/*** This file is part of systemd. Copyright 2010 Lennart Poettering systemd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with systemd; If not, see . ***/ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_AUDIT #include #endif #include "sd-daemon.h" #include "sd-messages.h" #include "alloc-util.h" #include "audit-fd.h" #include "boot-timestamps.h" #include "bus-common-errors.h" #include "bus-error.h" #include "bus-kernel.h" #include "bus-util.h" #include "clean-ipc.h" #include "dbus-job.h" #include "dbus-manager.h" #include "dbus-unit.h" #include "dbus.h" #include "dirent-util.h" #include "env-util.h" #include "escape.h" #include "exit-status.h" #include "fd-util.h" #include "fileio.h" #include "fs-util.h" #include "hashmap.h" #include "io-util.h" #include "locale-setup.h" #include "log.h" #include "macro.h" #include "manager.h" #include "missing.h" #include "mkdir.h" #include "parse-util.h" #include "path-lookup.h" #include "path-util.h" #include "process-util.h" #include "ratelimit.h" #include "rm-rf.h" #include "signal-util.h" #include "special.h" #include "stat-util.h" #include "string-table.h" #include "string-util.h" #include "strv.h" #include "terminal-util.h" #include "time-util.h" #include "transaction.h" #include "umask-util.h" #include "unit-name.h" #include "user-util.h" #include "util.h" #include "virt.h" #include "watchdog.h" #define NOTIFY_RCVBUF_SIZE (8*1024*1024) #define CGROUPS_AGENT_RCVBUF_SIZE (8*1024*1024) /* Initial delay and the interval for printing status messages about running jobs */ #define JOBS_IN_PROGRESS_WAIT_USEC (5*USEC_PER_SEC) #define JOBS_IN_PROGRESS_PERIOD_USEC (USEC_PER_SEC / 3) #define JOBS_IN_PROGRESS_PERIOD_DIVISOR 3 static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata); static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata); static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata); static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata); static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata); static int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata); static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata); static int manager_dispatch_run_queue(sd_event_source *source, void *userdata); static int manager_run_generators(Manager *m); static void manager_watch_jobs_in_progress(Manager *m) { usec_t next; int r; assert(m); /* We do not want to show the cylon animation if the user * needs to confirm service executions otherwise confirmation * messages will be screwed by the cylon animation. */ if (!manager_is_confirm_spawn_disabled(m)) return; if (m->jobs_in_progress_event_source) return; next = now(CLOCK_MONOTONIC) + JOBS_IN_PROGRESS_WAIT_USEC; r = sd_event_add_time( m->event, &m->jobs_in_progress_event_source, CLOCK_MONOTONIC, next, 0, manager_dispatch_jobs_in_progress, m); if (r < 0) return; (void) sd_event_source_set_description(m->jobs_in_progress_event_source, "manager-jobs-in-progress"); } #define CYLON_BUFFER_EXTRA (2*(sizeof(ANSI_RED)-1) + sizeof(ANSI_HIGHLIGHT_RED)-1 + 2*(sizeof(ANSI_NORMAL)-1)) static void draw_cylon(char buffer[], size_t buflen, unsigned width, unsigned pos) { char *p = buffer; assert(buflen >= CYLON_BUFFER_EXTRA + width + 1); assert(pos <= width+1); /* 0 or width+1 mean that the center light is behind the corner */ if (pos > 1) { if (pos > 2) p = mempset(p, ' ', pos-2); if (log_get_show_color()) p = stpcpy(p, ANSI_RED); *p++ = '*'; } if (pos > 0 && pos <= width) { if (log_get_show_color()) p = stpcpy(p, ANSI_HIGHLIGHT_RED); *p++ = '*'; } if (log_get_show_color()) p = stpcpy(p, ANSI_NORMAL); if (pos < width) { if (log_get_show_color()) p = stpcpy(p, ANSI_RED); *p++ = '*'; if (pos < width-1) p = mempset(p, ' ', width-1-pos); if (log_get_show_color()) strcpy(p, ANSI_NORMAL); } } void manager_flip_auto_status(Manager *m, bool enable) { assert(m); if (enable) { if (m->show_status == SHOW_STATUS_AUTO) manager_set_show_status(m, SHOW_STATUS_TEMPORARY); } else { if (m->show_status == SHOW_STATUS_TEMPORARY) manager_set_show_status(m, SHOW_STATUS_AUTO); } } static void manager_print_jobs_in_progress(Manager *m) { _cleanup_free_ char *job_of_n = NULL; Iterator i; Job *j; unsigned counter = 0, print_nr; char cylon[6 + CYLON_BUFFER_EXTRA + 1]; unsigned cylon_pos; char time[FORMAT_TIMESPAN_MAX], limit[FORMAT_TIMESPAN_MAX] = "no limit"; uint64_t x; assert(m); assert(m->n_running_jobs > 0); manager_flip_auto_status(m, true); print_nr = (m->jobs_in_progress_iteration / JOBS_IN_PROGRESS_PERIOD_DIVISOR) % m->n_running_jobs; HASHMAP_FOREACH(j, m->jobs, i) if (j->state == JOB_RUNNING && counter++ == print_nr) break; /* m->n_running_jobs must be consistent with the contents of m->jobs, * so the above loop must have succeeded in finding j. */ assert(counter == print_nr + 1); assert(j); cylon_pos = m->jobs_in_progress_iteration % 14; if (cylon_pos >= 8) cylon_pos = 14 - cylon_pos; draw_cylon(cylon, sizeof(cylon), 6, cylon_pos); m->jobs_in_progress_iteration++; if (m->n_running_jobs > 1) { if (asprintf(&job_of_n, "(%u of %u) ", counter, m->n_running_jobs) < 0) job_of_n = NULL; } format_timespan(time, sizeof(time), now(CLOCK_MONOTONIC) - j->begin_usec, 1*USEC_PER_SEC); if (job_get_timeout(j, &x) > 0) format_timespan(limit, sizeof(limit), x - j->begin_usec, 1*USEC_PER_SEC); manager_status_printf(m, STATUS_TYPE_EPHEMERAL, cylon, "%sA %s job is running for %s (%s / %s)", strempty(job_of_n), job_type_to_string(j->type), unit_description(j->unit), time, limit); } static int have_ask_password(void) { _cleanup_closedir_ DIR *dir; dir = opendir("/run/systemd/ask-password"); if (!dir) { if (errno == ENOENT) return false; else return -errno; } for (;;) { struct dirent *de; errno = 0; de = readdir(dir); if (!de && errno > 0) return -errno; if (!de) return false; if (startswith(de->d_name, "ask.")) return true; } } static int manager_dispatch_ask_password_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { Manager *m = userdata; assert(m); flush_fd(fd); m->have_ask_password = have_ask_password(); if (m->have_ask_password < 0) /* Log error but continue. Negative have_ask_password * is treated as unknown status. */ log_error_errno(m->have_ask_password, "Failed to list /run/systemd/ask-password: %m"); return 0; } static void manager_close_ask_password(Manager *m) { assert(m); m->ask_password_event_source = sd_event_source_unref(m->ask_password_event_source); m->ask_password_inotify_fd = safe_close(m->ask_password_inotify_fd); m->have_ask_password = -EINVAL; } static int manager_check_ask_password(Manager *m) { int r; assert(m); if (!m->ask_password_event_source) { assert(m->ask_password_inotify_fd < 0); mkdir_p_label("/run/systemd/ask-password", 0755); m->ask_password_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC); if (m->ask_password_inotify_fd < 0) return log_error_errno(errno, "inotify_init1() failed: %m"); if (inotify_add_watch(m->ask_password_inotify_fd, "/run/systemd/ask-password", IN_CREATE|IN_DELETE|IN_MOVE) < 0) { log_error_errno(errno, "Failed to add watch on /run/systemd/ask-password: %m"); manager_close_ask_password(m); return -errno; } r = sd_event_add_io(m->event, &m->ask_password_event_source, m->ask_password_inotify_fd, EPOLLIN, manager_dispatch_ask_password_fd, m); if (r < 0) { log_error_errno(errno, "Failed to add event source for /run/systemd/ask-password: %m"); manager_close_ask_password(m); return -errno; } (void) sd_event_source_set_description(m->ask_password_event_source, "manager-ask-password"); /* Queries might have been added meanwhile... */ manager_dispatch_ask_password_fd(m->ask_password_event_source, m->ask_password_inotify_fd, EPOLLIN, m); } return m->have_ask_password; } static int manager_watch_idle_pipe(Manager *m) { int r; assert(m); if (m->idle_pipe_event_source) return 0; if (m->idle_pipe[2] < 0) return 0; r = sd_event_add_io(m->event, &m->idle_pipe_event_source, m->idle_pipe[2], EPOLLIN, manager_dispatch_idle_pipe_fd, m); if (r < 0) return log_error_errno(r, "Failed to watch idle pipe: %m"); (void) sd_event_source_set_description(m->idle_pipe_event_source, "manager-idle-pipe"); return 0; } static void manager_close_idle_pipe(Manager *m) { assert(m); m->idle_pipe_event_source = sd_event_source_unref(m->idle_pipe_event_source); safe_close_pair(m->idle_pipe); safe_close_pair(m->idle_pipe + 2); } static int manager_setup_time_change(Manager *m) { int r; /* We only care for the cancellation event, hence we set the * timeout to the latest possible value. */ struct itimerspec its = { .it_value.tv_sec = TIME_T_MAX, }; assert(m); assert_cc(sizeof(time_t) == sizeof(TIME_T_MAX)); if (m->test_run) return 0; /* Uses TFD_TIMER_CANCEL_ON_SET to get notifications whenever * CLOCK_REALTIME makes a jump relative to CLOCK_MONOTONIC */ m->time_change_fd = timerfd_create(CLOCK_REALTIME, TFD_NONBLOCK|TFD_CLOEXEC); if (m->time_change_fd < 0) return log_error_errno(errno, "Failed to create timerfd: %m"); if (timerfd_settime(m->time_change_fd, TFD_TIMER_ABSTIME|TFD_TIMER_CANCEL_ON_SET, &its, NULL) < 0) { log_debug_errno(errno, "Failed to set up TFD_TIMER_CANCEL_ON_SET, ignoring: %m"); m->time_change_fd = safe_close(m->time_change_fd); return 0; } r = sd_event_add_io(m->event, &m->time_change_event_source, m->time_change_fd, EPOLLIN, manager_dispatch_time_change_fd, m); if (r < 0) return log_error_errno(r, "Failed to create time change event source: %m"); (void) sd_event_source_set_description(m->time_change_event_source, "manager-time-change"); log_debug("Set up TFD_TIMER_CANCEL_ON_SET timerfd."); return 0; } static int enable_special_signals(Manager *m) { _cleanup_close_ int fd = -1; assert(m); if (m->test_run) return 0; /* Enable that we get SIGINT on control-alt-del. In containers * this will fail with EPERM (older) or EINVAL (newer), so * ignore that. */ if (reboot(RB_DISABLE_CAD) < 0 && errno != EPERM && errno != EINVAL) log_warning_errno(errno, "Failed to enable ctrl-alt-del handling: %m"); fd = open_terminal("/dev/tty0", O_RDWR|O_NOCTTY|O_CLOEXEC); if (fd < 0) { /* Support systems without virtual console */ if (fd != -ENOENT) log_warning_errno(errno, "Failed to open /dev/tty0: %m"); } else { /* Enable that we get SIGWINCH on kbrequest */ if (ioctl(fd, KDSIGACCEPT, SIGWINCH) < 0) log_warning_errno(errno, "Failed to enable kbrequest handling: %m"); } return 0; } static int manager_setup_signals(Manager *m) { struct sigaction sa = { .sa_handler = SIG_DFL, .sa_flags = SA_NOCLDSTOP|SA_RESTART, }; sigset_t mask; int r; assert(m); assert_se(sigaction(SIGCHLD, &sa, NULL) == 0); /* We make liberal use of realtime signals here. On * Linux/glibc we have 30 of them (with the exception of Linux * on hppa, see below), between SIGRTMIN+0 ... SIGRTMIN+30 * (aka SIGRTMAX). */ assert_se(sigemptyset(&mask) == 0); sigset_add_many(&mask, SIGCHLD, /* Child died */ SIGTERM, /* Reexecute daemon */ SIGHUP, /* Reload configuration */ SIGUSR1, /* systemd/upstart: reconnect to D-Bus */ SIGUSR2, /* systemd: dump status */ SIGINT, /* Kernel sends us this on control-alt-del */ SIGWINCH, /* Kernel sends us this on kbrequest (alt-arrowup) */ SIGPWR, /* Some kernel drivers and upsd send us this on power failure */ SIGRTMIN+0, /* systemd: start default.target */ SIGRTMIN+1, /* systemd: isolate rescue.target */ SIGRTMIN+2, /* systemd: isolate emergency.target */ SIGRTMIN+3, /* systemd: start halt.target */ SIGRTMIN+4, /* systemd: start poweroff.target */ SIGRTMIN+5, /* systemd: start reboot.target */ SIGRTMIN+6, /* systemd: start kexec.target */ /* ... space for more special targets ... */ SIGRTMIN+13, /* systemd: Immediate halt */ SIGRTMIN+14, /* systemd: Immediate poweroff */ SIGRTMIN+15, /* systemd: Immediate reboot */ SIGRTMIN+16, /* systemd: Immediate kexec */ /* ... space for more immediate system state changes ... */ SIGRTMIN+20, /* systemd: enable status messages */ SIGRTMIN+21, /* systemd: disable status messages */ SIGRTMIN+22, /* systemd: set log level to LOG_DEBUG */ SIGRTMIN+23, /* systemd: set log level to LOG_INFO */ SIGRTMIN+24, /* systemd: Immediate exit (--user only) */ /* .. one free signal here ... */ #if !defined(__hppa64__) && !defined(__hppa__) /* Apparently Linux on hppa has fewer RT * signals (SIGRTMAX is SIGRTMIN+25 there), * hence let's not try to make use of them * here. Since these commands are accessible * by different means and only really a safety * net, the missing functionality on hppa * shouldn't matter. */ SIGRTMIN+26, /* systemd: set log target to journal-or-kmsg */ SIGRTMIN+27, /* systemd: set log target to console */ SIGRTMIN+28, /* systemd: set log target to kmsg */ SIGRTMIN+29, /* systemd: set log target to syslog-or-kmsg (obsolete) */ /* ... one free signal here SIGRTMIN+30 ... */ #endif -1); assert_se(sigprocmask(SIG_SETMASK, &mask, NULL) == 0); m->signal_fd = signalfd(-1, &mask, SFD_NONBLOCK|SFD_CLOEXEC); if (m->signal_fd < 0) return -errno; r = sd_event_add_io(m->event, &m->signal_event_source, m->signal_fd, EPOLLIN, manager_dispatch_signal_fd, m); if (r < 0) return r; (void) sd_event_source_set_description(m->signal_event_source, "manager-signal"); /* Process signals a bit earlier than the rest of things, but later than notify_fd processing, so that the * notify processing can still figure out to which process/service a message belongs, before we reap the * process. Also, process this before handling cgroup notifications, so that we always collect child exit * status information before detecting that there's no process in a cgroup. */ r = sd_event_source_set_priority(m->signal_event_source, SD_EVENT_PRIORITY_NORMAL-6); if (r < 0) return r; if (MANAGER_IS_SYSTEM(m)) return enable_special_signals(m); return 0; } static void manager_clean_environment(Manager *m) { assert(m); /* Let's remove some environment variables that we * need ourselves to communicate with our clients */ strv_env_unset_many( m->environment, "NOTIFY_SOCKET", "MAINPID", "MANAGERPID", "LISTEN_PID", "LISTEN_FDS", "LISTEN_FDNAMES", "WATCHDOG_PID", "WATCHDOG_USEC", "INVOCATION_ID", NULL); } static int manager_default_environment(Manager *m) { assert(m); if (MANAGER_IS_SYSTEM(m)) { /* The system manager always starts with a clean * environment for its children. It does not import * the kernel or the parents exported variables. * * The initial passed environ is untouched to keep * /proc/self/environ valid; it is used for tagging * the init process inside containers. */ m->environment = strv_new("PATH=" DEFAULT_PATH, NULL); /* Import locale variables LC_*= from configuration */ locale_setup(&m->environment); } else { /* The user manager passes its own environment * along to its children. */ m->environment = strv_copy(environ); } if (!m->environment) return -ENOMEM; manager_clean_environment(m); strv_sort(m->environment); return 0; } int manager_new(UnitFileScope scope, bool test_run, Manager **_m) { Manager *m; int r; assert(_m); assert(IN_SET(scope, UNIT_FILE_SYSTEM, UNIT_FILE_USER)); m = new0(Manager, 1); if (!m) return -ENOMEM; m->unit_file_scope = scope; m->exit_code = _MANAGER_EXIT_CODE_INVALID; m->default_timer_accuracy_usec = USEC_PER_MINUTE; m->default_tasks_accounting = true; m->default_tasks_max = UINT64_MAX; #ifdef ENABLE_EFI if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0) boot_timestamps(&m->userspace_timestamp, &m->firmware_timestamp, &m->loader_timestamp); #endif /* Prepare log fields we can use for structured logging */ if (MANAGER_IS_SYSTEM(m)) { m->unit_log_field = "UNIT="; m->unit_log_format_string = "UNIT=%s"; m->invocation_log_field = "INVOCATION_ID="; m->invocation_log_format_string = "INVOCATION_ID=" SD_ID128_FORMAT_STR; } else { m->unit_log_field = "USER_UNIT="; m->unit_log_format_string = "USER_UNIT=%s"; m->invocation_log_field = "USER_INVOCATION_ID="; m->invocation_log_format_string = "USER_INVOCATION_ID=" SD_ID128_FORMAT_STR; } m->idle_pipe[0] = m->idle_pipe[1] = m->idle_pipe[2] = m->idle_pipe[3] = -1; m->pin_cgroupfs_fd = m->notify_fd = m->cgroups_agent_fd = m->signal_fd = m->time_change_fd = m->dev_autofs_fd = m->private_listen_fd = m->cgroup_inotify_fd = m->ask_password_inotify_fd = -1; m->user_lookup_fds[0] = m->user_lookup_fds[1] = -1; m->current_job_id = 1; /* start as id #1, so that we can leave #0 around as "null-like" value */ m->have_ask_password = -EINVAL; /* we don't know */ m->first_boot = -1; m->test_run = test_run; /* Reboot immediately if the user hits C-A-D more often than 7x per 2s */ RATELIMIT_INIT(m->ctrl_alt_del_ratelimit, 2 * USEC_PER_SEC, 7); r = manager_default_environment(m); if (r < 0) goto fail; r = hashmap_ensure_allocated(&m->units, &string_hash_ops); if (r < 0) goto fail; r = hashmap_ensure_allocated(&m->jobs, NULL); if (r < 0) goto fail; r = hashmap_ensure_allocated(&m->cgroup_unit, &string_hash_ops); if (r < 0) goto fail; r = hashmap_ensure_allocated(&m->watch_bus, &string_hash_ops); if (r < 0) goto fail; r = sd_event_default(&m->event); if (r < 0) goto fail; r = sd_event_add_defer(m->event, &m->run_queue_event_source, manager_dispatch_run_queue, m); if (r < 0) goto fail; r = sd_event_source_set_priority(m->run_queue_event_source, SD_EVENT_PRIORITY_IDLE); if (r < 0) goto fail; r = sd_event_source_set_enabled(m->run_queue_event_source, SD_EVENT_OFF); if (r < 0) goto fail; (void) sd_event_source_set_description(m->run_queue_event_source, "manager-run-queue"); r = manager_setup_signals(m); if (r < 0) goto fail; r = manager_setup_cgroup(m); if (r < 0) goto fail; r = manager_setup_time_change(m); if (r < 0) goto fail; m->udev = udev_new(); if (!m->udev) { r = -ENOMEM; goto fail; } /* Note that we do not set up the notify fd here. We do that after deserialization, * since they might have gotten serialized across the reexec. */ m->taint_usr = dir_is_empty("/usr") > 0; *_m = m; return 0; fail: manager_free(m); return r; } static int manager_setup_notify(Manager *m) { int r; if (m->test_run) return 0; if (m->notify_fd < 0) { _cleanup_close_ int fd = -1; union sockaddr_union sa = { .sa.sa_family = AF_UNIX, }; static const int one = 1; const char *e; /* First free all secondary fields */ m->notify_socket = mfree(m->notify_socket); m->notify_event_source = sd_event_source_unref(m->notify_event_source); fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0); if (fd < 0) return log_error_errno(errno, "Failed to allocate notification socket: %m"); fd_inc_rcvbuf(fd, NOTIFY_RCVBUF_SIZE); e = manager_get_runtime_prefix(m); if (!e) { log_error("Failed to determine runtime prefix."); return -EINVAL; } m->notify_socket = strappend(e, "/systemd/notify"); if (!m->notify_socket) return log_oom(); (void) mkdir_parents_label(m->notify_socket, 0755); (void) unlink(m->notify_socket); strncpy(sa.un.sun_path, m->notify_socket, sizeof(sa.un.sun_path)-1); r = bind(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)); if (r < 0) return log_error_errno(errno, "bind(%s) failed: %m", sa.un.sun_path); r = setsockopt(fd, SOL_SOCKET, SO_PASSCRED, &one, sizeof(one)); if (r < 0) return log_error_errno(errno, "SO_PASSCRED failed: %m"); m->notify_fd = fd; fd = -1; log_debug("Using notification socket %s", m->notify_socket); } if (!m->notify_event_source) { r = sd_event_add_io(m->event, &m->notify_event_source, m->notify_fd, EPOLLIN, manager_dispatch_notify_fd, m); if (r < 0) return log_error_errno(r, "Failed to allocate notify event source: %m"); /* Process notification messages a bit earlier than SIGCHLD, so that we can still identify to which * service an exit message belongs. */ r = sd_event_source_set_priority(m->notify_event_source, SD_EVENT_PRIORITY_NORMAL-7); if (r < 0) return log_error_errno(r, "Failed to set priority of notify event source: %m"); (void) sd_event_source_set_description(m->notify_event_source, "manager-notify"); } return 0; } static int manager_setup_cgroups_agent(Manager *m) { static const union sockaddr_union sa = { .un.sun_family = AF_UNIX, .un.sun_path = "/run/systemd/cgroups-agent", }; int r; /* This creates a listening socket we receive cgroups agent messages on. We do not use D-Bus for delivering * these messages from the cgroups agent binary to PID 1, as the cgroups agent binary is very short-living, and * each instance of it needs a new D-Bus connection. Since D-Bus connections are SOCK_STREAM/AF_UNIX, on * overloaded systems the backlog of the D-Bus socket becomes relevant, as not more than the configured number * of D-Bus connections may be queued until the kernel will start dropping further incoming connections, * possibly resulting in lost cgroups agent messages. To avoid this, we'll use a private SOCK_DGRAM/AF_UNIX * socket, where no backlog is relevant as communication may take place without an actual connect() cycle, and * we thus won't lose messages. * * Note that PID 1 will forward the agent message to system bus, so that the user systemd instance may listen * to it. The system instance hence listens on this special socket, but the user instances listen on the system * bus for these messages. */ if (m->test_run) return 0; if (!MANAGER_IS_SYSTEM(m)) return 0; if (cg_unified(SYSTEMD_CGROUP_CONTROLLER) > 0) /* We don't need this anymore on the unified hierarchy */ return 0; if (m->cgroups_agent_fd < 0) { _cleanup_close_ int fd = -1; /* First free all secondary fields */ m->cgroups_agent_event_source = sd_event_source_unref(m->cgroups_agent_event_source); fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0); if (fd < 0) return log_error_errno(errno, "Failed to allocate cgroups agent socket: %m"); fd_inc_rcvbuf(fd, CGROUPS_AGENT_RCVBUF_SIZE); (void) unlink(sa.un.sun_path); /* Only allow root to connect to this socket */ RUN_WITH_UMASK(0077) r = bind(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)); if (r < 0) return log_error_errno(errno, "bind(%s) failed: %m", sa.un.sun_path); m->cgroups_agent_fd = fd; fd = -1; } if (!m->cgroups_agent_event_source) { r = sd_event_add_io(m->event, &m->cgroups_agent_event_source, m->cgroups_agent_fd, EPOLLIN, manager_dispatch_cgroups_agent_fd, m); if (r < 0) return log_error_errno(r, "Failed to allocate cgroups agent event source: %m"); /* Process cgroups notifications early, but after having processed service notification messages or * SIGCHLD signals, so that a cgroup running empty is always just the last safety net of notification, * and we collected the metadata the notification and SIGCHLD stuff offers first. Also see handling of * cgroup inotify for the unified cgroup stuff. */ r = sd_event_source_set_priority(m->cgroups_agent_event_source, SD_EVENT_PRIORITY_NORMAL-5); if (r < 0) return log_error_errno(r, "Failed to set priority of cgroups agent event source: %m"); (void) sd_event_source_set_description(m->cgroups_agent_event_source, "manager-cgroups-agent"); } return 0; } static int manager_setup_user_lookup_fd(Manager *m) { int r; assert(m); /* Set up the socket pair used for passing UID/GID resolution results from forked off processes to PID * 1. Background: we can't do name lookups (NSS) from PID 1, since it might involve IPC and thus activation, * and we might hence deadlock on ourselves. Hence we do all user/group lookups asynchronously from the forked * off processes right before executing the binaries to start. In order to be able to clean up any IPC objects * created by a unit (see RemoveIPC=) we need to know in PID 1 the used UID/GID of the executed processes, * hence we establish this communication channel so that forked off processes can pass their UID/GID * information back to PID 1. The forked off processes send their resolved UID/GID to PID 1 in a simple * datagram, along with their unit name, so that we can share one communication socket pair among all units for * this purpose. * * You might wonder why we need a communication channel for this that is independent of the usual notification * socket scheme (i.e. $NOTIFY_SOCKET). The primary difference is about trust: data sent via the $NOTIFY_SOCKET * channel is only accepted if it originates from the right unit and if reception was enabled for it. The user * lookup socket OTOH is only accessible by PID 1 and its children until they exec(), and always available. * * Note that this function is called under two circumstances: when we first initialize (in which case we * allocate both the socket pair and the event source to listen on it), and when we deserialize after a reload * (in which case the socket pair already exists but we still need to allocate the event source for it). */ if (m->user_lookup_fds[0] < 0) { /* Free all secondary fields */ safe_close_pair(m->user_lookup_fds); m->user_lookup_event_source = sd_event_source_unref(m->user_lookup_event_source); if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, m->user_lookup_fds) < 0) return log_error_errno(errno, "Failed to allocate user lookup socket: %m"); (void) fd_inc_rcvbuf(m->user_lookup_fds[0], NOTIFY_RCVBUF_SIZE); } if (!m->user_lookup_event_source) { r = sd_event_add_io(m->event, &m->user_lookup_event_source, m->user_lookup_fds[0], EPOLLIN, manager_dispatch_user_lookup_fd, m); if (r < 0) return log_error_errno(errno, "Failed to allocate user lookup event source: %m"); /* Process even earlier than the notify event source, so that we always know first about valid UID/GID * resolutions */ r = sd_event_source_set_priority(m->user_lookup_event_source, SD_EVENT_PRIORITY_NORMAL-8); if (r < 0) return log_error_errno(errno, "Failed to set priority ot user lookup event source: %m"); (void) sd_event_source_set_description(m->user_lookup_event_source, "user-lookup"); } return 0; } static int manager_connect_bus(Manager *m, bool reexecuting) { bool try_bus_connect; assert(m); if (m->test_run) return 0; try_bus_connect = reexecuting || (MANAGER_IS_USER(m) && getenv("DBUS_SESSION_BUS_ADDRESS")); /* Try to connect to the buses, if possible. */ return bus_init(m, try_bus_connect); } static unsigned manager_dispatch_cleanup_queue(Manager *m) { Unit *u; unsigned n = 0; assert(m); while ((u = m->cleanup_queue)) { assert(u->in_cleanup_queue); unit_free(u); n++; } return n; } enum { GC_OFFSET_IN_PATH, /* This one is on the path we were traveling */ GC_OFFSET_UNSURE, /* No clue */ GC_OFFSET_GOOD, /* We still need this unit */ GC_OFFSET_BAD, /* We don't need this unit anymore */ _GC_OFFSET_MAX }; static void unit_gc_mark_good(Unit *u, unsigned gc_marker) { Iterator i; Unit *other; u->gc_marker = gc_marker + GC_OFFSET_GOOD; /* Recursively mark referenced units as GOOD as well */ SET_FOREACH(other, u->dependencies[UNIT_REFERENCES], i) if (other->gc_marker == gc_marker + GC_OFFSET_UNSURE) unit_gc_mark_good(other, gc_marker); } static void unit_gc_sweep(Unit *u, unsigned gc_marker) { Iterator i; Unit *other; bool is_bad; assert(u); if (u->gc_marker == gc_marker + GC_OFFSET_GOOD || u->gc_marker == gc_marker + GC_OFFSET_BAD || u->gc_marker == gc_marker + GC_OFFSET_UNSURE || u->gc_marker == gc_marker + GC_OFFSET_IN_PATH) return; if (u->in_cleanup_queue) goto bad; if (unit_check_gc(u)) goto good; u->gc_marker = gc_marker + GC_OFFSET_IN_PATH; is_bad = true; SET_FOREACH(other, u->dependencies[UNIT_REFERENCED_BY], i) { unit_gc_sweep(other, gc_marker); if (other->gc_marker == gc_marker + GC_OFFSET_GOOD) goto good; if (other->gc_marker != gc_marker + GC_OFFSET_BAD) is_bad = false; } if (is_bad) goto bad; /* We were unable to find anything out about this entry, so * let's investigate it later */ u->gc_marker = gc_marker + GC_OFFSET_UNSURE; unit_add_to_gc_queue(u); return; bad: /* We definitely know that this one is not useful anymore, so * let's mark it for deletion */ u->gc_marker = gc_marker + GC_OFFSET_BAD; unit_add_to_cleanup_queue(u); return; good: unit_gc_mark_good(u, gc_marker); } static unsigned manager_dispatch_gc_queue(Manager *m) { Unit *u; unsigned n = 0; unsigned gc_marker; assert(m); /* log_debug("Running GC..."); */ m->gc_marker += _GC_OFFSET_MAX; if (m->gc_marker + _GC_OFFSET_MAX <= _GC_OFFSET_MAX) m->gc_marker = 1; gc_marker = m->gc_marker; while ((u = m->gc_queue)) { assert(u->in_gc_queue); unit_gc_sweep(u, gc_marker); LIST_REMOVE(gc_queue, m->gc_queue, u); u->in_gc_queue = false; n++; if (u->gc_marker == gc_marker + GC_OFFSET_BAD || u->gc_marker == gc_marker + GC_OFFSET_UNSURE) { if (u->id) log_unit_debug(u, "Collecting."); u->gc_marker = gc_marker + GC_OFFSET_BAD; unit_add_to_cleanup_queue(u); } } m->n_in_gc_queue = 0; return n; } static void manager_clear_jobs_and_units(Manager *m) { Unit *u; assert(m); while ((u = hashmap_first(m->units))) unit_free(u); manager_dispatch_cleanup_queue(m); assert(!m->load_queue); assert(!m->run_queue); assert(!m->dbus_unit_queue); assert(!m->dbus_job_queue); assert(!m->cleanup_queue); assert(!m->gc_queue); assert(hashmap_isempty(m->jobs)); assert(hashmap_isempty(m->units)); m->n_on_console = 0; m->n_running_jobs = 0; } Manager* manager_free(Manager *m) { UnitType c; int i; if (!m) return NULL; manager_clear_jobs_and_units(m); for (c = 0; c < _UNIT_TYPE_MAX; c++) if (unit_vtable[c]->shutdown) unit_vtable[c]->shutdown(m); /* If we reexecute ourselves, we keep the root cgroup * around */ manager_shutdown_cgroup(m, m->exit_code != MANAGER_REEXECUTE); lookup_paths_flush_generator(&m->lookup_paths); bus_done(m); dynamic_user_vacuum(m, false); hashmap_free(m->dynamic_users); hashmap_free(m->units); hashmap_free(m->units_by_invocation_id); hashmap_free(m->jobs); hashmap_free(m->watch_pids1); hashmap_free(m->watch_pids2); hashmap_free(m->watch_bus); set_free(m->startup_units); set_free(m->failed_units); sd_event_source_unref(m->signal_event_source); sd_event_source_unref(m->notify_event_source); sd_event_source_unref(m->cgroups_agent_event_source); sd_event_source_unref(m->time_change_event_source); sd_event_source_unref(m->jobs_in_progress_event_source); sd_event_source_unref(m->run_queue_event_source); sd_event_source_unref(m->user_lookup_event_source); safe_close(m->signal_fd); safe_close(m->notify_fd); safe_close(m->cgroups_agent_fd); safe_close(m->time_change_fd); safe_close_pair(m->user_lookup_fds); manager_close_ask_password(m); manager_close_idle_pipe(m); udev_unref(m->udev); sd_event_unref(m->event); free(m->notify_socket); lookup_paths_free(&m->lookup_paths); strv_free(m->environment); hashmap_free(m->cgroup_unit); set_free_free(m->unit_path_cache); free(m->switch_root); free(m->switch_root_init); for (i = 0; i < _RLIMIT_MAX; i++) m->rlimit[i] = mfree(m->rlimit[i]); assert(hashmap_isempty(m->units_requiring_mounts_for)); hashmap_free(m->units_requiring_mounts_for); hashmap_free(m->uid_refs); hashmap_free(m->gid_refs); return mfree(m); } void manager_enumerate(Manager *m) { UnitType c; assert(m); /* Let's ask every type to load all units from disk/kernel * that it might know */ for (c = 0; c < _UNIT_TYPE_MAX; c++) { if (!unit_type_supported(c)) { log_debug("Unit type .%s is not supported on this system.", unit_type_to_string(c)); continue; } if (!unit_vtable[c]->enumerate) continue; unit_vtable[c]->enumerate(m); } manager_dispatch_load_queue(m); } static void manager_coldplug(Manager *m) { Iterator i; Unit *u; char *k; int r; assert(m); /* Then, let's set up their initial state. */ HASHMAP_FOREACH_KEY(u, k, m->units, i) { /* ignore aliases */ if (u->id != k) continue; r = unit_coldplug(u); if (r < 0) log_warning_errno(r, "We couldn't coldplug %s, proceeding anyway: %m", u->id); } } static void manager_build_unit_path_cache(Manager *m) { char **i; int r; assert(m); set_free_free(m->unit_path_cache); m->unit_path_cache = set_new(&string_hash_ops); if (!m->unit_path_cache) { r = -ENOMEM; goto fail; } /* This simply builds a list of files we know exist, so that * we don't always have to go to disk */ STRV_FOREACH(i, m->lookup_paths.search_path) { _cleanup_closedir_ DIR *d = NULL; struct dirent *de; d = opendir(*i); if (!d) { if (errno != ENOENT) log_warning_errno(errno, "Failed to open directory %s, ignoring: %m", *i); continue; } FOREACH_DIRENT(de, d, r = -errno; goto fail) { char *p; p = strjoin(streq(*i, "/") ? "" : *i, "/", de->d_name); if (!p) { r = -ENOMEM; goto fail; } r = set_consume(m->unit_path_cache, p); if (r < 0) goto fail; } } return; fail: log_warning_errno(r, "Failed to build unit path cache, proceeding without: %m"); m->unit_path_cache = set_free_free(m->unit_path_cache); } static void manager_distribute_fds(Manager *m, FDSet *fds) { Iterator i; Unit *u; assert(m); HASHMAP_FOREACH(u, m->units, i) { if (fdset_size(fds) <= 0) break; if (!UNIT_VTABLE(u)->distribute_fds) continue; UNIT_VTABLE(u)->distribute_fds(u, fds); } } int manager_startup(Manager *m, FILE *serialization, FDSet *fds) { int r, q; assert(m); r = lookup_paths_init(&m->lookup_paths, m->unit_file_scope, 0, NULL); if (r < 0) return r; /* Make sure the transient directory always exists, so that it remains in the search path */ if (!m->test_run) { r = mkdir_p_label(m->lookup_paths.transient, 0755); if (r < 0) return r; } dual_timestamp_get(&m->generators_start_timestamp); r = manager_run_generators(m); dual_timestamp_get(&m->generators_finish_timestamp); if (r < 0) return r; lookup_paths_reduce(&m->lookup_paths); manager_build_unit_path_cache(m); /* If we will deserialize make sure that during enumeration * this is already known, so we increase the counter here * already */ if (serialization) m->n_reloading++; /* First, enumerate what we can from all config files */ dual_timestamp_get(&m->units_load_start_timestamp); manager_enumerate(m); dual_timestamp_get(&m->units_load_finish_timestamp); /* Second, deserialize if there is something to deserialize */ if (serialization) r = manager_deserialize(m, serialization, fds); /* Any fds left? Find some unit which wants them. This is * useful to allow container managers to pass some file * descriptors to us pre-initialized. This enables * socket-based activation of entire containers. */ manager_distribute_fds(m, fds); /* We might have deserialized the notify fd, but if we didn't * then let's create the bus now */ q = manager_setup_notify(m); if (q < 0 && r == 0) r = q; q = manager_setup_cgroups_agent(m); if (q < 0 && r == 0) r = q; q = manager_setup_user_lookup_fd(m); if (q < 0 && r == 0) r = q; /* Let's connect to the bus now. */ (void) manager_connect_bus(m, !!serialization); (void) bus_track_coldplug(m, &m->subscribed, false, m->deserialized_subscribed); m->deserialized_subscribed = strv_free(m->deserialized_subscribed); /* Third, fire things up! */ manager_coldplug(m); /* Release any dynamic users no longer referenced */ dynamic_user_vacuum(m, true); /* Release any references to UIDs/GIDs no longer referenced, and destroy any IPC owned by them */ manager_vacuum_uid_refs(m); manager_vacuum_gid_refs(m); if (serialization) { assert(m->n_reloading > 0); m->n_reloading--; /* Let's wait for the UnitNew/JobNew messages being * sent, before we notify that the reload is * finished */ m->send_reloading_done = true; } return r; } int manager_add_job(Manager *m, JobType type, Unit *unit, JobMode mode, sd_bus_error *e, Job **_ret) { int r; Transaction *tr; assert(m); assert(type < _JOB_TYPE_MAX); assert(unit); assert(mode < _JOB_MODE_MAX); if (mode == JOB_ISOLATE && type != JOB_START) return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Isolate is only valid for start."); if (mode == JOB_ISOLATE && !unit->allow_isolate) return sd_bus_error_setf(e, BUS_ERROR_NO_ISOLATION, "Operation refused, unit may not be isolated."); log_unit_debug(unit, "Trying to enqueue job %s/%s/%s", unit->id, job_type_to_string(type), job_mode_to_string(mode)); type = job_type_collapse(type, unit); tr = transaction_new(mode == JOB_REPLACE_IRREVERSIBLY); if (!tr) return -ENOMEM; r = transaction_add_job_and_dependencies(tr, type, unit, NULL, true, false, mode == JOB_IGNORE_DEPENDENCIES || mode == JOB_IGNORE_REQUIREMENTS, mode == JOB_IGNORE_DEPENDENCIES, e); if (r < 0) goto tr_abort; if (mode == JOB_ISOLATE) { r = transaction_add_isolate_jobs(tr, m); if (r < 0) goto tr_abort; } r = transaction_activate(tr, m, mode, e); if (r < 0) goto tr_abort; log_unit_debug(unit, "Enqueued job %s/%s as %u", unit->id, job_type_to_string(type), (unsigned) tr->anchor_job->id); if (_ret) *_ret = tr->anchor_job; transaction_free(tr); return 0; tr_abort: transaction_abort(tr); transaction_free(tr); return r; } int manager_add_job_by_name(Manager *m, JobType type, const char *name, JobMode mode, sd_bus_error *e, Job **ret) { Unit *unit; int r; assert(m); assert(type < _JOB_TYPE_MAX); assert(name); assert(mode < _JOB_MODE_MAX); r = manager_load_unit(m, name, NULL, NULL, &unit); if (r < 0) return r; return manager_add_job(m, type, unit, mode, e, ret); } int manager_add_job_by_name_and_warn(Manager *m, JobType type, const char *name, JobMode mode, Job **ret) { _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; int r; assert(m); assert(type < _JOB_TYPE_MAX); assert(name); assert(mode < _JOB_MODE_MAX); r = manager_add_job_by_name(m, type, name, mode, &error, ret); if (r < 0) return log_warning_errno(r, "Failed to enqueue %s job for %s: %s", job_mode_to_string(mode), name, bus_error_message(&error, r)); return r; } Job *manager_get_job(Manager *m, uint32_t id) { assert(m); return hashmap_get(m->jobs, UINT32_TO_PTR(id)); } Unit *manager_get_unit(Manager *m, const char *name) { assert(m); assert(name); return hashmap_get(m->units, name); } unsigned manager_dispatch_load_queue(Manager *m) { Unit *u; unsigned n = 0; assert(m); /* Make sure we are not run recursively */ if (m->dispatching_load_queue) return 0; m->dispatching_load_queue = true; /* Dispatches the load queue. Takes a unit from the queue and * tries to load its data until the queue is empty */ while ((u = m->load_queue)) { assert(u->in_load_queue); unit_load(u); n++; } m->dispatching_load_queue = false; return n; } int manager_load_unit_prepare( Manager *m, const char *name, const char *path, sd_bus_error *e, Unit **_ret) { Unit *ret; UnitType t; int r; assert(m); assert(name || path); /* This will prepare the unit for loading, but not actually * load anything from disk. */ if (path && !is_path(path)) return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Path %s is not absolute.", path); if (!name) name = basename(path); t = unit_name_to_type(name); if (t == _UNIT_TYPE_INVALID || !unit_name_is_valid(name, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) { if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is missing the instance name.", name); return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is not valid.", name); } ret = manager_get_unit(m, name); if (ret) { *_ret = ret; return 1; } ret = unit_new(m, unit_vtable[t]->object_size); if (!ret) return -ENOMEM; if (path) { ret->fragment_path = strdup(path); if (!ret->fragment_path) { unit_free(ret); return -ENOMEM; } } r = unit_add_name(ret, name); if (r < 0) { unit_free(ret); return r; } unit_add_to_load_queue(ret); unit_add_to_dbus_queue(ret); unit_add_to_gc_queue(ret); if (_ret) *_ret = ret; return 0; } int manager_load_unit( Manager *m, const char *name, const char *path, sd_bus_error *e, Unit **_ret) { int r; assert(m); /* This will load the service information files, but not actually * start any services or anything. */ r = manager_load_unit_prepare(m, name, path, e, _ret); if (r != 0) return r; manager_dispatch_load_queue(m); if (_ret) *_ret = unit_follow_merge(*_ret); return 0; } void manager_dump_jobs(Manager *s, FILE *f, const char *prefix) { Iterator i; Job *j; assert(s); assert(f); HASHMAP_FOREACH(j, s->jobs, i) job_dump(j, f, prefix); } void manager_dump_units(Manager *s, FILE *f, const char *prefix) { Iterator i; Unit *u; const char *t; assert(s); assert(f); HASHMAP_FOREACH_KEY(u, t, s->units, i) if (u->id == t) unit_dump(u, f, prefix); } void manager_clear_jobs(Manager *m) { Job *j; assert(m); while ((j = hashmap_first(m->jobs))) /* No need to recurse. We're cancelling all jobs. */ job_finish_and_invalidate(j, JOB_CANCELED, false, false); } static int manager_dispatch_run_queue(sd_event_source *source, void *userdata) { Manager *m = userdata; Job *j; assert(source); assert(m); while ((j = m->run_queue)) { assert(j->installed); assert(j->in_run_queue); job_run_and_invalidate(j); } if (m->n_running_jobs > 0) manager_watch_jobs_in_progress(m); if (m->n_on_console > 0) manager_watch_idle_pipe(m); return 1; } static unsigned manager_dispatch_dbus_queue(Manager *m) { Job *j; Unit *u; unsigned n = 0; assert(m); if (m->dispatching_dbus_queue) return 0; m->dispatching_dbus_queue = true; while ((u = m->dbus_unit_queue)) { assert(u->in_dbus_queue); bus_unit_send_change_signal(u); n++; } while ((j = m->dbus_job_queue)) { assert(j->in_dbus_queue); bus_job_send_change_signal(j); n++; } m->dispatching_dbus_queue = false; if (m->send_reloading_done) { m->send_reloading_done = false; bus_manager_send_reloading(m, false); } if (m->queued_message) bus_send_queued_message(m); return n; } static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { Manager *m = userdata; char buf[PATH_MAX+1]; ssize_t n; n = recv(fd, buf, sizeof(buf), 0); if (n < 0) return log_error_errno(errno, "Failed to read cgroups agent message: %m"); if (n == 0) { log_error("Got zero-length cgroups agent message, ignoring."); return 0; } if ((size_t) n >= sizeof(buf)) { log_error("Got overly long cgroups agent message, ignoring."); return 0; } if (memchr(buf, 0, n)) { log_error("Got cgroups agent message with embedded NUL byte, ignoring."); return 0; } buf[n] = 0; manager_notify_cgroup_empty(m, buf); bus_forward_agent_released(m, buf); return 0; } static void manager_invoke_notify_message(Manager *m, Unit *u, pid_t pid, const char *buf, FDSet *fds) { _cleanup_strv_free_ char **tags = NULL; assert(m); assert(u); assert(buf); tags = strv_split(buf, "\n\r"); if (!tags) { log_oom(); return; } if (UNIT_VTABLE(u)->notify_message) UNIT_VTABLE(u)->notify_message(u, pid, tags, fds); else if (_unlikely_(log_get_max_level() >= LOG_DEBUG)) { _cleanup_free_ char *x = NULL, *y = NULL; x = cescape(buf); if (x) y = ellipsize(x, 20, 90); log_unit_debug(u, "Got notification message \"%s\", ignoring.", strnull(y)); } } static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { _cleanup_fdset_free_ FDSet *fds = NULL; Manager *m = userdata; char buf[NOTIFY_BUFFER_MAX+1]; struct iovec iovec = { .iov_base = buf, .iov_len = sizeof(buf)-1, }; union { struct cmsghdr cmsghdr; uint8_t buf[CMSG_SPACE(sizeof(struct ucred)) + CMSG_SPACE(sizeof(int) * NOTIFY_FD_MAX)]; } control = {}; struct msghdr msghdr = { .msg_iov = &iovec, .msg_iovlen = 1, .msg_control = &control, .msg_controllen = sizeof(control), }; struct cmsghdr *cmsg; struct ucred *ucred = NULL; Unit *u1, *u2, *u3; int r, *fd_array = NULL; unsigned n_fds = 0; ssize_t n; assert(m); assert(m->notify_fd == fd); if (revents != EPOLLIN) { log_warning("Got unexpected poll event for notify fd."); return 0; } n = recvmsg(m->notify_fd, &msghdr, MSG_DONTWAIT|MSG_CMSG_CLOEXEC|MSG_TRUNC); if (n < 0) { if (IN_SET(errno, EAGAIN, EINTR)) return 0; /* Spurious wakeup, try again */ /* If this is any other, real error, then let's stop processing this socket. This of course means we * won't take notification messages anymore, but that's still better than busy looping around this: * being woken up over and over again but being unable to actually read the message off the socket. */ return log_error_errno(errno, "Failed to receive notification message: %m"); } CMSG_FOREACH(cmsg, &msghdr) { if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { fd_array = (int*) CMSG_DATA(cmsg); n_fds = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int); } else if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_CREDENTIALS && cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred))) { ucred = (struct ucred*) CMSG_DATA(cmsg); } } if (n_fds > 0) { assert(fd_array); r = fdset_new_array(&fds, fd_array, n_fds); if (r < 0) { close_many(fd_array, n_fds); log_oom(); return 0; } } if (!ucred || ucred->pid <= 0) { log_warning("Received notify message without valid credentials. Ignoring."); return 0; } if ((size_t) n >= sizeof(buf) || (msghdr.msg_flags & MSG_TRUNC)) { log_warning("Received notify message exceeded maximum size. Ignoring."); return 0; } /* As extra safety check, let's make sure the string we get doesn't contain embedded NUL bytes. We permit one * trailing NUL byte in the message, but don't expect it. */ if (n > 1 && memchr(buf, 0, n-1)) { log_warning("Received notify message with embedded NUL bytes. Ignoring."); return 0; } /* Make sure it's NUL-terminated. */ buf[n] = 0; /* Notify every unit that might be interested, but try * to avoid notifying the same one multiple times. */ u1 = manager_get_unit_by_pid_cgroup(m, ucred->pid); if (u1) manager_invoke_notify_message(m, u1, ucred->pid, buf, fds); u2 = hashmap_get(m->watch_pids1, PID_TO_PTR(ucred->pid)); if (u2 && u2 != u1) manager_invoke_notify_message(m, u2, ucred->pid, buf, fds); u3 = hashmap_get(m->watch_pids2, PID_TO_PTR(ucred->pid)); if (u3 && u3 != u2 && u3 != u1) manager_invoke_notify_message(m, u3, ucred->pid, buf, fds); if (!u1 && !u2 && !u3) log_warning("Cannot find unit for notify message of PID "PID_FMT".", ucred->pid); if (fdset_size(fds) > 0) log_warning("Got extra auxiliary fds with notification message, closing them."); return 0; } static void invoke_sigchld_event(Manager *m, Unit *u, const siginfo_t *si) { uint64_t iteration; assert(m); assert(u); assert(si); sd_event_get_iteration(m->event, &iteration); log_unit_debug(u, "Child "PID_FMT" belongs to %s", si->si_pid, u->id); unit_unwatch_pid(u, si->si_pid); if (UNIT_VTABLE(u)->sigchld_event) { if (set_size(u->pids) <= 1 || iteration != u->sigchldgen || unit_main_pid(u) == si->si_pid || unit_control_pid(u) == si->si_pid) { UNIT_VTABLE(u)->sigchld_event(u, si->si_pid, si->si_code, si->si_status); u->sigchldgen = iteration; } else log_debug("%s already issued a sigchld this iteration %" PRIu64 ", skipping. Pids still being watched %d", u->id, iteration, set_size(u->pids)); } } static int manager_dispatch_sigchld(Manager *m) { assert(m); for (;;) { siginfo_t si = {}; /* First we call waitd() for a PID and do not reap the * zombie. That way we can still access /proc/$PID for * it while it is a zombie. */ if (waitid(P_ALL, 0, &si, WEXITED|WNOHANG|WNOWAIT) < 0) { if (errno == ECHILD) break; if (errno == EINTR) continue; return -errno; } if (si.si_pid <= 0) break; if (si.si_code == CLD_EXITED || si.si_code == CLD_KILLED || si.si_code == CLD_DUMPED) { _cleanup_free_ char *name = NULL; Unit *u1, *u2, *u3; get_process_comm(si.si_pid, &name); log_debug("Child "PID_FMT" (%s) died (code=%s, status=%i/%s)", si.si_pid, strna(name), sigchld_code_to_string(si.si_code), si.si_status, strna(si.si_code == CLD_EXITED ? exit_status_to_string(si.si_status, EXIT_STATUS_FULL) : signal_to_string(si.si_status))); /* And now figure out the unit this belongs * to, it might be multiple... */ u1 = manager_get_unit_by_pid_cgroup(m, si.si_pid); if (u1) invoke_sigchld_event(m, u1, &si); u2 = hashmap_get(m->watch_pids1, PID_TO_PTR(si.si_pid)); if (u2 && u2 != u1) invoke_sigchld_event(m, u2, &si); u3 = hashmap_get(m->watch_pids2, PID_TO_PTR(si.si_pid)); if (u3 && u3 != u2 && u3 != u1) invoke_sigchld_event(m, u3, &si); } /* And now, we actually reap the zombie. */ if (waitid(P_PID, si.si_pid, &si, WEXITED) < 0) { if (errno == EINTR) continue; return -errno; } } return 0; } static int manager_start_target(Manager *m, const char *name, JobMode mode) { _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL; int r; log_debug("Activating special unit %s", name); r = manager_add_job_by_name(m, JOB_START, name, mode, &error, NULL); if (r < 0) log_error("Failed to enqueue %s job: %s", name, bus_error_message(&error, r)); return r; } static void manager_handle_ctrl_alt_del(Manager *m) { /* If the user presses C-A-D more than * 7 times within 2s, we reboot/shutdown immediately, * unless it was disabled in system.conf */ if (ratelimit_test(&m->ctrl_alt_del_ratelimit) || m->cad_burst_action == EMERGENCY_ACTION_NONE) manager_start_target(m, SPECIAL_CTRL_ALT_DEL_TARGET, JOB_REPLACE_IRREVERSIBLY); else emergency_action(m, m->cad_burst_action, NULL, "Ctrl-Alt-Del was pressed more than 7 times within 2s"); } static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { Manager *m = userdata; ssize_t n; struct signalfd_siginfo sfsi; bool sigchld = false; int r; assert(m); assert(m->signal_fd == fd); if (revents != EPOLLIN) { log_warning("Got unexpected events from signal file descriptor."); return 0; } for (;;) { n = read(m->signal_fd, &sfsi, sizeof(sfsi)); if (n != sizeof(sfsi)) { if (n >= 0) { log_warning("Truncated read from signal fd (%zu bytes)!", n); return 0; } if (IN_SET(errno, EINTR, EAGAIN)) break; /* We return an error here, which will kill this handler, * to avoid a busy loop on read error. */ return log_error_errno(errno, "Reading from signal fd failed: %m"); } log_received_signal(sfsi.ssi_signo == SIGCHLD || (sfsi.ssi_signo == SIGTERM && MANAGER_IS_USER(m)) ? LOG_DEBUG : LOG_INFO, &sfsi); switch (sfsi.ssi_signo) { case SIGCHLD: sigchld = true; break; case SIGTERM: if (MANAGER_IS_SYSTEM(m)) { /* This is for compatibility with the * original sysvinit */ m->exit_code = MANAGER_REEXECUTE; break; } /* Fall through */ case SIGINT: if (MANAGER_IS_SYSTEM(m)) { manager_handle_ctrl_alt_del(m); break; } /* Run the exit target if there is one, if not, just exit. */ if (manager_start_target(m, SPECIAL_EXIT_TARGET, JOB_REPLACE) < 0) { m->exit_code = MANAGER_EXIT; return 0; } break; case SIGWINCH: if (MANAGER_IS_SYSTEM(m)) manager_start_target(m, SPECIAL_KBREQUEST_TARGET, JOB_REPLACE); /* This is a nop on non-init */ break; case SIGPWR: if (MANAGER_IS_SYSTEM(m)) manager_start_target(m, SPECIAL_SIGPWR_TARGET, JOB_REPLACE); /* This is a nop on non-init */ break; case SIGUSR1: { Unit *u; u = manager_get_unit(m, SPECIAL_DBUS_SERVICE); if (!u || UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u))) { log_info("Trying to reconnect to bus..."); bus_init(m, true); } if (!u || !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))) { log_info("Loading D-Bus service..."); manager_start_target(m, SPECIAL_DBUS_SERVICE, JOB_REPLACE); } break; } case SIGUSR2: { _cleanup_free_ char *dump = NULL; _cleanup_fclose_ FILE *f = NULL; size_t size; f = open_memstream(&dump, &size); if (!f) { log_warning_errno(errno, "Failed to allocate memory stream: %m"); break; } manager_dump_units(m, f, "\t"); manager_dump_jobs(m, f, "\t"); r = fflush_and_check(f); if (r < 0) { log_warning_errno(r, "Failed to write status stream: %m"); break; } log_dump(LOG_INFO, dump); break; } case SIGHUP: m->exit_code = MANAGER_RELOAD; break; default: { /* Starting SIGRTMIN+0 */ static const char * const target_table[] = { [0] = SPECIAL_DEFAULT_TARGET, [1] = SPECIAL_RESCUE_TARGET, [2] = SPECIAL_EMERGENCY_TARGET, [3] = SPECIAL_HALT_TARGET, [4] = SPECIAL_POWEROFF_TARGET, [5] = SPECIAL_REBOOT_TARGET, [6] = SPECIAL_KEXEC_TARGET }; /* Starting SIGRTMIN+13, so that target halt and system halt are 10 apart */ static const ManagerExitCode code_table[] = { [0] = MANAGER_HALT, [1] = MANAGER_POWEROFF, [2] = MANAGER_REBOOT, [3] = MANAGER_KEXEC }; if ((int) sfsi.ssi_signo >= SIGRTMIN+0 && (int) sfsi.ssi_signo < SIGRTMIN+(int) ELEMENTSOF(target_table)) { int idx = (int) sfsi.ssi_signo - SIGRTMIN; manager_start_target(m, target_table[idx], (idx == 1 || idx == 2) ? JOB_ISOLATE : JOB_REPLACE); break; } if ((int) sfsi.ssi_signo >= SIGRTMIN+13 && (int) sfsi.ssi_signo < SIGRTMIN+13+(int) ELEMENTSOF(code_table)) { m->exit_code = code_table[sfsi.ssi_signo - SIGRTMIN - 13]; break; } switch (sfsi.ssi_signo - SIGRTMIN) { case 20: manager_set_show_status(m, SHOW_STATUS_YES); break; case 21: manager_set_show_status(m, SHOW_STATUS_NO); break; case 22: log_set_max_level(LOG_DEBUG); log_info("Setting log level to debug."); break; case 23: log_set_max_level(LOG_INFO); log_info("Setting log level to info."); break; case 24: if (MANAGER_IS_USER(m)) { m->exit_code = MANAGER_EXIT; return 0; } /* This is a nop on init */ break; case 26: case 29: /* compatibility: used to be mapped to LOG_TARGET_SYSLOG_OR_KMSG */ log_set_target(LOG_TARGET_JOURNAL_OR_KMSG); log_notice("Setting log target to journal-or-kmsg."); break; case 27: log_set_target(LOG_TARGET_CONSOLE); log_notice("Setting log target to console."); break; case 28: log_set_target(LOG_TARGET_KMSG); log_notice("Setting log target to kmsg."); break; default: log_warning("Got unhandled signal <%s>.", signal_to_string(sfsi.ssi_signo)); } } } } if (sigchld) manager_dispatch_sigchld(m); return 0; } static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { Manager *m = userdata; Iterator i; Unit *u; assert(m); assert(m->time_change_fd == fd); log_struct(LOG_INFO, LOG_MESSAGE_ID(SD_MESSAGE_TIME_CHANGE), LOG_MESSAGE("Time has been changed"), NULL); /* Restart the watch */ m->time_change_event_source = sd_event_source_unref(m->time_change_event_source); m->time_change_fd = safe_close(m->time_change_fd); manager_setup_time_change(m); HASHMAP_FOREACH(u, m->units, i) if (UNIT_VTABLE(u)->time_change) UNIT_VTABLE(u)->time_change(u); return 0; } static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { Manager *m = userdata; assert(m); assert(m->idle_pipe[2] == fd); m->no_console_output = m->n_on_console > 0; manager_close_idle_pipe(m); return 0; } static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata) { Manager *m = userdata; int r; uint64_t next; assert(m); assert(source); manager_print_jobs_in_progress(m); next = now(CLOCK_MONOTONIC) + JOBS_IN_PROGRESS_PERIOD_USEC; r = sd_event_source_set_time(source, next); if (r < 0) return r; return sd_event_source_set_enabled(source, SD_EVENT_ONESHOT); } int manager_loop(Manager *m) { int r; RATELIMIT_DEFINE(rl, 1*USEC_PER_SEC, 50000); assert(m); m->exit_code = MANAGER_OK; /* Release the path cache */ m->unit_path_cache = set_free_free(m->unit_path_cache); manager_check_finished(m); /* There might still be some zombies hanging around from * before we were exec()'ed. Let's reap them. */ r = manager_dispatch_sigchld(m); if (r < 0) return r; while (m->exit_code == MANAGER_OK) { usec_t wait_usec; if (m->runtime_watchdog > 0 && m->runtime_watchdog != USEC_INFINITY && MANAGER_IS_SYSTEM(m)) watchdog_ping(); if (!ratelimit_test(&rl)) { /* Yay, something is going seriously wrong, pause a little */ log_warning("Looping too fast. Throttling execution a little."); sleep(1); } if (manager_dispatch_load_queue(m) > 0) continue; if (manager_dispatch_gc_queue(m) > 0) continue; if (manager_dispatch_cleanup_queue(m) > 0) continue; if (manager_dispatch_cgroup_queue(m) > 0) continue; if (manager_dispatch_dbus_queue(m) > 0) continue; /* Sleep for half the watchdog time */ if (m->runtime_watchdog > 0 && m->runtime_watchdog != USEC_INFINITY && MANAGER_IS_SYSTEM(m)) { wait_usec = m->runtime_watchdog / 2; if (wait_usec <= 0) wait_usec = 1; } else wait_usec = USEC_INFINITY; r = sd_event_run(m->event, wait_usec); if (r < 0) return log_error_errno(r, "Failed to run event loop: %m"); } return m->exit_code; } int manager_load_unit_from_dbus_path(Manager *m, const char *s, sd_bus_error *e, Unit **_u) { _cleanup_free_ char *n = NULL; sd_id128_t invocation_id; Unit *u; int r; assert(m); assert(s); assert(_u); r = unit_name_from_dbus_path(s, &n); if (r < 0) return r; /* Permit addressing units by invocation ID: if the passed bus path is suffixed by a 128bit ID then we use it * as invocation ID. */ r = sd_id128_from_string(n, &invocation_id); if (r >= 0) { u = hashmap_get(m->units_by_invocation_id, &invocation_id); if (u) { *_u = u; return 0; } return sd_bus_error_setf(e, BUS_ERROR_NO_UNIT_FOR_INVOCATION_ID, "No unit with the specified invocation ID " SD_ID128_FORMAT_STR " known.", SD_ID128_FORMAT_VAL(invocation_id)); } /* If this didn't work, we use the suffix as unit name. */ r = manager_load_unit(m, n, NULL, e, &u); if (r < 0) return r; *_u = u; return 0; } int manager_get_job_from_dbus_path(Manager *m, const char *s, Job **_j) { const char *p; unsigned id; Job *j; int r; assert(m); assert(s); assert(_j); p = startswith(s, "/org/freedesktop/systemd1/job/"); if (!p) return -EINVAL; r = safe_atou(p, &id); if (r < 0) return r; j = manager_get_job(m, id); if (!j) return -ENOENT; *_j = j; return 0; } void manager_send_unit_audit(Manager *m, Unit *u, int type, bool success) { #ifdef HAVE_AUDIT _cleanup_free_ char *p = NULL; const char *msg; int audit_fd, r; if (!MANAGER_IS_SYSTEM(m)) return; audit_fd = get_audit_fd(); if (audit_fd < 0) return; /* Don't generate audit events if the service was already * started and we're just deserializing */ if (MANAGER_IS_RELOADING(m)) return; if (u->type != UNIT_SERVICE) return; r = unit_name_to_prefix_and_instance(u->id, &p); if (r < 0) { log_error_errno(r, "Failed to extract prefix and instance of unit name: %m"); return; } msg = strjoina("unit=", p); if (audit_log_user_comm_message(audit_fd, type, msg, "systemd", NULL, NULL, NULL, success) < 0) { if (errno == EPERM) /* We aren't allowed to send audit messages? * Then let's not retry again. */ close_audit_fd(); else log_warning_errno(errno, "Failed to send audit message: %m"); } #endif } void manager_send_unit_plymouth(Manager *m, Unit *u) { static const union sockaddr_union sa = PLYMOUTH_SOCKET; _cleanup_free_ char *message = NULL; _cleanup_close_ int fd = -1; int n = 0; /* Don't generate plymouth events if the service was already * started and we're just deserializing */ if (MANAGER_IS_RELOADING(m)) return; if (!MANAGER_IS_SYSTEM(m)) return; if (detect_container() > 0) return; if (u->type != UNIT_SERVICE && u->type != UNIT_MOUNT && u->type != UNIT_SWAP) return; /* We set SOCK_NONBLOCK here so that we rather drop the * message then wait for plymouth */ fd = socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0); if (fd < 0) { log_error_errno(errno, "socket() failed: %m"); return; } if (connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)) < 0) { if (!IN_SET(errno, EPIPE, EAGAIN, ENOENT, ECONNREFUSED, ECONNRESET, ECONNABORTED)) log_error_errno(errno, "connect() failed: %m"); return; } if (asprintf(&message, "U\002%c%s%n", (int) (strlen(u->id) + 1), u->id, &n) < 0) { log_oom(); return; } errno = 0; if (write(fd, message, n + 1) != n + 1) if (!IN_SET(errno, EPIPE, EAGAIN, ENOENT, ECONNREFUSED, ECONNRESET, ECONNABORTED)) log_error_errno(errno, "Failed to write Plymouth message: %m"); } int manager_open_serialization(Manager *m, FILE **_f) { const char *path; int fd = -1; FILE *f; assert(_f); path = MANAGER_IS_SYSTEM(m) ? "/run/systemd" : "/tmp"; fd = open_tmpfile_unlinkable(path, O_RDWR|O_CLOEXEC); if (fd < 0) return -errno; log_debug("Serializing state to %s", path); f = fdopen(fd, "w+"); if (!f) { safe_close(fd); return -errno; } *_f = f; return 0; } int manager_serialize(Manager *m, FILE *f, FDSet *fds, bool switching_root) { Iterator i; Unit *u; const char *t; char **e; int r; assert(m); assert(f); assert(fds); m->n_reloading++; fprintf(f, "current-job-id=%"PRIu32"\n", m->current_job_id); fprintf(f, "taint-usr=%s\n", yes_no(m->taint_usr)); fprintf(f, "n-installed-jobs=%u\n", m->n_installed_jobs); fprintf(f, "n-failed-jobs=%u\n", m->n_failed_jobs); dual_timestamp_serialize(f, "firmware-timestamp", &m->firmware_timestamp); dual_timestamp_serialize(f, "loader-timestamp", &m->loader_timestamp); dual_timestamp_serialize(f, "kernel-timestamp", &m->kernel_timestamp); dual_timestamp_serialize(f, "initrd-timestamp", &m->initrd_timestamp); if (!in_initrd()) { dual_timestamp_serialize(f, "userspace-timestamp", &m->userspace_timestamp); dual_timestamp_serialize(f, "finish-timestamp", &m->finish_timestamp); dual_timestamp_serialize(f, "security-start-timestamp", &m->security_start_timestamp); dual_timestamp_serialize(f, "security-finish-timestamp", &m->security_finish_timestamp); dual_timestamp_serialize(f, "generators-start-timestamp", &m->generators_start_timestamp); dual_timestamp_serialize(f, "generators-finish-timestamp", &m->generators_finish_timestamp); dual_timestamp_serialize(f, "units-load-start-timestamp", &m->units_load_start_timestamp); dual_timestamp_serialize(f, "units-load-finish-timestamp", &m->units_load_finish_timestamp); } if (!switching_root) { STRV_FOREACH(e, m->environment) { _cleanup_free_ char *ce; ce = cescape(*e); if (!ce) return -ENOMEM; fprintf(f, "env=%s\n", *e); } } if (m->notify_fd >= 0) { int copy; copy = fdset_put_dup(fds, m->notify_fd); if (copy < 0) return copy; fprintf(f, "notify-fd=%i\n", copy); fprintf(f, "notify-socket=%s\n", m->notify_socket); } if (m->cgroups_agent_fd >= 0) { int copy; copy = fdset_put_dup(fds, m->cgroups_agent_fd); if (copy < 0) return copy; fprintf(f, "cgroups-agent-fd=%i\n", copy); } if (m->user_lookup_fds[0] >= 0) { int copy0, copy1; copy0 = fdset_put_dup(fds, m->user_lookup_fds[0]); if (copy0 < 0) return copy0; copy1 = fdset_put_dup(fds, m->user_lookup_fds[1]); if (copy1 < 0) return copy1; fprintf(f, "user-lookup=%i %i\n", copy0, copy1); } bus_track_serialize(m->subscribed, f, "subscribed"); r = dynamic_user_serialize(m, f, fds); if (r < 0) return r; manager_serialize_uid_refs(m, f); manager_serialize_gid_refs(m, f); fputc('\n', f); HASHMAP_FOREACH_KEY(u, t, m->units, i) { if (u->id != t) continue; /* Start marker */ fputs(u->id, f); fputc('\n', f); r = unit_serialize(u, f, fds, !switching_root); if (r < 0) { m->n_reloading--; return r; } } assert(m->n_reloading > 0); m->n_reloading--; if (ferror(f)) return -EIO; r = bus_fdset_add_all(m, fds); if (r < 0) return r; return 0; } int manager_deserialize(Manager *m, FILE *f, FDSet *fds) { int r = 0; assert(m); assert(f); log_debug("Deserializing state..."); m->n_reloading++; for (;;) { char line[LINE_MAX], *l; const char *val; if (!fgets(line, sizeof(line), f)) { if (feof(f)) r = 0; else r = -errno; goto finish; } char_array_0(line); l = strstrip(line); if (l[0] == 0) break; if ((val = startswith(l, "current-job-id="))) { uint32_t id; if (safe_atou32(val, &id) < 0) log_debug("Failed to parse current job id value %s", val); else m->current_job_id = MAX(m->current_job_id, id); } else if ((val = startswith(l, "n-installed-jobs="))) { uint32_t n; if (safe_atou32(val, &n) < 0) log_debug("Failed to parse installed jobs counter %s", val); else m->n_installed_jobs += n; } else if ((val = startswith(l, "n-failed-jobs="))) { uint32_t n; if (safe_atou32(val, &n) < 0) log_debug("Failed to parse failed jobs counter %s", val); else m->n_failed_jobs += n; } else if ((val = startswith(l, "taint-usr="))) { int b; b = parse_boolean(val); if (b < 0) log_debug("Failed to parse taint /usr flag %s", val); else m->taint_usr = m->taint_usr || b; } else if ((val = startswith(l, "firmware-timestamp="))) dual_timestamp_deserialize(val, &m->firmware_timestamp); else if ((val = startswith(l, "loader-timestamp="))) dual_timestamp_deserialize(val, &m->loader_timestamp); else if ((val = startswith(l, "kernel-timestamp="))) dual_timestamp_deserialize(val, &m->kernel_timestamp); else if ((val = startswith(l, "initrd-timestamp="))) dual_timestamp_deserialize(val, &m->initrd_timestamp); else if ((val = startswith(l, "userspace-timestamp="))) dual_timestamp_deserialize(val, &m->userspace_timestamp); else if ((val = startswith(l, "finish-timestamp="))) dual_timestamp_deserialize(val, &m->finish_timestamp); else if ((val = startswith(l, "security-start-timestamp="))) dual_timestamp_deserialize(val, &m->security_start_timestamp); else if ((val = startswith(l, "security-finish-timestamp="))) dual_timestamp_deserialize(val, &m->security_finish_timestamp); else if ((val = startswith(l, "generators-start-timestamp="))) dual_timestamp_deserialize(val, &m->generators_start_timestamp); else if ((val = startswith(l, "generators-finish-timestamp="))) dual_timestamp_deserialize(val, &m->generators_finish_timestamp); else if ((val = startswith(l, "units-load-start-timestamp="))) dual_timestamp_deserialize(val, &m->units_load_start_timestamp); else if ((val = startswith(l, "units-load-finish-timestamp="))) dual_timestamp_deserialize(val, &m->units_load_finish_timestamp); else if (startswith(l, "env=")) { _cleanup_free_ char *uce = NULL; char **e; r = cunescape(l + 4, UNESCAPE_RELAX, &uce); if (r < 0) goto finish; e = strv_env_set(m->environment, uce); if (!e) { r = -ENOMEM; goto finish; } strv_free(m->environment); m->environment = e; } else if ((val = startswith(l, "notify-fd="))) { int fd; if (safe_atoi(val, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd)) log_debug("Failed to parse notify fd: %s", val); else { m->notify_event_source = sd_event_source_unref(m->notify_event_source); safe_close(m->notify_fd); m->notify_fd = fdset_remove(fds, fd); } } else if ((val = startswith(l, "notify-socket="))) { char *n; n = strdup(val); if (!n) { r = -ENOMEM; goto finish; } free(m->notify_socket); m->notify_socket = n; } else if ((val = startswith(l, "cgroups-agent-fd="))) { int fd; if (safe_atoi(val, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd)) log_debug("Failed to parse cgroups agent fd: %s", val); else { m->cgroups_agent_event_source = sd_event_source_unref(m->cgroups_agent_event_source); safe_close(m->cgroups_agent_fd); m->cgroups_agent_fd = fdset_remove(fds, fd); } } else if ((val = startswith(l, "user-lookup="))) { int fd0, fd1; if (sscanf(val, "%i %i", &fd0, &fd1) != 2 || fd0 < 0 || fd1 < 0 || fd0 == fd1 || !fdset_contains(fds, fd0) || !fdset_contains(fds, fd1)) log_debug("Failed to parse user lookup fd: %s", val); else { m->user_lookup_event_source = sd_event_source_unref(m->user_lookup_event_source); safe_close_pair(m->user_lookup_fds); m->user_lookup_fds[0] = fdset_remove(fds, fd0); m->user_lookup_fds[1] = fdset_remove(fds, fd1); } } else if ((val = startswith(l, "dynamic-user="))) dynamic_user_deserialize_one(m, val, fds); else if ((val = startswith(l, "destroy-ipc-uid="))) manager_deserialize_uid_refs_one(m, val); else if ((val = startswith(l, "destroy-ipc-gid="))) manager_deserialize_gid_refs_one(m, val); else if ((val = startswith(l, "subscribed="))) { if (strv_extend(&m->deserialized_subscribed, val) < 0) log_oom(); } else if (!startswith(l, "kdbus-fd=")) /* ignore this one */ log_debug("Unknown serialization item '%s'", l); } for (;;) { Unit *u; char name[UNIT_NAME_MAX+2]; /* Start marker */ if (!fgets(name, sizeof(name), f)) { if (feof(f)) r = 0; else r = -errno; goto finish; } char_array_0(name); r = manager_load_unit(m, strstrip(name), NULL, NULL, &u); if (r < 0) goto finish; r = unit_deserialize(u, f, fds); if (r < 0) goto finish; } finish: if (ferror(f)) r = -EIO; assert(m->n_reloading > 0); m->n_reloading--; return r; } int manager_reload(Manager *m) { int r, q; _cleanup_fclose_ FILE *f = NULL; _cleanup_fdset_free_ FDSet *fds = NULL; assert(m); r = manager_open_serialization(m, &f); if (r < 0) return r; m->n_reloading++; bus_manager_send_reloading(m, true); fds = fdset_new(); if (!fds) { m->n_reloading--; return -ENOMEM; } r = manager_serialize(m, f, fds, false); if (r < 0) { m->n_reloading--; return r; } if (fseeko(f, 0, SEEK_SET) < 0) { m->n_reloading--; return -errno; } /* From here on there is no way back. */ manager_clear_jobs_and_units(m); lookup_paths_flush_generator(&m->lookup_paths); lookup_paths_free(&m->lookup_paths); dynamic_user_vacuum(m, false); m->uid_refs = hashmap_free(m->uid_refs); m->gid_refs = hashmap_free(m->gid_refs); q = lookup_paths_init(&m->lookup_paths, m->unit_file_scope, 0, NULL); if (q < 0 && r >= 0) r = q; /* Find new unit paths */ q = manager_run_generators(m); if (q < 0 && r >= 0) r = q; lookup_paths_reduce(&m->lookup_paths); manager_build_unit_path_cache(m); /* First, enumerate what we can from all config files */ manager_enumerate(m); /* Second, deserialize our stored data */ q = manager_deserialize(m, f, fds); if (q < 0 && r >= 0) r = q; fclose(f); f = NULL; /* Re-register notify_fd as event source */ q = manager_setup_notify(m); if (q < 0 && r >= 0) r = q; q = manager_setup_cgroups_agent(m); if (q < 0 && r >= 0) r = q; q = manager_setup_user_lookup_fd(m); if (q < 0 && r >= 0) r = q; /* Third, fire things up! */ manager_coldplug(m); /* Release any dynamic users no longer referenced */ dynamic_user_vacuum(m, true); /* Release any references to UIDs/GIDs no longer referenced, and destroy any IPC owned by them */ manager_vacuum_uid_refs(m); manager_vacuum_gid_refs(m); /* Sync current state of bus names with our set of listening units */ if (m->api_bus) manager_sync_bus_names(m, m->api_bus); assert(m->n_reloading > 0); m->n_reloading--; m->send_reloading_done = true; return r; } void manager_reset_failed(Manager *m) { Unit *u; Iterator i; assert(m); HASHMAP_FOREACH(u, m->units, i) unit_reset_failed(u); } bool manager_unit_inactive_or_pending(Manager *m, const char *name) { Unit *u; assert(m); assert(name); /* Returns true if the unit is inactive or going down */ u = manager_get_unit(m, name); if (!u) return true; return unit_inactive_or_pending(u); } static void manager_notify_finished(Manager *m) { char userspace[FORMAT_TIMESPAN_MAX], initrd[FORMAT_TIMESPAN_MAX], kernel[FORMAT_TIMESPAN_MAX], sum[FORMAT_TIMESPAN_MAX]; usec_t firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec; if (m->test_run) return; if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0) { /* Note that m->kernel_usec.monotonic is always at 0, * and m->firmware_usec.monotonic and * m->loader_usec.monotonic should be considered * negative values. */ firmware_usec = m->firmware_timestamp.monotonic - m->loader_timestamp.monotonic; loader_usec = m->loader_timestamp.monotonic - m->kernel_timestamp.monotonic; userspace_usec = m->finish_timestamp.monotonic - m->userspace_timestamp.monotonic; total_usec = m->firmware_timestamp.monotonic + m->finish_timestamp.monotonic; if (dual_timestamp_is_set(&m->initrd_timestamp)) { kernel_usec = m->initrd_timestamp.monotonic - m->kernel_timestamp.monotonic; initrd_usec = m->userspace_timestamp.monotonic - m->initrd_timestamp.monotonic; log_struct(LOG_INFO, LOG_MESSAGE_ID(SD_MESSAGE_STARTUP_FINISHED), "KERNEL_USEC="USEC_FMT, kernel_usec, "INITRD_USEC="USEC_FMT, initrd_usec, "USERSPACE_USEC="USEC_FMT, userspace_usec, LOG_MESSAGE("Startup finished in %s (kernel) + %s (initrd) + %s (userspace) = %s.", format_timespan(kernel, sizeof(kernel), kernel_usec, USEC_PER_MSEC), format_timespan(initrd, sizeof(initrd), initrd_usec, USEC_PER_MSEC), format_timespan(userspace, sizeof(userspace), userspace_usec, USEC_PER_MSEC), format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)), NULL); } else { kernel_usec = m->userspace_timestamp.monotonic - m->kernel_timestamp.monotonic; initrd_usec = 0; log_struct(LOG_INFO, LOG_MESSAGE_ID(SD_MESSAGE_STARTUP_FINISHED), "KERNEL_USEC="USEC_FMT, kernel_usec, "USERSPACE_USEC="USEC_FMT, userspace_usec, LOG_MESSAGE("Startup finished in %s (kernel) + %s (userspace) = %s.", format_timespan(kernel, sizeof(kernel), kernel_usec, USEC_PER_MSEC), format_timespan(userspace, sizeof(userspace), userspace_usec, USEC_PER_MSEC), format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)), NULL); } } else { firmware_usec = loader_usec = initrd_usec = kernel_usec = 0; total_usec = userspace_usec = m->finish_timestamp.monotonic - m->userspace_timestamp.monotonic; log_struct(LOG_INFO, LOG_MESSAGE_ID(SD_MESSAGE_STARTUP_FINISHED), "USERSPACE_USEC="USEC_FMT, userspace_usec, LOG_MESSAGE("Startup finished in %s.", format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)), NULL); } bus_manager_send_finished(m, firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec); sd_notifyf(false, "READY=1\n" "STATUS=Startup finished in %s.", format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)); } void manager_check_finished(Manager *m) { assert(m); if (MANAGER_IS_RELOADING(m)) return; /* Verify that we are actually running currently. Initially * the exit code is set to invalid, and during operation it is * then set to MANAGER_OK */ if (m->exit_code != MANAGER_OK) return; if (hashmap_size(m->jobs) > 0) { if (m->jobs_in_progress_event_source) /* Ignore any failure, this is only for feedback */ (void) sd_event_source_set_time(m->jobs_in_progress_event_source, now(CLOCK_MONOTONIC) + JOBS_IN_PROGRESS_WAIT_USEC); return; } manager_flip_auto_status(m, false); /* Notify Type=idle units that we are done now */ manager_close_idle_pipe(m); /* Turn off confirm spawn now */ m->confirm_spawn = NULL; /* No need to update ask password status when we're going non-interactive */ manager_close_ask_password(m); /* This is no longer the first boot */ manager_set_first_boot(m, false); if (dual_timestamp_is_set(&m->finish_timestamp)) return; dual_timestamp_get(&m->finish_timestamp); manager_notify_finished(m); manager_invalidate_startup_units(m); } static int manager_run_generators(Manager *m) { _cleanup_strv_free_ char **paths = NULL; const char *argv[5]; char **path; int r; assert(m); if (m->test_run) return 0; paths = generator_binary_paths(m->unit_file_scope); if (!paths) return log_oom(); /* Optimize by skipping the whole process by not creating output directories * if no generators are found. */ STRV_FOREACH(path, paths) { if (access(*path, F_OK) >= 0) goto found; if (errno != ENOENT) log_warning_errno(errno, "Failed to open generator directory %s: %m", *path); } return 0; found: r = lookup_paths_mkdir_generator(&m->lookup_paths); if (r < 0) goto finish; argv[0] = NULL; /* Leave this empty, execute_directory() will fill something in */ argv[1] = m->lookup_paths.generator; argv[2] = m->lookup_paths.generator_early; argv[3] = m->lookup_paths.generator_late; argv[4] = NULL; RUN_WITH_UMASK(0022) execute_directories((const char* const*) paths, DEFAULT_TIMEOUT_USEC, (char**) argv); finish: lookup_paths_trim_generator(&m->lookup_paths); return r; } int manager_environment_add(Manager *m, char **minus, char **plus) { char **a = NULL, **b = NULL, **l; assert(m); l = m->environment; if (!strv_isempty(minus)) { a = strv_env_delete(l, 1, minus); if (!a) return -ENOMEM; l = a; } if (!strv_isempty(plus)) { b = strv_env_merge(2, l, plus); if (!b) { strv_free(a); return -ENOMEM; } l = b; } if (m->environment != l) strv_free(m->environment); if (a != l) strv_free(a); if (b != l) strv_free(b); m->environment = l; manager_clean_environment(m); strv_sort(m->environment); return 0; } int manager_set_default_rlimits(Manager *m, struct rlimit **default_rlimit) { int i; assert(m); for (i = 0; i < _RLIMIT_MAX; i++) { m->rlimit[i] = mfree(m->rlimit[i]); if (!default_rlimit[i]) continue; m->rlimit[i] = newdup(struct rlimit, default_rlimit[i], 1); if (!m->rlimit[i]) return log_oom(); } return 0; } void manager_recheck_journal(Manager *m) { Unit *u; assert(m); if (!MANAGER_IS_SYSTEM(m)) return; u = manager_get_unit(m, SPECIAL_JOURNALD_SOCKET); if (u && SOCKET(u)->state != SOCKET_RUNNING) { log_close_journal(); return; } u = manager_get_unit(m, SPECIAL_JOURNALD_SERVICE); if (u && SERVICE(u)->state != SERVICE_RUNNING) { log_close_journal(); return; } /* Hmm, OK, so the socket is fully up and the service is up * too, then let's make use of the thing. */ log_open(); } void manager_set_show_status(Manager *m, ShowStatus mode) { assert(m); assert(IN_SET(mode, SHOW_STATUS_AUTO, SHOW_STATUS_NO, SHOW_STATUS_YES, SHOW_STATUS_TEMPORARY)); if (!MANAGER_IS_SYSTEM(m)) return; if (m->show_status != mode) log_debug("%s showing of status.", mode == SHOW_STATUS_NO ? "Disabling" : "Enabling"); m->show_status = mode; if (mode > 0) (void) touch("/run/systemd/show-status"); else (void) unlink("/run/systemd/show-status"); } static bool manager_get_show_status(Manager *m, StatusType type) { assert(m); if (!MANAGER_IS_SYSTEM(m)) return false; if (m->no_console_output) return false; if (!IN_SET(manager_state(m), MANAGER_INITIALIZING, MANAGER_STARTING, MANAGER_STOPPING)) return false; /* If we cannot find out the status properly, just proceed. */ if (type != STATUS_TYPE_EMERGENCY && manager_check_ask_password(m) > 0) return false; if (m->show_status > 0) return true; return false; } const char *manager_get_confirm_spawn(Manager *m) { static int last_errno = 0; const char *vc = m->confirm_spawn; struct stat st; int r; /* Here's the deal: we want to test the validity of the console but don't want * PID1 to go through the whole console process which might block. But we also * want to warn the user only once if something is wrong with the console so we * cannot do the sanity checks after spawning our children. So here we simply do * really basic tests to hopefully trap common errors. * * If the console suddenly disappear at the time our children will really it * then they will simply fail to acquire it and a positive answer will be * assumed. New children will fallback to /dev/console though. * * Note: TTYs are devices that can come and go any time, and frequently aren't * available yet during early boot (consider a USB rs232 dongle...). If for any * reason the configured console is not ready, we fallback to the default * console. */ if (!vc || path_equal(vc, "/dev/console")) return vc; r = stat(vc, &st); if (r < 0) goto fail; if (!S_ISCHR(st.st_mode)) { errno = ENOTTY; goto fail; } last_errno = 0; return vc; fail: if (last_errno != errno) { last_errno = errno; log_warning_errno(errno, "Failed to open %s: %m, using default console", vc); } return "/dev/console"; } void manager_set_first_boot(Manager *m, bool b) { assert(m); if (!MANAGER_IS_SYSTEM(m)) return; if (m->first_boot != (int) b) { if (b) (void) touch("/run/systemd/first-boot"); else (void) unlink("/run/systemd/first-boot"); } m->first_boot = b; } void manager_disable_confirm_spawn(void) { (void) touch("/run/systemd/confirm_spawn_disabled"); } bool manager_is_confirm_spawn_disabled(Manager *m) { if (!m->confirm_spawn) return true; return access("/run/systemd/confirm_spawn_disabled", F_OK) >= 0; } void manager_status_printf(Manager *m, StatusType type, const char *status, const char *format, ...) { va_list ap; /* If m is NULL, assume we're after shutdown and let the messages through. */ if (m && !manager_get_show_status(m, type)) return; /* XXX We should totally drop the check for ephemeral here * and thus effectively make 'Type=idle' pointless. */ if (type == STATUS_TYPE_EPHEMERAL && m && m->n_on_console > 0) return; va_start(ap, format); status_vprintf(status, true, type == STATUS_TYPE_EPHEMERAL, format, ap); va_end(ap); } Set *manager_get_units_requiring_mounts_for(Manager *m, const char *path) { char p[strlen(path)+1]; assert(m); assert(path); strcpy(p, path); path_kill_slashes(p); return hashmap_get(m->units_requiring_mounts_for, streq(p, "/") ? "" : p); } const char *manager_get_runtime_prefix(Manager *m) { assert(m); return MANAGER_IS_SYSTEM(m) ? "/run" : getenv("XDG_RUNTIME_DIR"); } int manager_update_failed_units(Manager *m, Unit *u, bool failed) { unsigned size; int r; assert(m); assert(u->manager == m); size = set_size(m->failed_units); if (failed) { r = set_ensure_allocated(&m->failed_units, NULL); if (r < 0) return log_oom(); if (set_put(m->failed_units, u) < 0) return log_oom(); } else (void) set_remove(m->failed_units, u); if (set_size(m->failed_units) != size) bus_manager_send_change_signal(m); return 0; } ManagerState manager_state(Manager *m) { Unit *u; assert(m); /* Did we ever finish booting? If not then we are still starting up */ if (!dual_timestamp_is_set(&m->finish_timestamp)) { u = manager_get_unit(m, SPECIAL_BASIC_TARGET); if (!u || !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u))) return MANAGER_INITIALIZING; return MANAGER_STARTING; } /* Is the special shutdown target queued? If so, we are in shutdown state */ u = manager_get_unit(m, SPECIAL_SHUTDOWN_TARGET); if (u && u->job && IN_SET(u->job->type, JOB_START, JOB_RESTART, JOB_RELOAD_OR_START)) return MANAGER_STOPPING; /* Are the rescue or emergency targets active or queued? If so we are in maintenance state */ u = manager_get_unit(m, SPECIAL_RESCUE_TARGET); if (u && (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)) || (u->job && IN_SET(u->job->type, JOB_START, JOB_RESTART, JOB_RELOAD_OR_START)))) return MANAGER_MAINTENANCE; u = manager_get_unit(m, SPECIAL_EMERGENCY_TARGET); if (u && (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)) || (u->job && IN_SET(u->job->type, JOB_START, JOB_RESTART, JOB_RELOAD_OR_START)))) return MANAGER_MAINTENANCE; /* Are there any failed units? If so, we are in degraded mode */ if (set_size(m->failed_units) > 0) return MANAGER_DEGRADED; return MANAGER_RUNNING; } #define DESTROY_IPC_FLAG (UINT32_C(1) << 31) static void manager_unref_uid_internal( Manager *m, Hashmap **uid_refs, uid_t uid, bool destroy_now, int (*_clean_ipc)(uid_t uid)) { uint32_t c, n; assert(m); assert(uid_refs); assert(uid_is_valid(uid)); assert(_clean_ipc); /* A generic implementation, covering both manager_unref_uid() and manager_unref_gid(), under the assumption * that uid_t and gid_t are actually defined the same way, with the same validity rules. * * We store a hashmap where the UID/GID is they key and the value is a 32bit reference counter, whose highest * bit is used as flag for marking UIDs/GIDs whose IPC objects to remove when the last reference to the UID/GID * is dropped. The flag is set to on, once at least one reference from a unit where RemoveIPC= is set is added * on a UID/GID. It is reset when the UID's/GID's reference counter drops to 0 again. */ assert_cc(sizeof(uid_t) == sizeof(gid_t)); assert_cc(UID_INVALID == (uid_t) GID_INVALID); if (uid == 0) /* We don't keep track of root, and will never destroy it */ return; c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid))); n = c & ~DESTROY_IPC_FLAG; assert(n > 0); n--; if (destroy_now && n == 0) { hashmap_remove(*uid_refs, UID_TO_PTR(uid)); if (c & DESTROY_IPC_FLAG) { log_debug("%s " UID_FMT " is no longer referenced, cleaning up its IPC.", _clean_ipc == clean_ipc_by_uid ? "UID" : "GID", uid); (void) _clean_ipc(uid); } } else { c = n | (c & DESTROY_IPC_FLAG); assert_se(hashmap_update(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c)) >= 0); } } void manager_unref_uid(Manager *m, uid_t uid, bool destroy_now) { manager_unref_uid_internal(m, &m->uid_refs, uid, destroy_now, clean_ipc_by_uid); } void manager_unref_gid(Manager *m, gid_t gid, bool destroy_now) { manager_unref_uid_internal(m, &m->gid_refs, (uid_t) gid, destroy_now, clean_ipc_by_gid); } static int manager_ref_uid_internal( Manager *m, Hashmap **uid_refs, uid_t uid, bool clean_ipc) { uint32_t c, n; int r; assert(m); assert(uid_refs); assert(uid_is_valid(uid)); /* A generic implementation, covering both manager_ref_uid() and manager_ref_gid(), under the assumption * that uid_t and gid_t are actually defined the same way, with the same validity rules. */ assert_cc(sizeof(uid_t) == sizeof(gid_t)); assert_cc(UID_INVALID == (uid_t) GID_INVALID); if (uid == 0) /* We don't keep track of root, and will never destroy it */ return 0; r = hashmap_ensure_allocated(uid_refs, &trivial_hash_ops); if (r < 0) return r; c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid))); n = c & ~DESTROY_IPC_FLAG; n++; if (n & DESTROY_IPC_FLAG) /* check for overflow */ return -EOVERFLOW; c = n | (c & DESTROY_IPC_FLAG) | (clean_ipc ? DESTROY_IPC_FLAG : 0); return hashmap_replace(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c)); } int manager_ref_uid(Manager *m, uid_t uid, bool clean_ipc) { return manager_ref_uid_internal(m, &m->uid_refs, uid, clean_ipc); } int manager_ref_gid(Manager *m, gid_t gid, bool clean_ipc) { return manager_ref_uid_internal(m, &m->gid_refs, (uid_t) gid, clean_ipc); } static void manager_vacuum_uid_refs_internal( Manager *m, Hashmap **uid_refs, int (*_clean_ipc)(uid_t uid)) { Iterator i; void *p, *k; assert(m); assert(uid_refs); assert(_clean_ipc); HASHMAP_FOREACH_KEY(p, k, *uid_refs, i) { uint32_t c, n; uid_t uid; uid = PTR_TO_UID(k); c = PTR_TO_UINT32(p); n = c & ~DESTROY_IPC_FLAG; if (n > 0) continue; if (c & DESTROY_IPC_FLAG) { log_debug("Found unreferenced %s " UID_FMT " after reload/reexec. Cleaning up.", _clean_ipc == clean_ipc_by_uid ? "UID" : "GID", uid); (void) _clean_ipc(uid); } assert_se(hashmap_remove(*uid_refs, k) == p); } } void manager_vacuum_uid_refs(Manager *m) { manager_vacuum_uid_refs_internal(m, &m->uid_refs, clean_ipc_by_uid); } void manager_vacuum_gid_refs(Manager *m) { manager_vacuum_uid_refs_internal(m, &m->gid_refs, clean_ipc_by_gid); } static void manager_serialize_uid_refs_internal( Manager *m, FILE *f, Hashmap **uid_refs, const char *field_name) { Iterator i; void *p, *k; assert(m); assert(f); assert(uid_refs); assert(field_name); /* Serialize the UID reference table. Or actually, just the IPC destruction flag of it, as the actual counter * of it is better rebuild after a reload/reexec. */ HASHMAP_FOREACH_KEY(p, k, *uid_refs, i) { uint32_t c; uid_t uid; uid = PTR_TO_UID(k); c = PTR_TO_UINT32(p); if (!(c & DESTROY_IPC_FLAG)) continue; fprintf(f, "%s=" UID_FMT "\n", field_name, uid); } } void manager_serialize_uid_refs(Manager *m, FILE *f) { manager_serialize_uid_refs_internal(m, f, &m->uid_refs, "destroy-ipc-uid"); } void manager_serialize_gid_refs(Manager *m, FILE *f) { manager_serialize_uid_refs_internal(m, f, &m->gid_refs, "destroy-ipc-gid"); } static void manager_deserialize_uid_refs_one_internal( Manager *m, Hashmap** uid_refs, const char *value) { uid_t uid; uint32_t c; int r; assert(m); assert(uid_refs); assert(value); r = parse_uid(value, &uid); if (r < 0 || uid == 0) { log_debug("Unable to parse UID reference serialization"); return; } r = hashmap_ensure_allocated(uid_refs, &trivial_hash_ops); if (r < 0) { log_oom(); return; } c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid))); if (c & DESTROY_IPC_FLAG) return; c |= DESTROY_IPC_FLAG; r = hashmap_replace(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c)); if (r < 0) { log_debug("Failed to add UID reference entry"); return; } } void manager_deserialize_uid_refs_one(Manager *m, const char *value) { manager_deserialize_uid_refs_one_internal(m, &m->uid_refs, value); } void manager_deserialize_gid_refs_one(Manager *m, const char *value) { manager_deserialize_uid_refs_one_internal(m, &m->gid_refs, value); } int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) { struct buffer { uid_t uid; gid_t gid; char unit_name[UNIT_NAME_MAX+1]; } _packed_ buffer; Manager *m = userdata; ssize_t l; size_t n; Unit *u; assert_se(source); assert_se(m); /* Invoked whenever a child process succeeded resolving its user/group to use and sent us the resulting UID/GID * in a datagram. We parse the datagram here and pass it off to the unit, so that it can add a reference to the * UID/GID so that it can destroy the UID/GID's IPC objects when the reference counter drops to 0. */ l = recv(fd, &buffer, sizeof(buffer), MSG_DONTWAIT); if (l < 0) { if (errno == EINTR || errno == EAGAIN) return 0; return log_error_errno(errno, "Failed to read from user lookup fd: %m"); } if ((size_t) l <= offsetof(struct buffer, unit_name)) { log_warning("Received too short user lookup message, ignoring."); return 0; } if ((size_t) l > offsetof(struct buffer, unit_name) + UNIT_NAME_MAX) { log_warning("Received too long user lookup message, ignoring."); return 0; } if (!uid_is_valid(buffer.uid) && !gid_is_valid(buffer.gid)) { log_warning("Got user lookup message with invalid UID/GID pair, ignoring."); return 0; } n = (size_t) l - offsetof(struct buffer, unit_name); if (memchr(buffer.unit_name, 0, n)) { log_warning("Received lookup message with embedded NUL character, ignoring."); return 0; } buffer.unit_name[n] = 0; u = manager_get_unit(m, buffer.unit_name); if (!u) { log_debug("Got user lookup message but unit doesn't exist, ignoring."); return 0; } log_unit_debug(u, "User lookup succeeded: uid=" UID_FMT " gid=" GID_FMT, buffer.uid, buffer.gid); unit_notify_user_lookup(u, buffer.uid, buffer.gid); return 0; } static const char *const manager_state_table[_MANAGER_STATE_MAX] = { [MANAGER_INITIALIZING] = "initializing", [MANAGER_STARTING] = "starting", [MANAGER_RUNNING] = "running", [MANAGER_DEGRADED] = "degraded", [MANAGER_MAINTENANCE] = "maintenance", [MANAGER_STOPPING] = "stopping", }; DEFINE_STRING_TABLE_LOOKUP(manager_state, ManagerState);