocking);
if (err < 0) {
r = EXIT_FDS;
goto fail_child;
}
if (apply_permissions) {
for (i = 0; i < RLIMIT_NLIMITS; i++) {
if (!context->rlimit[i])
continue;
if (setrlimit_closest(i, context->rlimit[i]) < 0) {
err = -errno;
r = EXIT_LIMITS;
goto fail_child;
}
}
if (context->capability_bounding_set_drop) {
err = capability_bounding_set_drop(context->capability_bounding_set_drop, false);
if (err < 0) {
r = EXIT_CAPABILITIES;
goto fail_child;
}
}
if (context->user) {
err = enforce_user(context, uid);
if (err < 0) {
r = EXIT_USER;
goto fail_child;
}
}
/* PR_GET_SECUREBITS is not privileged, while
* PR_SET_SECUREBITS is. So to suppress
* potential EPERMs we'll try not to call
* PR_SET_SECUREBITS unless necessary. */
if (prctl(PR_GET_SECUREBITS) != context->secure_bits)
if (prctl(PR_SET_SECUREBITS, context->secure_bits) < 0) {
err = -errno;
r = EXIT_SECUREBITS;
goto fail_child;
}
if (context->capabilities)
if (cap_set_proc(context->capabilities) < 0) {
err = -errno;
r = EXIT_CAPABILITIES;
goto fail_child;
}
if (context->no_new_privileges)
if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
err = -errno;
r = EXIT_NO_NEW_PRIVILEGES;
goto fail_child;
}
#ifdef HAVE_SECCOMP
if (context->filtered_syscalls) {
err = apply_seccomp(context);
if (err < 0) {
r = EXIT_SECCOMP;
goto fail_child;
}
}
#endif
#ifdef HAVE_SELINUX
if (context->selinux_context && use_selinux()) {
bool ignore;
char* c;
c = context->selinux_context;
if (c[0] == '-') {
c++;
ignore = true;
} else
ignore = false;
err = setexeccon(c);
if (err < 0 && !ignore) {
r = EXIT_SELINUX_CONTEXT;
goto fail_child;
}
}
#endif
}
err = build_environment(context, n_fds, watchdog_usec, home, username, shell, &our_env);
if (r < 0) {
r = EXIT_MEMORY;
goto fail_child;
}
final_env = strv_env_merge(5,
environment,
our_env,
context->environment,
files_env,
pam_env,
NULL);
if (!final_env) {
err = -ENOMEM;
r = EXIT_MEMORY;
goto fail_child;
}
final_argv = replace_env_argv(argv, final_env);
if (!final_argv) {
err = -ENOMEM;
r = EXIT_MEMORY;
goto fail_child;
}
final_env = strv_env_clean(final_env);
if (_unlikely_(log_get_max_level() >= LOG_PRI(LOG_DEBUG))) {
line = exec_command_line(final_argv);
if (line) {
log_open();
log_struct_unit(LOG_DEBUG,
unit_id,
"EXECUTABLE=%s", command->path,
"MESSAGE=Executing: %s", line,
NULL);
log_close();
free(line);
line = NULL;
}
}
execve(command->path, final_argv, final_env);
err = -errno;
r = EXIT_EXEC;
fail_child:
if (r != 0) {
log_open();
log_struct(LOG_ERR, MESSAGE_ID(SD_MESSAGE_SPAWN_FAILED),
"EXECUTABLE=%s", command->path,
"MESSAGE=Failed at step %s spawning %s: %s",
exit_status_to_string(r, EXIT_STATUS_SYSTEMD),
command->path, strerror(-err),
"ERRNO=%d", -err,
NULL);
log_close();
}
_exit(r);
}
log_struct_unit(LOG_DEBUG,
unit_id,
"MESSAGE=Forked %s as "PID_FMT,
command->path, pid,
NULL);
/* We add the new process to the cgroup both in the child (so
* that we can be sure that no user code is ever executed
* outside of the cgroup) and in the parent (so that we can be
* sure that when we kill the cgroup the process will be
* killed too). */
if (cgroup_path)
cg_attach(SYSTEMD_CGROUP_CONTROLLER, cgroup_path, pid);
exec_status_start(&command->exec_status, pid);
*ret = pid;
return 0;
}
void exec_context_init(ExecContext *c) {
assert(c);
c->umask = 0022;
c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
c->cpu_sched_policy = SCHED_OTHER;
c->syslog_priority = LOG_DAEMON|LOG_INFO;
c->syslog_level_prefix = true;
c->ignore_sigpipe = true;
c->timer_slack_nsec = (nsec_t) -1;
}
void exec_context_done(ExecContext *c) {
unsigned l;
assert(c);
strv_free(c->environment);
c->environment = NULL;
strv_free(c->environment_files);
c->environment_files = NULL;
for (l = 0; l < ELEMENTSOF(c->rlimit); l++) {
free(c->rlimit[l]);
c->rlimit[l] = NULL;
}
free(c->working_directory);
c->working_directory = NULL;
free(c->root_directory);
c->root_directory = NULL;
free(c->tty_path);
c->tty_path = NULL;
free(c->tcpwrap_name);
c->tcpwrap_name = NULL;
free(c->syslog_identifier);
c->syslog_identifier = NULL;
free(c->user);
c->user = NULL;
free(c->group);
c->group = NULL;
strv_free(c->supplementary_groups);
c->supplementary_groups = NULL;
free(c->pam_name);
c->pam_name = NULL;
if (c->capabilities) {
cap_free(c->capabilities);
c->capabilities = NULL;
}
strv_free(c->read_only_dirs);
c->read_only_dirs = NULL;
strv_free(c->read_write_dirs);
c->read_write_dirs = NULL;
strv_free(c->inaccessible_dirs);
c->inaccessible_dirs = NULL;
if (c->cpuset)
CPU_FREE(c->cpuset);
free(c->utmp_id);
c->utmp_id = NULL;
free(c->selinux_context);
c->selinux_context = NULL;
free(c->syscall_filter);
c->syscall_filter = NULL;
free(c->syscall_filter_string);
c->syscall_filter_string = NULL;
#ifdef HAVE_SECCOMP
if (c->syscall_filter) {
seccomp_release(c->syscall_filter);
c->syscall_filter = NULL;
}
set_free(c->filtered_syscalls);
c->filtered_syscalls = NULL;
#endif
}
void exec_command_done(ExecCommand *c) {
assert(c);
free(c->path);
c->path = NULL;
strv_free(c->argv);
c->argv = NULL;
}
void exec_command_done_array(ExecCommand *c, unsigned n) {
unsigned i;
for (i = 0; i < n; i++)
exec_command_done(c+i);
}
void exec_command_free_list(ExecCommand *c) {
ExecCommand *i;
while ((i = c)) {
LIST_REMOVE(command, c, i);
exec_command_done(i);
free(i);
}
}
void exec_command_free_array(ExecCommand **c, unsigned n) {
unsigned i;
for (i = 0; i < n; i++) {
exec_command_free_list(c[i]);
c[i] = NULL;
}
}
int exec_context_load_environment(const ExecContext *c, char ***l) {
char **i, **r = NULL;
assert(c);
assert(l);
STRV_FOREACH(i, c->environment_files) {
char *fn;
int k;
bool ignore = false;
char **p;
_cleanup_globfree_ glob_t pglob = {};
int count, n;
fn = *i;
if (fn[0] == '-') {
ignore = true;
fn ++;
}
if (!path_is_absolute(fn)) {
if (ignore)
continue;
strv_free(r);
return -EINVAL;
}
/* Filename supports globbing, take all matching files */
errno = 0;
if (glob(fn, 0, NULL, &pglob) != 0) {
if (ignore)
continue;
strv_free(r);
return errno ? -errno : -EINVAL;
}
count = pglob.gl_pathc;
if (count == 0) {
if (ignore)
continue;
strv_free(r);
return -EINVAL;
}
for (n = 0; n < count; n++) {
k = load_env_file(pglob.gl_pathv[n], NULL, &p);
if (k < 0) {
if (ignore)
continue;
strv_free(r);
return k;
}
/* Log invalid environment variables with filename */
if (p)
p = strv_env_clean_log(p, pglob.gl_pathv[n]);
if (r == NULL)
r = p;
else {
char **m;
m = strv_env_merge(2, r, p);
strv_free(r);
strv_free(p);
if (!m)
return -ENOMEM;
r = m;
}
}
}
*l = r;
return 0;
}
static bool tty_may_match_dev_console(const char *tty) {
char *active = NULL, *console;
bool b;
if (startswith(tty, "/dev/"))
tty += 5;
/* trivial identity? */
if (streq(tty, "console"))
return true;
console = resolve_dev_console(&active);
/* if we could not resolve, assume it may */
if (!console)
return true;
/* "tty0" means the active VC, so it may be the same sometimes */
b = streq(console, tty) || (streq(console, "tty0") && tty_is_vc(tty));
free(active);
return b;
}
bool exec_context_may_touch_console(ExecContext *ec) {
return (ec->tty_reset || ec->tty_vhangup || ec->tty_vt_disallocate ||
is_terminal_input(ec->std_input) ||
is_terminal_output(ec->std_output) ||
is_terminal_output(ec->std_error)) &&
tty_may_match_dev_console(tty_path(ec));
}
static void strv_fprintf(FILE *f, char **l) {
char **g;
assert(f);
STRV_FOREACH(g, l)
fprintf(f, " %s", *g);
}
void exec_context_dump(ExecContext *c, FILE* f, const char *prefix) {
char **e;
unsigned i;
assert(c);
assert(f);
prefix = strempty(prefix);
fprintf(f,
"%sUMask: %04o\n"
"%sWorkingDirectory: %s\n"
"%sRootDirectory: %s\n"
"%sNonBlocking: %s\n"
"%sPrivateTmp: %s\n"
"%sPrivateNetwork: %s\n"
"%sPrivateDevices: %s\n"
"%sIgnoreSIGPIPE: %s\n",
prefix, c->umask,
prefix, c->working_directory ? c->working_directory : "/",
prefix, c->root_directory ? c->root_directory : "/",
prefix, yes_no(c->non_blocking),
prefix, yes_no(c->private_tmp),
prefix, yes_no(c->private_network),
prefix, yes_no(c->private_devices),
prefix, yes_no(c->ignore_sigpipe));
STRV_FOREACH(e, c->environment)
fprintf(f, "%sEnvironment: %s\n", prefix, *e);
STRV_FOREACH(e, c->environment_files)
fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
if (c->tcpwrap_name)
fprintf(f,
"%sTCPWrapName: %s\n",
prefix, c->tcpwrap_name);
if (c->nice_set)
fprintf(f,
"%sNice: %i\n",
prefix, c->nice);
if (c->oom_score_adjust_set)
fprintf(f,
"%sOOMScoreAdjust: %i\n",
prefix, c->oom_score_adjust);
for (i = 0; i < RLIM_NLIMITS; i++)
if (c->rlimit[i])
fprintf(f, "%s%s: %llu\n", prefix, rlimit_to_string(i), (unsigned long long) c->rlimit[i]->rlim_max);
if (c->ioprio_set) {
char *class_str;
int r;
r = ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
if (r < 0)
class_str = NULL;
fprintf(f,
"%sIOSchedulingClass: %s\n"
"%sIOPriority: %i\n",
prefix, strna(class_str),
prefix, (int) IOPRIO_PRIO_DATA(c->ioprio));
free(class_str);
}
if (c->cpu_sched_set) {
char *policy_str;
int r;
r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
if (r < 0)
policy_str = NULL;
fprintf(f,
"%sCPUSchedulingPolicy: %s\n"
"%sCPUSchedulingPriority: %i\n"
"%sCPUSchedulingResetOnFork: %s\n",
prefix, strna(policy_str),
prefix, c->cpu_sched_priority,
prefix, yes_no(c->cpu_sched_reset_on_fork));
free(policy_str);
}
if (c->cpuset) {
fprintf(f, "%sCPUAffinity:", prefix);
for (i = 0; i < c->cpuset_ncpus; i++)
if (CPU_ISSET_S(i, CPU_ALLOC_SIZE(c->cpuset_ncpus), c->cpuset))
fprintf(f, " %u", i);
fputs("\n", f);
}
if (c->timer_slack_nsec != (nsec_t) -1)
fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
fprintf(f,
"%sStandardInput: %s\n"
"%sStandardOutput: %s\n"
"%sStandardError: %s\n",
prefix, exec_input_to_string(c->std_input),
prefix, exec_output_to_string(c->std_output),
prefix, exec_output_to_string(c->std_error));
if (c->tty_path)
fprintf(f,
"%sTTYPath: %s\n"
"%sTTYReset: %s\n"
"%sTTYVHangup: %s\n"
"%sTTYVTDisallocate: %s\n",
prefix, c->tty_path,
prefix, yes_no(c->tty_reset),
prefix, yes_no(c->tty_vhangup),
prefix, yes_no(c->tty_vt_disallocate));
if (c->std_output == EXEC_OUTPUT_SYSLOG ||
c->std_output == EXEC_OUTPUT_KMSG ||
c->std_output == EXEC_OUTPUT_JOURNAL ||
c->std_output == EXEC_OUTPUT_SYSLOG_AND_CONSOLE ||
c->std_output == EXEC_OUTPUT_KMSG_AND_CONSOLE ||
c->std_output == EXEC_OUTPUT_JOURNAL_AND_CONSOLE ||
c->std_error == EXEC_OUTPUT_SYSLOG ||
c->std_error == EXEC_OUTPUT_KMSG ||
c->std_error == EXEC_OUTPUT_JOURNAL ||
c->std_error == EXEC_OUTPUT_SYSLOG_AND_CONSOLE ||
c->std_error == EXEC_OUTPUT_KMSG_AND_CONSOLE ||
c->std_error == EXEC_OUTPUT_JOURNAL_AND_CONSOLE) {
_cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
fprintf(f,
"%sSyslogFacility: %s\n"
"%sSyslogLevel: %s\n",
prefix, strna(fac_str),
prefix, strna(lvl_str));
}
if (c->capabilities) {
_cleanup_cap_free_charp_ char *t;
t = cap_to_text(c->capabilities, NULL);
if (t)
fprintf(f, "%sCapabilities: %s\n", prefix, t);
}
if (c->secure_bits)
fprintf(f, "%sSecure Bits:%s%s%s%s%s%s\n",
prefix,
(c->secure_bits & 1<secure_bits & 1<secure_bits & 1<secure_bits & 1<secure_bits & 1<secure_bits & 1<capability_bounding_set_drop) {
unsigned long l;
fprintf(f, "%sCapabilityBoundingSet:", prefix);
for (l = 0; l <= cap_last_cap(); l++)
if (!(c->capability_bounding_set_drop & ((uint64_t) 1ULL << (uint64_t) l))) {
_cleanup_cap_free_charp_ char *t;
t = cap_to_name(l);
if (t)
fprintf(f, " %s", t);
}
fputs("\n", f);
}
if (c->user)
fprintf(f, "%sUser: %s\n", prefix, c->user);
if (c->group)
fprintf(f, "%sGroup: %s\n", prefix, c->group);
if (strv_length(c->supplementary_groups) > 0) {
fprintf(f, "%sSupplementaryGroups:", prefix);
strv_fprintf(f, c->supplementary_groups);
fputs("\n", f);
}
if (c->pam_name)
fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
if (strv_length(c->read_write_dirs) > 0) {
fprintf(f, "%sReadWriteDirs:", prefix);
strv_fprintf(f, c->read_write_dirs);
fputs("\n", f);
}
if (strv_length(c->read_only_dirs) > 0) {
fprintf(f, "%sReadOnlyDirs:", prefix);
strv_fprintf(f, c->read_only_dirs);
fputs("\n", f);
}
if (strv_length(c->inaccessible_dirs) > 0) {
fprintf(f, "%sInaccessibleDirs:", prefix);
strv_fprintf(f, c->inaccessible_dirs);
fputs("\n", f);
}
if (c->utmp_id)
fprintf(f,
"%sUtmpIdentifier: %s\n",
prefix, c->utmp_id);
if (c->selinux_context)
fprintf(f,
"%sSELinuxContext: %s\n",
prefix, c->selinux_context);
}
void exec_status_start(ExecStatus *s, pid_t pid) {
assert(s);
zero(*s);
s->pid = pid;
dual_timestamp_get(&s->start_timestamp);
}
void exec_status_exit(ExecStatus *s, ExecContext *context, pid_t pid, int code, int status) {
assert(s);
if (s->pid && s->pid != pid)
zero(*s);
s->pid = pid;
dual_timestamp_get(&s->exit_timestamp);
s->code = code;
s->status = status;
if (context) {
if (context->utmp_id)
utmp_put_dead_process(context->utmp_id, pid, code, status);
exec_context_tty_reset(context);
}
}
void exec_status_dump(ExecStatus *s, FILE *f, const char *prefix) {
char buf[FORMAT_TIMESTAMP_MAX];
assert(s);
assert(f);
if (!prefix)
prefix = "";
if (s->pid <= 0)
return;
fprintf(f,
"%sPID: "PID_FMT"\n",
prefix, s->pid);
if (s->start_timestamp.realtime > 0)
fprintf(f,
"%sStart Timestamp: %s\n",
prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
if (s->exit_timestamp.realtime > 0)
fprintf(f,
"%sExit Timestamp: %s\n"
"%sExit Code: %s\n"
"%sExit Status: %i\n",
prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
prefix, sigchld_code_to_string(s->code),
prefix, s->status);
}
char *exec_command_line(char **argv) {
size_t k;
char *n, *p, **a;
bool first = true;
assert(argv);
k = 1;
STRV_FOREACH(a, argv)
k += strlen(*a)+3;
if (!(n = new(char, k)))
return NULL;
p = n;
STRV_FOREACH(a, argv) {
if (!first)
*(p++) = ' ';
else
first = false;
if (strpbrk(*a, WHITESPACE)) {
*(p++) = '\'';
p = stpcpy(p, *a);
*(p++) = '\'';
} else
p = stpcpy(p, *a);
}
*p = 0;
/* FIXME: this doesn't really handle arguments that have
* spaces and ticks in them */
return n;
}
void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
char *p2;
const char *prefix2;
char *cmd;
assert(c);
assert(f);
if (!prefix)
prefix = "";
p2 = strappend(prefix, "\t");
prefix2 = p2 ? p2 : prefix;
cmd = exec_command_line(c->argv);
fprintf(f,
"%sCommand Line: %s\n",
prefix, cmd ? cmd : strerror(ENOMEM));
free(cmd);
exec_status_dump(&c->exec_status, f, prefix2);
free(p2);
}
void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
assert(f);
if (!prefix)
prefix = "";
LIST_FOREACH(command, c, c)
exec_command_dump(c, f, prefix);
}
void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
ExecCommand *end;
assert(l);
assert(e);
if (*l) {
/* It's kind of important, that we keep the order here */
LIST_FIND_TAIL(command, *l, end);
LIST_INSERT_AFTER(command, *l, end, e);
} else
*l = e;
}
int exec_command_set(ExecCommand *c, const char *path, ...) {
va_list ap;
char **l, *p;
assert(c);
assert(path);
va_start(ap, path);
l = strv_new_ap(path, ap);
va_end(ap);
if (!l)
return -ENOMEM;
p = strdup(path);
if (!p) {
strv_free(l);
return -ENOMEM;
}
free(c->path);
c->path = p;
strv_free(c->argv);
c->argv = l;
return 0;
}
static int exec_runtime_allocate(ExecRuntime **rt) {
if (*rt)
return 0;
*rt = new0(ExecRuntime, 1);
if (!*rt)
return -ENOMEM;
(*rt)->n_ref = 1;
(*rt)->netns_storage_socket[0] = (*rt)->netns_storage_socket[1] = -1;
return 0;
}
int exec_runtime_make(ExecRuntime **rt, ExecContext *c, const char *id) {
int r;
assert(rt);
assert(c);
assert(id);
if (*rt)
return 1;
if (!c->private_network && !c->private_tmp)
return 0;
r = exec_runtime_allocate(rt);
if (r < 0)
return r;
if (c->private_network && (*rt)->netns_storage_socket[0] < 0) {
if (socketpair(AF_UNIX, SOCK_DGRAM, 0, (*rt)->netns_storage_socket) < 0)
return -errno;
}
if (c->private_tmp && !(*rt)->tmp_dir) {
r = setup_tmp_dirs(id, &(*rt)->tmp_dir, &(*rt)->var_tmp_dir);
if (r < 0)
return r;
}
return 1;
}
ExecRuntime *exec_runtime_ref(ExecRuntime *r) {
assert(r);
assert(r->n_ref > 0);
r->n_ref++;
return r;
}
ExecRuntime *exec_runtime_unref(ExecRuntime *r) {
if (!r)
return NULL;
assert(r->n_ref > 0);
r->n_ref--;
if (r->n_ref <= 0) {
free(r->tmp_dir);
free(r->var_tmp_dir);
close_pipe(r->netns_storage_socket);
free(r);
}
return NULL;
}
int exec_runtime_serialize(ExecRuntime *rt, Unit *u, FILE *f, FDSet *fds) {
assert(u);
assert(f);
assert(fds);
if (!rt)
return 0;
if (rt->tmp_dir)
unit_serialize_item(u, f, "tmp-dir", rt->tmp_dir);
if (rt->var_tmp_dir)
unit_serialize_item(u, f, "var-tmp-dir", rt->var_tmp_dir);
if (rt->netns_storage_socket[0] >= 0) {
int copy;
copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
if (copy < 0)
return copy;
unit_serialize_item_format(u, f, "netns-socket-0", "%i", copy);
}
if (rt->netns_storage_socket[1] >= 0) {
int copy;
copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
if (copy < 0)
return copy;
unit_serialize_item_format(u, f, "netns-socket-1", "%i", copy);
}
return 0;
}
int exec_runtime_deserialize_item(ExecRuntime **rt, Unit *u, const char *key, const char *value, FDSet *fds) {
int r;
assert(rt);
assert(key);
assert(value);
if (streq(key, "tmp-dir")) {
char *copy;
r = exec_runtime_allocate(rt);
if (r < 0)
return r;
copy = strdup(value);
if (!copy)
return log_oom();
free((*rt)->tmp_dir);
(*rt)->tmp_dir = copy;
} else if (streq(key, "var-tmp-dir")) {
char *copy;
r = exec_runtime_allocate(rt);
if (r < 0)
return r;
copy = strdup(value);
if (!copy)
return log_oom();
free((*rt)->var_tmp_dir);
(*rt)->var_tmp_dir = copy;
} else if (streq(key, "netns-socket-0")) {
int fd;
r = exec_runtime_allocate(rt);
if (r < 0)
return r;
if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd))
log_debug_unit(u->id, "Failed to parse netns socket value %s", value);
else {
if ((*rt)->netns_storage_socket[0] >= 0)
close_nointr_nofail((*rt)->netns_storage_socket[0]);
(*rt)->netns_storage_socket[0] = fdset_remove(fds, fd);
}
} else if (streq(key, "netns-socket-1")) {
int fd;
r = exec_runtime_allocate(rt);
if (r < 0)
return r;
if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd))
log_debug_unit(u->id, "Failed to parse netns socket value %s", value);
else {
if ((*rt)->netns_storage_socket[1] >= 0)
close_nointr_nofail((*rt)->netns_storage_socket[1]);
(*rt)->netns_storage_socket[1] = fdset_remove(fds, fd);
}
} else
return 0;
return 1;
}
static void *remove_tmpdir_thread(void *p) {
_cleanup_free_ char *path = p;
rm_rf_dangerous(path, false, true, false);
return NULL;
}
void exec_runtime_destroy(ExecRuntime *rt) {
if (!rt)
return;
/* If there are multiple users of this, let's leave the stuff around */
if (rt->n_ref > 1)
return;
if (rt->tmp_dir) {
log_debug("Spawning thread to nuke %s", rt->tmp_dir);
asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
rt->tmp_dir = NULL;
}
if (rt->var_tmp_dir) {
log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
rt->var_tmp_dir = NULL;
}
close_pipe(rt->netns_storage_socket);
}
static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
[EXEC_INPUT_NULL] = "null",
[EXEC_INPUT_TTY] = "tty",
[EXEC_INPUT_TTY_FORCE] = "tty-force",
[EXEC_INPUT_TTY_FAIL] = "tty-fail",
[EXEC_INPUT_SOCKET] = "socket"
};
DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
[EXEC_OUTPUT_INHERIT] = "inherit",
[EXEC_OUTPUT_NULL] = "null",
[EXEC_OUTPUT_TTY] = "tty",
[EXEC_OUTPUT_SYSLOG] = "syslog",
[EXEC_OUTPUT_SYSLOG_AND_CONSOLE] = "syslog+console",
[EXEC_OUTPUT_KMSG] = "kmsg",
[EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
[EXEC_OUTPUT_JOURNAL] = "journal",
[EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
[EXEC_OUTPUT_SOCKET] = "socket"
};
DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);