/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/ /*** This file is part of systemd. Copyright 2010 Lennart Poettering systemd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with systemd; If not, see . ***/ #include #include #include #include #include "set.h" #include "unit.h" #include "macro.h" #include "strv.h" #include "load-fragment.h" #include "load-dropin.h" #include "log.h" #include "dbus-job.h" Job* job_new(Unit *unit, JobType type) { Job *j; assert(type < _JOB_TYPE_MAX); assert(unit); if (!(j = new0(Job, 1))) return NULL; j->manager = unit->manager; j->id = j->manager->current_job_id++; j->type = type; j->unit = unit; j->timer_watch.type = WATCH_INVALID; /* We don't link it here, that's what job_dependency() is for */ return j; } void job_free(Job *j) { assert(j); assert(!j->installed); assert(!j->transaction_prev); assert(!j->transaction_next); assert(!j->subject_list); assert(!j->object_list); if (j->in_run_queue) LIST_REMOVE(Job, run_queue, j->manager->run_queue, j); if (j->in_dbus_queue) LIST_REMOVE(Job, dbus_queue, j->manager->dbus_job_queue, j); if (j->timer_watch.type != WATCH_INVALID) { assert(j->timer_watch.type == WATCH_JOB_TIMER); assert(j->timer_watch.data.job == j); assert(j->timer_watch.fd >= 0); assert_se(epoll_ctl(j->manager->epoll_fd, EPOLL_CTL_DEL, j->timer_watch.fd, NULL) >= 0); close_nointr_nofail(j->timer_watch.fd); } free(j->bus_client); free(j); } void job_uninstall(Job *j) { assert(j->installed); assert(j->unit->job == j); /* Detach from next 'bigger' objects */ bus_job_send_removed_signal(j); j->unit->job = NULL; unit_add_to_gc_queue(j->unit); hashmap_remove(j->manager->jobs, UINT32_TO_PTR(j->id)); j->installed = false; } static bool job_type_allows_late_merge(JobType t) { /* Tells whether it is OK to merge a job of type 't' with an already * running job. * Reloads cannot be merged this way. Think of the sequence: * 1. Reload of a daemon is in progress; the daemon has already loaded * its config file, but hasn't completed the reload operation yet. * 2. Edit foo's config file. * 3. Trigger another reload to have the daemon use the new config. * Should the second reload job be merged into the first one, the daemon * would not know about the new config. * JOB_RESTART jobs on the other hand can be merged, because they get * patched into JOB_START after stopping the unit. So if we see a * JOB_RESTART running, it means the unit hasn't stopped yet and at * this time the merge is still allowed. */ return !(t == JOB_RELOAD || t == JOB_RELOAD_OR_START); } static void job_merge_into_installed(Job *j, Job *other) { assert(j->installed); assert(j->unit == other->unit); j->type = job_type_lookup_merge(j->type, other->type); assert(j->type >= 0); j->override = j->override || other->override; } Job* job_install(Job *j) { Job *uj = j->unit->job; assert(!j->installed); if (uj) { if (job_type_is_conflicting(uj->type, j->type)) job_finish_and_invalidate(uj, JOB_CANCELED); else { /* not conflicting, i.e. mergeable */ if (uj->state == JOB_WAITING || (job_type_allows_late_merge(j->type) && job_type_is_superset(uj->type, j->type))) { job_merge_into_installed(uj, j); log_debug("Merged into installed job %s/%s as %u", uj->unit->id, job_type_to_string(uj->type), (unsigned) uj->id); return uj; } else { /* already running and not safe to merge into */ /* Patch uj to become a merged job and re-run it. */ /* XXX It should be safer to queue j to run after uj finishes, but it is * not currently possible to have more than one installed job per unit. */ job_merge_into_installed(uj, j); log_debug("Merged into running job, re-running: %s/%s as %u", uj->unit->id, job_type_to_string(uj->type), (unsigned) uj->id); uj->state = JOB_WAITING; return uj; } } } /* Install the job */ j->unit->job = j; j->installed = true; j->manager->n_installed_jobs ++; log_debug("Installed new job %s/%s as %u", j->unit->id, job_type_to_string(j->type), (unsigned) j->id); return j; } JobDependency* job_dependency_new(Job *subject, Job *object, bool matters, bool conflicts) { JobDependency *l; assert(object); /* Adds a new job link, which encodes that the 'subject' job * needs the 'object' job in some way. If 'subject' is NULL * this means the 'anchor' job (i.e. the one the user * explicitly asked for) is the requester. */ if (!(l = new0(JobDependency, 1))) return NULL; l->subject = subject; l->object = object; l->matters = matters; l->conflicts = conflicts; if (subject) LIST_PREPEND(JobDependency, subject, subject->subject_list, l); LIST_PREPEND(JobDependency, object, object->object_list, l); return l; } void job_dependency_free(JobDependency *l) { assert(l); if (l->subject) LIST_REMOVE(JobDependency, subject, l->subject->subject_list, l); LIST_REMOVE(JobDependency, object, l->object->object_list, l); free(l); } void job_dump(Job *j, FILE*f, const char *prefix) { assert(j); assert(f); if (!prefix) prefix = ""; fprintf(f, "%s-> Job %u:\n" "%s\tAction: %s -> %s\n" "%s\tState: %s\n" "%s\tForced: %s\n", prefix, j->id, prefix, j->unit->id, job_type_to_string(j->type), prefix, job_state_to_string(j->state), prefix, yes_no(j->override)); } /* * Merging is commutative, so imagine the matrix as symmetric. We store only * its lower triangle to avoid duplication. We don't store the main diagonal, * because A merged with A is simply A. * * Merging is associative! A merged with B merged with C is the same as * A merged with C merged with B. * * Mergeability is transitive! If A can be merged with B and B with C then * A also with C. * * Also, if A merged with B cannot be merged with C, then either A or B cannot * be merged with C either. */ static const JobType job_merging_table[] = { /* What \ With * JOB_START JOB_VERIFY_ACTIVE JOB_STOP JOB_RELOAD JOB_RELOAD_OR_START JOB_RESTART JOB_TRY_RESTART */ /************************************************************************************************************************************/ /*JOB_START */ /*JOB_VERIFY_ACTIVE */ JOB_START, /*JOB_STOP */ -1, -1, /*JOB_RELOAD */ JOB_RELOAD_OR_START, JOB_RELOAD, -1, /*JOB_RELOAD_OR_START*/ JOB_RELOAD_OR_START, JOB_RELOAD_OR_START, -1, JOB_RELOAD_OR_START, /*JOB_RESTART */ JOB_RESTART, JOB_RESTART, -1, JOB_RESTART, JOB_RESTART, /*JOB_TRY_RESTART */ JOB_RESTART, JOB_TRY_RESTART, -1, JOB_TRY_RESTART, JOB_RESTART, JOB_RESTART, }; JobType job_type_lookup_merge(JobType a, JobType b) { assert_cc(ELEMENTSOF(job_merging_table) == _JOB_TYPE_MAX * (_JOB_TYPE_MAX - 1) / 2); assert(a >= 0 && a < _JOB_TYPE_MAX); assert(b >= 0 && b < _JOB_TYPE_MAX); if (a == b) return a; if (a < b) { JobType tmp = a; a = b; b = tmp; } return job_merging_table[(a - 1) * a / 2 + b]; } bool job_type_is_redundant(JobType a, UnitActiveState b) { switch (a) { case JOB_START: return b == UNIT_ACTIVE || b == UNIT_RELOADING; case JOB_STOP: return b == UNIT_INACTIVE || b == UNIT_FAILED; case JOB_VERIFY_ACTIVE: return b == UNIT_ACTIVE || b == UNIT_RELOADING; case JOB_RELOAD: return b == UNIT_RELOADING; case JOB_RELOAD_OR_START: return b == UNIT_ACTIVATING || b == UNIT_RELOADING; case JOB_RESTART: return b == UNIT_ACTIVATING; case JOB_TRY_RESTART: return b == UNIT_ACTIVATING; default: assert_not_reached("Invalid job type"); } } bool job_is_runnable(Job *j) { Iterator i; Unit *other; assert(j); assert(j->installed); /* Checks whether there is any job running for the units this * job needs to be running after (in the case of a 'positive' * job type) or before (in the case of a 'negative' job * type. */ /* First check if there is an override */ if (j->ignore_order) return true; if (j->type == JOB_START || j->type == JOB_VERIFY_ACTIVE || j->type == JOB_RELOAD || j->type == JOB_RELOAD_OR_START) { /* Immediate result is that the job is or might be * started. In this case lets wait for the * dependencies, regardless whether they are * starting or stopping something. */ SET_FOREACH(other, j->unit->dependencies[UNIT_AFTER], i) if (other->job) return false; } /* Also, if something else is being stopped and we should * change state after it, then lets wait. */ SET_FOREACH(other, j->unit->dependencies[UNIT_BEFORE], i) if (other->job && (other->job->type == JOB_STOP || other->job->type == JOB_RESTART || other->job->type == JOB_TRY_RESTART)) return false; /* This means that for a service a and a service b where b * shall be started after a: * * start a + start b → 1st step start a, 2nd step start b * start a + stop b → 1st step stop b, 2nd step start a * stop a + start b → 1st step stop a, 2nd step start b * stop a + stop b → 1st step stop b, 2nd step stop a * * This has the side effect that restarts are properly * synchronized too. */ return true; } static void job_change_type(Job *j, JobType newtype) { log_debug("Converting job %s/%s -> %s/%s", j->unit->id, job_type_to_string(j->type), j->unit->id, job_type_to_string(newtype)); j->type = newtype; } int job_run_and_invalidate(Job *j) { int r; uint32_t id; Manager *m; assert(j); assert(j->installed); if (j->in_run_queue) { LIST_REMOVE(Job, run_queue, j->manager->run_queue, j); j->in_run_queue = false; } if (j->state != JOB_WAITING) return 0; if (!job_is_runnable(j)) return -EAGAIN; j->state = JOB_RUNNING; job_add_to_dbus_queue(j); /* While we execute this operation the job might go away (for * example: because it is replaced by a new, conflicting * job.) To make sure we don't access a freed job later on we * store the id here, so that we can verify the job is still * valid. */ id = j->id; m = j->manager; switch (j->type) { case JOB_RELOAD_OR_START: if (unit_active_state(j->unit) == UNIT_ACTIVE) { job_change_type(j, JOB_RELOAD); r = unit_reload(j->unit); break; } job_change_type(j, JOB_START); /* fall through */ case JOB_START: r = unit_start(j->unit); /* If this unit cannot be started, then simply wait */ if (r == -EBADR) r = 0; break; case JOB_VERIFY_ACTIVE: { UnitActiveState t = unit_active_state(j->unit); if (UNIT_IS_ACTIVE_OR_RELOADING(t)) r = -EALREADY; else if (t == UNIT_ACTIVATING) r = -EAGAIN; else r = -ENOEXEC; break; } case JOB_TRY_RESTART: if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(j->unit))) { r = -ENOEXEC; break; } job_change_type(j, JOB_RESTART); /* fall through */ case JOB_STOP: case JOB_RESTART: r = unit_stop(j->unit); /* If this unit cannot stopped, then simply wait. */ if (r == -EBADR) r = 0; break; case JOB_RELOAD: r = unit_reload(j->unit); break; default: assert_not_reached("Unknown job type"); } if ((j = manager_get_job(m, id))) { if (r == -EALREADY) r = job_finish_and_invalidate(j, JOB_DONE); else if (r == -ENOEXEC) r = job_finish_and_invalidate(j, JOB_SKIPPED); else if (r == -EAGAIN) j->state = JOB_WAITING; else if (r < 0) r = job_finish_and_invalidate(j, JOB_FAILED); } return r; } static void job_print_status_message(Unit *u, JobType t, JobResult result) { assert(u); if (t == JOB_START) { switch (result) { case JOB_DONE: if (u->condition_result) unit_status_printf(u, ANSI_HIGHLIGHT_GREEN_ON " OK " ANSI_HIGHLIGHT_OFF, "Started %s", unit_description(u)); break; case JOB_FAILED: unit_status_printf(u, ANSI_HIGHLIGHT_RED_ON "FAILED" ANSI_HIGHLIGHT_OFF, "Failed to start %s", unit_description(u)); unit_status_printf(u, NULL, "See 'systemctl status %s' for details.", u->id); break; case JOB_DEPENDENCY: unit_status_printf(u, ANSI_HIGHLIGHT_RED_ON " ABORT" ANSI_HIGHLIGHT_OFF, "Dependency failed. Aborted start of %s", unit_description(u)); break; case JOB_TIMEOUT: unit_status_printf(u, ANSI_HIGHLIGHT_RED_ON " TIME " ANSI_HIGHLIGHT_OFF, "Timed out starting %s", unit_description(u)); break; default: ; } } else if (t == JOB_STOP) { switch (result) { case JOB_TIMEOUT: unit_status_printf(u, ANSI_HIGHLIGHT_RED_ON " TIME " ANSI_HIGHLIGHT_OFF, "Timed out stopping %s", unit_description(u)); break; case JOB_DONE: case JOB_FAILED: unit_status_printf(u, ANSI_HIGHLIGHT_GREEN_ON " OK " ANSI_HIGHLIGHT_OFF, "Stopped %s", unit_description(u)); break; default: ; } } } int job_finish_and_invalidate(Job *j, JobResult result) { Unit *u; Unit *other; JobType t; Iterator i; bool recursed = false; assert(j); assert(j->installed); job_add_to_dbus_queue(j); /* Patch restart jobs so that they become normal start jobs */ if (result == JOB_DONE && j->type == JOB_RESTART) { job_change_type(j, JOB_START); j->state = JOB_WAITING; job_add_to_run_queue(j); u = j->unit; goto finish; } j->result = result; log_debug("Job %s/%s finished, result=%s", j->unit->id, job_type_to_string(j->type), job_result_to_string(result)); if (result == JOB_FAILED) j->manager->n_failed_jobs ++; u = j->unit; t = j->type; job_uninstall(j); job_free(j); job_print_status_message(u, t, result); /* Fail depending jobs on failure */ if (result != JOB_DONE) { if (t == JOB_START || t == JOB_VERIFY_ACTIVE || t == JOB_RELOAD_OR_START) { SET_FOREACH(other, u->dependencies[UNIT_REQUIRED_BY], i) if (other->job && (other->job->type == JOB_START || other->job->type == JOB_VERIFY_ACTIVE || other->job->type == JOB_RELOAD_OR_START)) { job_finish_and_invalidate(other->job, JOB_DEPENDENCY); recursed = true; } SET_FOREACH(other, u->dependencies[UNIT_BOUND_BY], i) if (other->job && (other->job->type == JOB_START || other->job->type == JOB_VERIFY_ACTIVE || other->job->type == JOB_RELOAD_OR_START)) { job_finish_and_invalidate(other->job, JOB_DEPENDENCY); recursed = true; } SET_FOREACH(other, u->dependencies[UNIT_REQUIRED_BY_OVERRIDABLE], i) if (other->job && !other->job->override && (other->job->type == JOB_START || other->job->type == JOB_VERIFY_ACTIVE || other->job->type == JOB_RELOAD_OR_START)) { job_finish_and_invalidate(other->job, JOB_DEPENDENCY); recursed = true; } } else if (t == JOB_STOP) { SET_FOREACH(other, u->dependencies[UNIT_CONFLICTED_BY], i) if (other->job && (other->job->type == JOB_START || other->job->type == JOB_VERIFY_ACTIVE || other->job->type == JOB_RELOAD_OR_START)) { job_finish_and_invalidate(other->job, JOB_DEPENDENCY); recursed = true; } } } /* Trigger OnFailure dependencies that are not generated by * the unit itself. We don't tread JOB_CANCELED as failure in * this context. And JOB_FAILURE is already handled by the * unit itself. */ if (result == JOB_TIMEOUT || result == JOB_DEPENDENCY) { log_notice("Job %s/%s failed with result '%s'.", u->id, job_type_to_string(t), job_result_to_string(result)); unit_trigger_on_failure(u); } finish: /* Try to start the next jobs that can be started */ SET_FOREACH(other, u->dependencies[UNIT_AFTER], i) if (other->job) job_add_to_run_queue(other->job); SET_FOREACH(other, u->dependencies[UNIT_BEFORE], i) if (other->job) job_add_to_run_queue(other->job); manager_check_finished(u->manager); return recursed; } int job_start_timer(Job *j) { struct itimerspec its; struct epoll_event ev; int fd, r; assert(j); if (j->unit->job_timeout <= 0 || j->timer_watch.type == WATCH_JOB_TIMER) return 0; assert(j->timer_watch.type == WATCH_INVALID); if ((fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK|TFD_CLOEXEC)) < 0) { r = -errno; goto fail; } zero(its); timespec_store(&its.it_value, j->unit->job_timeout); if (timerfd_settime(fd, 0, &its, NULL) < 0) { r = -errno; goto fail; } zero(ev); ev.data.ptr = &j->timer_watch; ev.events = EPOLLIN; if (epoll_ctl(j->manager->epoll_fd, EPOLL_CTL_ADD, fd, &ev) < 0) { r = -errno; goto fail; } j->timer_watch.type = WATCH_JOB_TIMER; j->timer_watch.fd = fd; j->timer_watch.data.job = j; return 0; fail: if (fd >= 0) close_nointr_nofail(fd); return r; } void job_add_to_run_queue(Job *j) { assert(j); assert(j->installed); if (j->in_run_queue) return; LIST_PREPEND(Job, run_queue, j->manager->run_queue, j); j->in_run_queue = true; } void job_add_to_dbus_queue(Job *j) { assert(j); assert(j->installed); if (j->in_dbus_queue) return; /* We don't check if anybody is subscribed here, since this * job might just have been created and not yet assigned to a * connection/client. */ LIST_PREPEND(Job, dbus_queue, j->manager->dbus_job_queue, j); j->in_dbus_queue = true; } char *job_dbus_path(Job *j) { char *p; assert(j); if (asprintf(&p, "/org/freedesktop/systemd1/job/%lu", (unsigned long) j->id) < 0) return NULL; return p; } void job_timer_event(Job *j, uint64_t n_elapsed, Watch *w) { assert(j); assert(w == &j->timer_watch); log_warning("Job %s/%s timed out.", j->unit->id, job_type_to_string(j->type)); job_finish_and_invalidate(j, JOB_TIMEOUT); } static const char* const job_state_table[_JOB_STATE_MAX] = { [JOB_WAITING] = "waiting", [JOB_RUNNING] = "running" }; DEFINE_STRING_TABLE_LOOKUP(job_state, JobState); static const char* const job_type_table[_JOB_TYPE_MAX] = { [JOB_START] = "start", [JOB_VERIFY_ACTIVE] = "verify-active", [JOB_STOP] = "stop", [JOB_RELOAD] = "reload", [JOB_RELOAD_OR_START] = "reload-or-start", [JOB_RESTART] = "restart", [JOB_TRY_RESTART] = "try-restart", }; DEFINE_STRING_TABLE_LOOKUP(job_type, JobType); static const char* const job_mode_table[_JOB_MODE_MAX] = { [JOB_FAIL] = "fail", [JOB_REPLACE] = "replace", [JOB_ISOLATE] = "isolate", [JOB_IGNORE_DEPENDENCIES] = "ignore-dependencies", [JOB_IGNORE_REQUIREMENTS] = "ignore-requirements" }; DEFINE_STRING_TABLE_LOOKUP(job_mode, JobMode); static const char* const job_result_table[_JOB_RESULT_MAX] = { [JOB_DONE] = "done", [JOB_CANCELED] = "canceled", [JOB_TIMEOUT] = "timeout", [JOB_FAILED] = "failed", [JOB_DEPENDENCY] = "dependency", [JOB_SKIPPED] = "skipped" }; DEFINE_STRING_TABLE_LOOKUP(job_result, JobResult);