/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/ /*** This file is part of systemd. Copyright 2010 Lennart Poettering systemd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with systemd; If not, see . ***/ #include #include #include #include #include "sd-id128.h" #include "sd-messages.h" #include "set.h" #include "unit.h" #include "macro.h" #include "strv.h" #include "load-fragment.h" #include "load-dropin.h" #include "log.h" #include "dbus-job.h" #include "special.h" #include "async.h" #include "virt.h" #include "dbus-client-track.h" Job* job_new_raw(Unit *unit) { Job *j; /* used for deserialization */ assert(unit); j = new0(Job, 1); if (!j) return NULL; j->manager = unit->manager; j->unit = unit; j->type = _JOB_TYPE_INVALID; return j; } Job* job_new(Unit *unit, JobType type) { Job *j; assert(type < _JOB_TYPE_MAX); j = job_new_raw(unit); if (!j) return NULL; j->id = j->manager->current_job_id++; j->type = type; /* We don't link it here, that's what job_dependency() is for */ return j; } void job_free(Job *j) { assert(j); assert(!j->installed); assert(!j->transaction_prev); assert(!j->transaction_next); assert(!j->subject_list); assert(!j->object_list); if (j->in_run_queue) LIST_REMOVE(run_queue, j->manager->run_queue, j); if (j->in_dbus_queue) LIST_REMOVE(dbus_queue, j->manager->dbus_job_queue, j); sd_event_source_unref(j->timer_event_source); bus_client_track_free(j->subscribed); free(j); } void job_uninstall(Job *j) { Job **pj; assert(j->installed); pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job; assert(*pj == j); /* Detach from next 'bigger' objects */ /* daemon-reload should be transparent to job observers */ if (j->manager->n_reloading <= 0) bus_job_send_removed_signal(j); *pj = NULL; unit_add_to_gc_queue(j->unit); hashmap_remove(j->manager->jobs, UINT32_TO_PTR(j->id)); j->installed = false; } static bool job_type_allows_late_merge(JobType t) { /* Tells whether it is OK to merge a job of type 't' with an already * running job. * Reloads cannot be merged this way. Think of the sequence: * 1. Reload of a daemon is in progress; the daemon has already loaded * its config file, but hasn't completed the reload operation yet. * 2. Edit foo's config file. * 3. Trigger another reload to have the daemon use the new config. * Should the second reload job be merged into the first one, the daemon * would not know about the new config. * JOB_RESTART jobs on the other hand can be merged, because they get * patched into JOB_START after stopping the unit. So if we see a * JOB_RESTART running, it means the unit hasn't stopped yet and at * this time the merge is still allowed. */ return t != JOB_RELOAD; } static void job_merge_into_installed(Job *j, Job *other) { assert(j->installed); assert(j->unit == other->unit); if (j->type != JOB_NOP) job_type_merge_and_collapse(&j->type, other->type, j->unit); else assert(other->type == JOB_NOP); j->override = j->override || other->override; j->irreversible = j->irreversible || other->irreversible; j->ignore_order = j->ignore_order || other->ignore_order; } Job* job_install(Job *j) { Job **pj; Job *uj; assert(!j->installed); assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION); pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job; uj = *pj; if (uj) { if (j->type != JOB_NOP && job_type_is_conflicting(uj->type, j->type)) job_finish_and_invalidate(uj, JOB_CANCELED, false); else { /* not conflicting, i.e. mergeable */ if (j->type == JOB_NOP || uj->state == JOB_WAITING || (job_type_allows_late_merge(j->type) && job_type_is_superset(uj->type, j->type))) { job_merge_into_installed(uj, j); log_debug_unit(uj->unit->id, "Merged into installed job %s/%s as %u", uj->unit->id, job_type_to_string(uj->type), (unsigned) uj->id); return uj; } else { /* already running and not safe to merge into */ /* Patch uj to become a merged job and re-run it. */ /* XXX It should be safer to queue j to run after uj finishes, but it is * not currently possible to have more than one installed job per unit. */ job_merge_into_installed(uj, j); log_debug_unit(uj->unit->id, "Merged into running job, re-running: %s/%s as %u", uj->unit->id, job_type_to_string(uj->type), (unsigned) uj->id); uj->state = JOB_WAITING; uj->manager->n_running_jobs--; return uj; } } } /* Install the job */ *pj = j; j->installed = true; j->manager->n_installed_jobs ++; log_debug_unit(j->unit->id, "Installed new job %s/%s as %u", j->unit->id, job_type_to_string(j->type), (unsigned) j->id); return j; } int job_install_deserialized(Job *j) { Job **pj; assert(!j->installed); if (j->type < 0 || j->type >= _JOB_TYPE_MAX_IN_TRANSACTION) { log_debug("Invalid job type %s in deserialization.", strna(job_type_to_string(j->type))); return -EINVAL; } pj = (j->type == JOB_NOP) ? &j->unit->nop_job : &j->unit->job; if (*pj) { log_debug_unit(j->unit->id, "Unit %s already has a job installed. Not installing deserialized job.", j->unit->id); return -EEXIST; } *pj = j; j->installed = true; log_debug_unit(j->unit->id, "Reinstalled deserialized job %s/%s as %u", j->unit->id, job_type_to_string(j->type), (unsigned) j->id); return 0; } JobDependency* job_dependency_new(Job *subject, Job *object, bool matters, bool conflicts) { JobDependency *l; assert(object); /* Adds a new job link, which encodes that the 'subject' job * needs the 'object' job in some way. If 'subject' is NULL * this means the 'anchor' job (i.e. the one the user * explicitly asked for) is the requester. */ if (!(l = new0(JobDependency, 1))) return NULL; l->subject = subject; l->object = object; l->matters = matters; l->conflicts = conflicts; if (subject) LIST_PREPEND(subject, subject->subject_list, l); LIST_PREPEND(object, object->object_list, l); return l; } void job_dependency_free(JobDependency *l) { assert(l); if (l->subject) LIST_REMOVE(subject, l->subject->subject_list, l); LIST_REMOVE(object, l->object->object_list, l); free(l); } void job_dump(Job *j, FILE*f, const char *prefix) { assert(j); assert(f); if (!prefix) prefix = ""; fprintf(f, "%s-> Job %u:\n" "%s\tAction: %s -> %s\n" "%s\tState: %s\n" "%s\tForced: %s\n" "%s\tIrreversible: %s\n", prefix, j->id, prefix, j->unit->id, job_type_to_string(j->type), prefix, job_state_to_string(j->state), prefix, yes_no(j->override), prefix, yes_no(j->irreversible)); } /* * Merging is commutative, so imagine the matrix as symmetric. We store only * its lower triangle to avoid duplication. We don't store the main diagonal, * because A merged with A is simply A. * * If the resulting type is collapsed immediately afterwards (to get rid of * the JOB_RELOAD_OR_START, which lies outside the lookup function's domain), * the following properties hold: * * Merging is associative! A merged with B merged with C is the same as * A merged with C merged with B. * * Mergeability is transitive! If A can be merged with B and B with C then * A also with C. * * Also, if A merged with B cannot be merged with C, then either A or B cannot * be merged with C either. */ static const JobType job_merging_table[] = { /* What \ With * JOB_START JOB_VERIFY_ACTIVE JOB_STOP JOB_RELOAD */ /*********************************************************************************/ /*JOB_START */ /*JOB_VERIFY_ACTIVE */ JOB_START, /*JOB_STOP */ -1, -1, /*JOB_RELOAD */ JOB_RELOAD_OR_START, JOB_RELOAD, -1, /*JOB_RESTART */ JOB_RESTART, JOB_RESTART, -1, JOB_RESTART, }; JobType job_type_lookup_merge(JobType a, JobType b) { assert_cc(ELEMENTSOF(job_merging_table) == _JOB_TYPE_MAX_MERGING * (_JOB_TYPE_MAX_MERGING - 1) / 2); assert(a >= 0 && a < _JOB_TYPE_MAX_MERGING); assert(b >= 0 && b < _JOB_TYPE_MAX_MERGING); if (a == b) return a; if (a < b) { JobType tmp = a; a = b; b = tmp; } return job_merging_table[(a - 1) * a / 2 + b]; } bool job_type_is_redundant(JobType a, UnitActiveState b) { switch (a) { case JOB_START: return b == UNIT_ACTIVE || b == UNIT_RELOADING; case JOB_STOP: return b == UNIT_INACTIVE || b == UNIT_FAILED; case JOB_VERIFY_ACTIVE: return b == UNIT_ACTIVE || b == UNIT_RELOADING; case JOB_RELOAD: return b == UNIT_RELOADING; case JOB_RESTART: return b == UNIT_ACTIVATING; default: assert_not_reached("Invalid job type"); } } void job_type_collapse(JobType *t, Unit *u) { UnitActiveState s; switch (*t) { case JOB_TRY_RESTART: s = unit_active_state(u); if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s)) *t = JOB_NOP; else *t = JOB_RESTART; break; case JOB_RELOAD_OR_START: s = unit_active_state(u); if (UNIT_IS_INACTIVE_OR_DEACTIVATING(s)) *t = JOB_START; else *t = JOB_RELOAD; break; default: ; } } int job_type_merge_and_collapse(JobType *a, JobType b, Unit *u) { JobType t = job_type_lookup_merge(*a, b); if (t < 0) return -EEXIST; *a = t; job_type_collapse(a, u); return 0; } static bool job_is_runnable(Job *j) { Iterator i; Unit *other; assert(j); assert(j->installed); /* Checks whether there is any job running for the units this * job needs to be running after (in the case of a 'positive' * job type) or before (in the case of a 'negative' job * type. */ /* Note that unit types have a say in what is runnable, * too. For example, if they return -EAGAIN from * unit_start() they can indicate they are not * runnable yet. */ /* First check if there is an override */ if (j->ignore_order) return true; if (j->type == JOB_NOP) return true; if (j->type == JOB_START || j->type == JOB_VERIFY_ACTIVE || j->type == JOB_RELOAD) { /* Immediate result is that the job is or might be * started. In this case lets wait for the * dependencies, regardless whether they are * starting or stopping something. */ SET_FOREACH(other, j->unit->dependencies[UNIT_AFTER], i) if (other->job) return false; } /* Also, if something else is being stopped and we should * change state after it, then lets wait. */ SET_FOREACH(other, j->unit->dependencies[UNIT_BEFORE], i) if (other->job && (other->job->type == JOB_STOP || other->job->type == JOB_RESTART)) return false; /* This means that for a service a and a service b where b * shall be started after a: * * start a + start b → 1st step start a, 2nd step start b * start a + stop b → 1st step stop b, 2nd step start a * stop a + start b → 1st step stop a, 2nd step start b * stop a + stop b → 1st step stop b, 2nd step stop a * * This has the side effect that restarts are properly * synchronized too. */ return true; } static void job_change_type(Job *j, JobType newtype) { log_debug_unit(j->unit->id, "Converting job %s/%s -> %s/%s", j->unit->id, job_type_to_string(j->type), j->unit->id, job_type_to_string(newtype)); j->type = newtype; } int job_run_and_invalidate(Job *j) { int r; uint32_t id; Manager *m = j->manager; assert(j); assert(j->installed); assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION); assert(j->in_run_queue); LIST_REMOVE(run_queue, j->manager->run_queue, j); j->in_run_queue = false; if (j->state != JOB_WAITING) return 0; if (!job_is_runnable(j)) return -EAGAIN; j->state = JOB_RUNNING; m->n_running_jobs++; job_add_to_dbus_queue(j); /* While we execute this operation the job might go away (for * example: because it is replaced by a new, conflicting * job.) To make sure we don't access a freed job later on we * store the id here, so that we can verify the job is still * valid. */ id = j->id; switch (j->type) { case JOB_START: r = unit_start(j->unit); /* If this unit cannot be started, then simply wait */ if (r == -EBADR) r = 0; break; case JOB_VERIFY_ACTIVE: { UnitActiveState t = unit_active_state(j->unit); if (UNIT_IS_ACTIVE_OR_RELOADING(t)) r = -EALREADY; else if (t == UNIT_ACTIVATING) r = -EAGAIN; else r = -EBADR; break; } case JOB_STOP: case JOB_RESTART: r = unit_stop(j->unit); /* If this unit cannot stopped, then simply wait. */ if (r == -EBADR) r = 0; break; case JOB_RELOAD: r = unit_reload(j->unit); break; case JOB_NOP: r = -EALREADY; break; default: assert_not_reached("Unknown job type"); } j = manager_get_job(m, id); if (j) { if (r == -EALREADY) r = job_finish_and_invalidate(j, JOB_DONE, true); else if (r == -EBADR) r = job_finish_and_invalidate(j, JOB_SKIPPED, true); else if (r == -ENOEXEC) r = job_finish_and_invalidate(j, JOB_INVALID, true); else if (r == -EAGAIN) { j->state = JOB_WAITING; m->n_running_jobs--; } else if (r < 0) r = job_finish_and_invalidate(j, JOB_FAILED, true); } return r; } _pure_ static const char *job_get_status_message_format(Unit *u, JobType t, JobResult result) { const UnitStatusMessageFormats *format_table; assert(u); assert(t >= 0); assert(t < _JOB_TYPE_MAX); format_table = &UNIT_VTABLE(u)->status_message_formats; if (!format_table) return NULL; if (t == JOB_START) return format_table->finished_start_job[result]; else if (t == JOB_STOP || t == JOB_RESTART) return format_table->finished_stop_job[result]; return NULL; } _pure_ static const char *job_get_status_message_format_try_harder(Unit *u, JobType t, JobResult result) { const char *format; assert(u); assert(t >= 0); assert(t < _JOB_TYPE_MAX); format = job_get_status_message_format(u, t, result); if (format) return format; /* Return generic strings */ if (t == JOB_START) { if (result == JOB_DONE) return "Started %s."; else if (result == JOB_FAILED) return "Failed to start %s."; else if (result == JOB_DEPENDENCY) return "Dependency failed for %s."; else if (result == JOB_TIMEOUT) return "Timed out starting %s."; } else if (t == JOB_STOP || t == JOB_RESTART) { if (result == JOB_DONE) return "Stopped %s."; else if (result == JOB_FAILED) return "Stopped (with error) %s."; else if (result == JOB_TIMEOUT) return "Timed out stoppping %s."; } else if (t == JOB_RELOAD) { if (result == JOB_DONE) return "Reloaded %s."; else if (result == JOB_FAILED) return "Reload failed for %s."; else if (result == JOB_TIMEOUT) return "Timed out reloading %s."; } return NULL; } #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wformat-nonliteral" static void job_print_status_message(Unit *u, JobType t, JobResult result) { const char *format; assert(u); assert(t >= 0); assert(t < _JOB_TYPE_MAX); if (t == JOB_START) { format = job_get_status_message_format(u, t, result); if (!format) return; switch (result) { case JOB_DONE: if (u->condition_result) unit_status_printf(u, ANSI_GREEN_ON " OK " ANSI_HIGHLIGHT_OFF, format); break; case JOB_FAILED: unit_status_printf(u, ANSI_HIGHLIGHT_RED_ON "FAILED" ANSI_HIGHLIGHT_OFF, format); manager_status_printf(u->manager, false, NULL, "See 'systemctl status %s' for details.", u->id); break; case JOB_DEPENDENCY: unit_status_printf(u, ANSI_HIGHLIGHT_YELLOW_ON "DEPEND" ANSI_HIGHLIGHT_OFF, format); break; case JOB_TIMEOUT: unit_status_printf(u, ANSI_HIGHLIGHT_RED_ON " TIME " ANSI_HIGHLIGHT_OFF, format); break; default: ; } } else if (t == JOB_STOP || t == JOB_RESTART) { format = job_get_status_message_format(u, t, result); if (!format) return; switch (result) { case JOB_TIMEOUT: unit_status_printf(u, ANSI_HIGHLIGHT_RED_ON " TIME " ANSI_HIGHLIGHT_OFF, format); break; case JOB_DONE: case JOB_FAILED: unit_status_printf(u, ANSI_GREEN_ON " OK " ANSI_HIGHLIGHT_OFF, format); break; default: ; } } else if (t == JOB_VERIFY_ACTIVE) { /* When verify-active detects the unit is inactive, report it. * Most likely a DEPEND warning from a requisiting unit will * occur next and it's nice to see what was requisited. */ if (result == JOB_SKIPPED) unit_status_printf(u, ANSI_HIGHLIGHT_ON " INFO " ANSI_HIGHLIGHT_OFF, "%s is not active."); } } #pragma GCC diagnostic pop #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wformat-nonliteral" static void job_log_status_message(Unit *u, JobType t, JobResult result) { const char *format; char buf[LINE_MAX]; assert(u); assert(t >= 0); assert(t < _JOB_TYPE_MAX); /* Skip this if it goes to the console. since we already print * to the console anyway... */ if (log_on_console()) return; format = job_get_status_message_format_try_harder(u, t, result); if (!format) return; snprintf(buf, sizeof(buf), format, unit_description(u)); char_array_0(buf); if (t == JOB_START) { sd_id128_t mid; mid = result == JOB_DONE ? SD_MESSAGE_UNIT_STARTED : SD_MESSAGE_UNIT_FAILED; log_struct_unit(result == JOB_DONE ? LOG_INFO : LOG_ERR, u->id, MESSAGE_ID(mid), "RESULT=%s", job_result_to_string(result), "MESSAGE=%s", buf, NULL); } else if (t == JOB_STOP) log_struct_unit(result == JOB_DONE ? LOG_INFO : LOG_ERR, u->id, MESSAGE_ID(SD_MESSAGE_UNIT_STOPPED), "RESULT=%s", job_result_to_string(result), "MESSAGE=%s", buf, NULL); else if (t == JOB_RELOAD) log_struct_unit(result == JOB_DONE ? LOG_INFO : LOG_ERR, u->id, MESSAGE_ID(SD_MESSAGE_UNIT_RELOADED), "RESULT=%s", job_result_to_string(result), "MESSAGE=%s", buf, NULL); } #pragma GCC diagnostic pop int job_finish_and_invalidate(Job *j, JobResult result, bool recursive) { Unit *u; Unit *other; JobType t; Iterator i; assert(j); assert(j->installed); assert(j->type < _JOB_TYPE_MAX_IN_TRANSACTION); u = j->unit; t = j->type; j->result = result; if (j->state == JOB_RUNNING) j->manager->n_running_jobs--; log_debug_unit(u->id, "Job %s/%s finished, result=%s", u->id, job_type_to_string(t), job_result_to_string(result)); job_print_status_message(u, t, result); job_log_status_message(u, t, result); job_add_to_dbus_queue(j); /* Patch restart jobs so that they become normal start jobs */ if (result == JOB_DONE && t == JOB_RESTART) { job_change_type(j, JOB_START); j->state = JOB_WAITING; job_add_to_run_queue(j); goto finish; } if (result == JOB_FAILED || result == JOB_INVALID) j->manager->n_failed_jobs ++; job_uninstall(j); job_free(j); /* Fail depending jobs on failure */ if (result != JOB_DONE && recursive) { if (t == JOB_START || t == JOB_VERIFY_ACTIVE) { SET_FOREACH(other, u->dependencies[UNIT_REQUIRED_BY], i) if (other->job && (other->job->type == JOB_START || other->job->type == JOB_VERIFY_ACTIVE)) job_finish_and_invalidate(other->job, JOB_DEPENDENCY, true); SET_FOREACH(other, u->dependencies[UNIT_BOUND_BY], i) if (other->job && (other->job->type == JOB_START || other->job->type == JOB_VERIFY_ACTIVE)) job_finish_and_invalidate(other->job, JOB_DEPENDENCY, true); SET_FOREACH(other, u->dependencies[UNIT_REQUIRED_BY_OVERRIDABLE], i) if (other->job && !other->job->override && (other->job->type == JOB_START || other->job->type == JOB_VERIFY_ACTIVE)) job_finish_and_invalidate(other->job, JOB_DEPENDENCY, true); } else if (t == JOB_STOP) { SET_FOREACH(other, u->dependencies[UNIT_CONFLICTED_BY], i) if (other->job && (other->job->type == JOB_START || other->job->type == JOB_VERIFY_ACTIVE)) job_finish_and_invalidate(other->job, JOB_DEPENDENCY, true); } } /* Trigger OnFailure dependencies that are not generated by * the unit itself. We don't treat JOB_CANCELED as failure in * this context. And JOB_FAILURE is already handled by the * unit itself. */ if (result == JOB_TIMEOUT || result == JOB_DEPENDENCY) { log_struct_unit(LOG_NOTICE, u->id, "JOB_TYPE=%s", job_type_to_string(t), "JOB_RESULT=%s", job_result_to_string(result), "Job %s/%s failed with result '%s'.", u->id, job_type_to_string(t), job_result_to_string(result), NULL); unit_start_on_failure(u); } unit_trigger_notify(u); finish: /* Try to start the next jobs that can be started */ SET_FOREACH(other, u->dependencies[UNIT_AFTER], i) if (other->job) job_add_to_run_queue(other->job); SET_FOREACH(other, u->dependencies[UNIT_BEFORE], i) if (other->job) job_add_to_run_queue(other->job); manager_check_finished(u->manager); return 0; } static int job_dispatch_timer(sd_event_source *s, uint64_t monotonic, void *userdata) { Job *j = userdata; assert(j); assert(s == j->timer_event_source); log_warning_unit(j->unit->id, "Job %s/%s timed out.", j->unit->id, job_type_to_string(j->type)); job_finish_and_invalidate(j, JOB_TIMEOUT, true); return 0; } int job_start_timer(Job *j) { int r; if (j->unit->job_timeout <= 0 || j->timer_event_source) return 0; j->begin_usec = now(CLOCK_MONOTONIC); r = sd_event_add_monotonic(j->manager->event, j->begin_usec + j->unit->job_timeout, 0, job_dispatch_timer, j, &j->timer_event_source); if (r < 0) return r; return 0; } void job_add_to_run_queue(Job *j) { assert(j); assert(j->installed); if (j->in_run_queue) return; if (!j->manager->run_queue) sd_event_source_set_enabled(j->manager->run_queue_event_source, SD_EVENT_ONESHOT); LIST_PREPEND(run_queue, j->manager->run_queue, j); j->in_run_queue = true; } void job_add_to_dbus_queue(Job *j) { assert(j); assert(j->installed); if (j->in_dbus_queue) return; /* We don't check if anybody is subscribed here, since this * job might just have been created and not yet assigned to a * connection/client. */ LIST_PREPEND(dbus_queue, j->manager->dbus_job_queue, j); j->in_dbus_queue = true; } char *job_dbus_path(Job *j) { char *p; assert(j); if (asprintf(&p, "/org/freedesktop/systemd1/job/%"PRIu32, j->id) < 0) return NULL; return p; } int job_serialize(Job *j, FILE *f, FDSet *fds) { fprintf(f, "job-id=%u\n", j->id); fprintf(f, "job-type=%s\n", job_type_to_string(j->type)); fprintf(f, "job-state=%s\n", job_state_to_string(j->state)); fprintf(f, "job-override=%s\n", yes_no(j->override)); fprintf(f, "job-irreversible=%s\n", yes_no(j->irreversible)); fprintf(f, "job-sent-dbus-new-signal=%s\n", yes_no(j->sent_dbus_new_signal)); fprintf(f, "job-ignore-order=%s\n", yes_no(j->ignore_order)); if (j->begin_usec > 0) fprintf(f, "job-begin="USEC_FMT"\n", j->begin_usec); bus_client_track_serialize(j->manager, f, j->subscribed); /* End marker */ fputc('\n', f); return 0; } int job_deserialize(Job *j, FILE *f, FDSet *fds) { assert(j); for (;;) { char line[LINE_MAX], *l, *v; size_t k; if (!fgets(line, sizeof(line), f)) { if (feof(f)) return 0; return -errno; } char_array_0(line); l = strstrip(line); /* End marker */ if (l[0] == 0) return 0; k = strcspn(l, "="); if (l[k] == '=') { l[k] = 0; v = l+k+1; } else v = l+k; if (streq(l, "job-id")) { if (safe_atou32(v, &j->id) < 0) log_debug("Failed to parse job id value %s", v); } else if (streq(l, "job-type")) { JobType t; t = job_type_from_string(v); if (t < 0) log_debug("Failed to parse job type %s", v); else if (t >= _JOB_TYPE_MAX_IN_TRANSACTION) log_debug("Cannot deserialize job of type %s", v); else j->type = t; } else if (streq(l, "job-state")) { JobState s; s = job_state_from_string(v); if (s < 0) log_debug("Failed to parse job state %s", v); else j->state = s; } else if (streq(l, "job-override")) { int b; b = parse_boolean(v); if (b < 0) log_debug("Failed to parse job override flag %s", v); else j->override = j->override || b; } else if (streq(l, "job-irreversible")) { int b; b = parse_boolean(v); if (b < 0) log_debug("Failed to parse job irreversible flag %s", v); else j->irreversible = j->irreversible || b; } else if (streq(l, "job-sent-dbus-new-signal")) { int b; b = parse_boolean(v); if (b < 0) log_debug("Failed to parse job sent_dbus_new_signal flag %s", v); else j->sent_dbus_new_signal = j->sent_dbus_new_signal || b; } else if (streq(l, "job-ignore-order")) { int b; b = parse_boolean(v); if (b < 0) log_debug("Failed to parse job ignore_order flag %s", v); else j->ignore_order = j->ignore_order || b; } else if (streq(l, "job-begin")) { unsigned long long ull; if (sscanf(v, "%llu", &ull) != 1) log_debug("Failed to parse job-begin value %s", v); else j->begin_usec = ull; } else { char t[strlen(l) + 1 + strlen(v) + 1]; strcpy(stpcpy(stpcpy(t, l), "="), v); if (bus_client_track_deserialize_item(j->manager, &j->subscribed, t) == 0) log_debug("Unknown deserialization key '%s'", l); } } } int job_coldplug(Job *j) { int r; assert(j); if (j->begin_usec <= 0) return 0; if (j->timer_event_source) j->timer_event_source = sd_event_source_unref(j->timer_event_source); r = sd_event_add_monotonic(j->manager->event, j->begin_usec + j->unit->job_timeout, 0, job_dispatch_timer, j, &j->timer_event_source); if (r < 0) log_debug("Failed to restart timeout for job: %s", strerror(-r)); return r; } void job_shutdown_magic(Job *j) { assert(j); /* The shutdown target gets some special treatment here: we * tell the kernel to begin with flushing its disk caches, to * optimize shutdown time a bit. Ideally we wouldn't hardcode * this magic into PID 1. However all other processes aren't * options either since they'd exit much sooner than PID 1 and * asynchronous sync() would cause their exit to be * delayed. */ if (j->type != JOB_START) return; if (j->unit->manager->running_as != SYSTEMD_SYSTEM) return; if (!unit_has_name(j->unit, SPECIAL_SHUTDOWN_TARGET)) return; /* In case messages on console has been disabled on boot */ j->unit->manager->no_console_output = false; if (detect_container(NULL) > 0) return; asynchronous_sync(); } int job_get_timeout(Job *j, uint64_t *timeout) { Unit *u = j->unit; uint64_t x = -1, y = -1; int r = 0, q = 0; assert(u); if (j->timer_event_source) { r = sd_event_source_get_time(j->timer_event_source, &x); if (r < 0) return r; r = 1; } if (UNIT_VTABLE(u)->get_timeout) { q = UNIT_VTABLE(u)->get_timeout(u, &y); if (q < 0) return q; } if (r == 0 && q == 0) return 0; *timeout = MIN(x, y); log_info("job_get_timeout %s %d/%"PRIu64" %d/%"PRIu64" -> 1/%"PRIu64, j->unit->id, r, x, q, y, *timeout); return 1; } static const char* const job_state_table[_JOB_STATE_MAX] = { [JOB_WAITING] = "waiting", [JOB_RUNNING] = "running" }; DEFINE_STRING_TABLE_LOOKUP(job_state, JobState); static const char* const job_type_table[_JOB_TYPE_MAX] = { [JOB_START] = "start", [JOB_VERIFY_ACTIVE] = "verify-active", [JOB_STOP] = "stop", [JOB_RELOAD] = "reload", [JOB_RELOAD_OR_START] = "reload-or-start", [JOB_RESTART] = "restart", [JOB_TRY_RESTART] = "try-restart", [JOB_NOP] = "nop", }; DEFINE_STRING_TABLE_LOOKUP(job_type, JobType); static const char* const job_mode_table[_JOB_MODE_MAX] = { [JOB_FAIL] = "fail", [JOB_REPLACE] = "replace", [JOB_REPLACE_IRREVERSIBLY] = "replace-irreversibly", [JOB_ISOLATE] = "isolate", [JOB_IGNORE_DEPENDENCIES] = "ignore-dependencies", [JOB_IGNORE_REQUIREMENTS] = "ignore-requirements", [JOB_FLUSH] = "flush", }; DEFINE_STRING_TABLE_LOOKUP(job_mode, JobMode); static const char* const job_result_table[_JOB_RESULT_MAX] = { [JOB_DONE] = "done", [JOB_CANCELED] = "canceled", [JOB_TIMEOUT] = "timeout", [JOB_FAILED] = "failed", [JOB_DEPENDENCY] = "dependency", [JOB_SKIPPED] = "skipped", [JOB_INVALID] = "invalid", }; DEFINE_STRING_TABLE_LOOKUP(job_result, JobResult);