/***
This file is part of systemd.
Copyright 2010 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see .
***/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef HAVE_AUDIT
#include
#endif
#include "sd-daemon.h"
#include "sd-messages.h"
#include "alloc-util.h"
#include "audit-fd.h"
#include "boot-timestamps.h"
#include "bus-common-errors.h"
#include "bus-error.h"
#include "bus-kernel.h"
#include "bus-util.h"
#include "clean-ipc.h"
#include "dbus-job.h"
#include "dbus-manager.h"
#include "dbus-unit.h"
#include "dbus.h"
#include "dirent-util.h"
#include "env-util.h"
#include "escape.h"
#include "exit-status.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "hashmap.h"
#include "io-util.h"
#include "locale-setup.h"
#include "log.h"
#include "macro.h"
#include "manager.h"
#include "missing.h"
#include "mkdir.h"
#include "parse-util.h"
#include "path-lookup.h"
#include "path-util.h"
#include "process-util.h"
#include "ratelimit.h"
#include "rm-rf.h"
#include "signal-util.h"
#include "special.h"
#include "stat-util.h"
#include "string-table.h"
#include "string-util.h"
#include "strv.h"
#include "terminal-util.h"
#include "time-util.h"
#include "transaction.h"
#include "umask-util.h"
#include "unit-name.h"
#include "user-util.h"
#include "util.h"
#include "virt.h"
#include "watchdog.h"
#define NOTIFY_RCVBUF_SIZE (8*1024*1024)
#define CGROUPS_AGENT_RCVBUF_SIZE (8*1024*1024)
/* Initial delay and the interval for printing status messages about running jobs */
#define JOBS_IN_PROGRESS_WAIT_USEC (5*USEC_PER_SEC)
#define JOBS_IN_PROGRESS_PERIOD_USEC (USEC_PER_SEC / 3)
#define JOBS_IN_PROGRESS_PERIOD_DIVISOR 3
static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata);
static int manager_dispatch_run_queue(sd_event_source *source, void *userdata);
static int manager_run_generators(Manager *m);
static void manager_watch_jobs_in_progress(Manager *m) {
usec_t next;
int r;
assert(m);
if (m->jobs_in_progress_event_source)
return;
next = now(CLOCK_MONOTONIC) + JOBS_IN_PROGRESS_WAIT_USEC;
r = sd_event_add_time(
m->event,
&m->jobs_in_progress_event_source,
CLOCK_MONOTONIC,
next, 0,
manager_dispatch_jobs_in_progress, m);
if (r < 0)
return;
(void) sd_event_source_set_description(m->jobs_in_progress_event_source, "manager-jobs-in-progress");
}
#define CYLON_BUFFER_EXTRA (2*(sizeof(ANSI_RED)-1) + sizeof(ANSI_HIGHLIGHT_RED)-1 + 2*(sizeof(ANSI_NORMAL)-1))
static void draw_cylon(char buffer[], size_t buflen, unsigned width, unsigned pos) {
char *p = buffer;
assert(buflen >= CYLON_BUFFER_EXTRA + width + 1);
assert(pos <= width+1); /* 0 or width+1 mean that the center light is behind the corner */
if (pos > 1) {
if (pos > 2)
p = mempset(p, ' ', pos-2);
if (log_get_show_color())
p = stpcpy(p, ANSI_RED);
*p++ = '*';
}
if (pos > 0 && pos <= width) {
if (log_get_show_color())
p = stpcpy(p, ANSI_HIGHLIGHT_RED);
*p++ = '*';
}
if (log_get_show_color())
p = stpcpy(p, ANSI_NORMAL);
if (pos < width) {
if (log_get_show_color())
p = stpcpy(p, ANSI_RED);
*p++ = '*';
if (pos < width-1)
p = mempset(p, ' ', width-1-pos);
if (log_get_show_color())
strcpy(p, ANSI_NORMAL);
}
}
void manager_flip_auto_status(Manager *m, bool enable) {
assert(m);
if (enable) {
if (m->show_status == SHOW_STATUS_AUTO)
manager_set_show_status(m, SHOW_STATUS_TEMPORARY);
} else {
if (m->show_status == SHOW_STATUS_TEMPORARY)
manager_set_show_status(m, SHOW_STATUS_AUTO);
}
}
static void manager_print_jobs_in_progress(Manager *m) {
_cleanup_free_ char *job_of_n = NULL;
Iterator i;
Job *j;
unsigned counter = 0, print_nr;
char cylon[6 + CYLON_BUFFER_EXTRA + 1];
unsigned cylon_pos;
char time[FORMAT_TIMESPAN_MAX], limit[FORMAT_TIMESPAN_MAX] = "no limit";
uint64_t x;
assert(m);
assert(m->n_running_jobs > 0);
manager_flip_auto_status(m, true);
print_nr = (m->jobs_in_progress_iteration / JOBS_IN_PROGRESS_PERIOD_DIVISOR) % m->n_running_jobs;
HASHMAP_FOREACH(j, m->jobs, i)
if (j->state == JOB_RUNNING && counter++ == print_nr)
break;
/* m->n_running_jobs must be consistent with the contents of m->jobs,
* so the above loop must have succeeded in finding j. */
assert(counter == print_nr + 1);
assert(j);
cylon_pos = m->jobs_in_progress_iteration % 14;
if (cylon_pos >= 8)
cylon_pos = 14 - cylon_pos;
draw_cylon(cylon, sizeof(cylon), 6, cylon_pos);
m->jobs_in_progress_iteration++;
if (m->n_running_jobs > 1) {
if (asprintf(&job_of_n, "(%u of %u) ", counter, m->n_running_jobs) < 0)
job_of_n = NULL;
}
format_timespan(time, sizeof(time), now(CLOCK_MONOTONIC) - j->begin_usec, 1*USEC_PER_SEC);
if (job_get_timeout(j, &x) > 0)
format_timespan(limit, sizeof(limit), x - j->begin_usec, 1*USEC_PER_SEC);
manager_status_printf(m, STATUS_TYPE_EPHEMERAL, cylon,
"%sA %s job is running for %s (%s / %s)",
strempty(job_of_n),
job_type_to_string(j->type),
unit_description(j->unit),
time, limit);
}
static int have_ask_password(void) {
_cleanup_closedir_ DIR *dir;
dir = opendir("/run/systemd/ask-password");
if (!dir) {
if (errno == ENOENT)
return false;
else
return -errno;
}
for (;;) {
struct dirent *de;
errno = 0;
de = readdir(dir);
if (!de && errno > 0)
return -errno;
if (!de)
return false;
if (startswith(de->d_name, "ask."))
return true;
}
}
static int manager_dispatch_ask_password_fd(sd_event_source *source,
int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
assert(m);
flush_fd(fd);
m->have_ask_password = have_ask_password();
if (m->have_ask_password < 0)
/* Log error but continue. Negative have_ask_password
* is treated as unknown status. */
log_error_errno(m->have_ask_password, "Failed to list /run/systemd/ask-password: %m");
return 0;
}
static void manager_close_ask_password(Manager *m) {
assert(m);
m->ask_password_event_source = sd_event_source_unref(m->ask_password_event_source);
m->ask_password_inotify_fd = safe_close(m->ask_password_inotify_fd);
m->have_ask_password = -EINVAL;
}
static int manager_check_ask_password(Manager *m) {
int r;
assert(m);
if (!m->ask_password_event_source) {
assert(m->ask_password_inotify_fd < 0);
mkdir_p_label("/run/systemd/ask-password", 0755);
m->ask_password_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
if (m->ask_password_inotify_fd < 0)
return log_error_errno(errno, "inotify_init1() failed: %m");
if (inotify_add_watch(m->ask_password_inotify_fd, "/run/systemd/ask-password", IN_CREATE|IN_DELETE|IN_MOVE) < 0) {
log_error_errno(errno, "Failed to add watch on /run/systemd/ask-password: %m");
manager_close_ask_password(m);
return -errno;
}
r = sd_event_add_io(m->event, &m->ask_password_event_source,
m->ask_password_inotify_fd, EPOLLIN,
manager_dispatch_ask_password_fd, m);
if (r < 0) {
log_error_errno(errno, "Failed to add event source for /run/systemd/ask-password: %m");
manager_close_ask_password(m);
return -errno;
}
(void) sd_event_source_set_description(m->ask_password_event_source, "manager-ask-password");
/* Queries might have been added meanwhile... */
manager_dispatch_ask_password_fd(m->ask_password_event_source,
m->ask_password_inotify_fd, EPOLLIN, m);
}
return m->have_ask_password;
}
static int manager_watch_idle_pipe(Manager *m) {
int r;
assert(m);
if (m->idle_pipe_event_source)
return 0;
if (m->idle_pipe[2] < 0)
return 0;
r = sd_event_add_io(m->event, &m->idle_pipe_event_source, m->idle_pipe[2], EPOLLIN, manager_dispatch_idle_pipe_fd, m);
if (r < 0)
return log_error_errno(r, "Failed to watch idle pipe: %m");
(void) sd_event_source_set_description(m->idle_pipe_event_source, "manager-idle-pipe");
return 0;
}
static void manager_close_idle_pipe(Manager *m) {
assert(m);
m->idle_pipe_event_source = sd_event_source_unref(m->idle_pipe_event_source);
safe_close_pair(m->idle_pipe);
safe_close_pair(m->idle_pipe + 2);
}
static int manager_setup_time_change(Manager *m) {
int r;
/* We only care for the cancellation event, hence we set the
* timeout to the latest possible value. */
struct itimerspec its = {
.it_value.tv_sec = TIME_T_MAX,
};
assert(m);
assert_cc(sizeof(time_t) == sizeof(TIME_T_MAX));
if (m->test_run)
return 0;
/* Uses TFD_TIMER_CANCEL_ON_SET to get notifications whenever
* CLOCK_REALTIME makes a jump relative to CLOCK_MONOTONIC */
m->time_change_fd = timerfd_create(CLOCK_REALTIME, TFD_NONBLOCK|TFD_CLOEXEC);
if (m->time_change_fd < 0)
return log_error_errno(errno, "Failed to create timerfd: %m");
if (timerfd_settime(m->time_change_fd, TFD_TIMER_ABSTIME|TFD_TIMER_CANCEL_ON_SET, &its, NULL) < 0) {
log_debug_errno(errno, "Failed to set up TFD_TIMER_CANCEL_ON_SET, ignoring: %m");
m->time_change_fd = safe_close(m->time_change_fd);
return 0;
}
r = sd_event_add_io(m->event, &m->time_change_event_source, m->time_change_fd, EPOLLIN, manager_dispatch_time_change_fd, m);
if (r < 0)
return log_error_errno(r, "Failed to create time change event source: %m");
(void) sd_event_source_set_description(m->time_change_event_source, "manager-time-change");
log_debug("Set up TFD_TIMER_CANCEL_ON_SET timerfd.");
return 0;
}
static int enable_special_signals(Manager *m) {
_cleanup_close_ int fd = -1;
assert(m);
if (m->test_run)
return 0;
/* Enable that we get SIGINT on control-alt-del. In containers
* this will fail with EPERM (older) or EINVAL (newer), so
* ignore that. */
if (reboot(RB_DISABLE_CAD) < 0 && errno != EPERM && errno != EINVAL)
log_warning_errno(errno, "Failed to enable ctrl-alt-del handling: %m");
fd = open_terminal("/dev/tty0", O_RDWR|O_NOCTTY|O_CLOEXEC);
if (fd < 0) {
/* Support systems without virtual console */
if (fd != -ENOENT)
log_warning_errno(errno, "Failed to open /dev/tty0: %m");
} else {
/* Enable that we get SIGWINCH on kbrequest */
if (ioctl(fd, KDSIGACCEPT, SIGWINCH) < 0)
log_warning_errno(errno, "Failed to enable kbrequest handling: %m");
}
return 0;
}
static int manager_setup_signals(Manager *m) {
struct sigaction sa = {
.sa_handler = SIG_DFL,
.sa_flags = SA_NOCLDSTOP|SA_RESTART,
};
sigset_t mask;
int r;
assert(m);
assert_se(sigaction(SIGCHLD, &sa, NULL) == 0);
/* We make liberal use of realtime signals here. On
* Linux/glibc we have 30 of them (with the exception of Linux
* on hppa, see below), between SIGRTMIN+0 ... SIGRTMIN+30
* (aka SIGRTMAX). */
assert_se(sigemptyset(&mask) == 0);
sigset_add_many(&mask,
SIGCHLD, /* Child died */
SIGTERM, /* Reexecute daemon */
SIGHUP, /* Reload configuration */
SIGUSR1, /* systemd/upstart: reconnect to D-Bus */
SIGUSR2, /* systemd: dump status */
SIGINT, /* Kernel sends us this on control-alt-del */
SIGWINCH, /* Kernel sends us this on kbrequest (alt-arrowup) */
SIGPWR, /* Some kernel drivers and upsd send us this on power failure */
SIGRTMIN+0, /* systemd: start default.target */
SIGRTMIN+1, /* systemd: isolate rescue.target */
SIGRTMIN+2, /* systemd: isolate emergency.target */
SIGRTMIN+3, /* systemd: start halt.target */
SIGRTMIN+4, /* systemd: start poweroff.target */
SIGRTMIN+5, /* systemd: start reboot.target */
SIGRTMIN+6, /* systemd: start kexec.target */
/* ... space for more special targets ... */
SIGRTMIN+13, /* systemd: Immediate halt */
SIGRTMIN+14, /* systemd: Immediate poweroff */
SIGRTMIN+15, /* systemd: Immediate reboot */
SIGRTMIN+16, /* systemd: Immediate kexec */
/* ... space for more immediate system state changes ... */
SIGRTMIN+20, /* systemd: enable status messages */
SIGRTMIN+21, /* systemd: disable status messages */
SIGRTMIN+22, /* systemd: set log level to LOG_DEBUG */
SIGRTMIN+23, /* systemd: set log level to LOG_INFO */
SIGRTMIN+24, /* systemd: Immediate exit (--user only) */
/* .. one free signal here ... */
#if !defined(__hppa64__) && !defined(__hppa__)
/* Apparently Linux on hppa has fewer RT
* signals (SIGRTMAX is SIGRTMIN+25 there),
* hence let's not try to make use of them
* here. Since these commands are accessible
* by different means and only really a safety
* net, the missing functionality on hppa
* shouldn't matter. */
SIGRTMIN+26, /* systemd: set log target to journal-or-kmsg */
SIGRTMIN+27, /* systemd: set log target to console */
SIGRTMIN+28, /* systemd: set log target to kmsg */
SIGRTMIN+29, /* systemd: set log target to syslog-or-kmsg (obsolete) */
/* ... one free signal here SIGRTMIN+30 ... */
#endif
-1);
assert_se(sigprocmask(SIG_SETMASK, &mask, NULL) == 0);
m->signal_fd = signalfd(-1, &mask, SFD_NONBLOCK|SFD_CLOEXEC);
if (m->signal_fd < 0)
return -errno;
r = sd_event_add_io(m->event, &m->signal_event_source, m->signal_fd, EPOLLIN, manager_dispatch_signal_fd, m);
if (r < 0)
return r;
(void) sd_event_source_set_description(m->signal_event_source, "manager-signal");
/* Process signals a bit earlier than the rest of things, but later than notify_fd processing, so that the
* notify processing can still figure out to which process/service a message belongs, before we reap the
* process. Also, process this before handling cgroup notifications, so that we always collect child exit
* status information before detecting that there's no process in a cgroup. */
r = sd_event_source_set_priority(m->signal_event_source, SD_EVENT_PRIORITY_NORMAL-6);
if (r < 0)
return r;
if (MANAGER_IS_SYSTEM(m))
return enable_special_signals(m);
return 0;
}
static void manager_clean_environment(Manager *m) {
assert(m);
/* Let's remove some environment variables that we
* need ourselves to communicate with our clients */
strv_env_unset_many(
m->environment,
"NOTIFY_SOCKET",
"MAINPID",
"MANAGERPID",
"LISTEN_PID",
"LISTEN_FDS",
"LISTEN_FDNAMES",
"WATCHDOG_PID",
"WATCHDOG_USEC",
"INVOCATION_ID",
NULL);
}
static int manager_default_environment(Manager *m) {
assert(m);
if (MANAGER_IS_SYSTEM(m)) {
/* The system manager always starts with a clean
* environment for its children. It does not import
* the kernel or the parents exported variables.
*
* The initial passed environ is untouched to keep
* /proc/self/environ valid; it is used for tagging
* the init process inside containers. */
m->environment = strv_new("PATH=" DEFAULT_PATH,
NULL);
/* Import locale variables LC_*= from configuration */
locale_setup(&m->environment);
} else {
/* The user manager passes its own environment
* along to its children. */
m->environment = strv_copy(environ);
}
if (!m->environment)
return -ENOMEM;
manager_clean_environment(m);
strv_sort(m->environment);
return 0;
}
int manager_new(UnitFileScope scope, bool test_run, Manager **_m) {
Manager *m;
int r;
assert(_m);
assert(IN_SET(scope, UNIT_FILE_SYSTEM, UNIT_FILE_USER));
m = new0(Manager, 1);
if (!m)
return -ENOMEM;
m->unit_file_scope = scope;
m->exit_code = _MANAGER_EXIT_CODE_INVALID;
m->default_timer_accuracy_usec = USEC_PER_MINUTE;
m->default_tasks_accounting = true;
m->default_tasks_max = UINT64_MAX;
#ifdef ENABLE_EFI
if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0)
boot_timestamps(&m->userspace_timestamp, &m->firmware_timestamp, &m->loader_timestamp);
#endif
/* Prepare log fields we can use for structured logging */
if (MANAGER_IS_SYSTEM(m)) {
m->unit_log_field = "UNIT=";
m->unit_log_format_string = "UNIT=%s";
m->invocation_log_field = "INVOCATION_ID=";
m->invocation_log_format_string = "INVOCATION_ID=" SD_ID128_FORMAT_STR;
} else {
m->unit_log_field = "USER_UNIT=";
m->unit_log_format_string = "USER_UNIT=%s";
m->invocation_log_field = "USER_INVOCATION_ID=";
m->invocation_log_format_string = "USER_INVOCATION_ID=" SD_ID128_FORMAT_STR;
}
m->idle_pipe[0] = m->idle_pipe[1] = m->idle_pipe[2] = m->idle_pipe[3] = -1;
m->pin_cgroupfs_fd = m->notify_fd = m->cgroups_agent_fd = m->signal_fd = m->time_change_fd =
m->dev_autofs_fd = m->private_listen_fd = m->cgroup_inotify_fd =
m->ask_password_inotify_fd = -1;
m->user_lookup_fds[0] = m->user_lookup_fds[1] = -1;
m->current_job_id = 1; /* start as id #1, so that we can leave #0 around as "null-like" value */
m->have_ask_password = -EINVAL; /* we don't know */
m->first_boot = -1;
m->test_run = test_run;
/* Reboot immediately if the user hits C-A-D more often than 7x per 2s */
RATELIMIT_INIT(m->ctrl_alt_del_ratelimit, 2 * USEC_PER_SEC, 7);
r = manager_default_environment(m);
if (r < 0)
goto fail;
r = hashmap_ensure_allocated(&m->units, &string_hash_ops);
if (r < 0)
goto fail;
r = hashmap_ensure_allocated(&m->jobs, NULL);
if (r < 0)
goto fail;
r = hashmap_ensure_allocated(&m->cgroup_unit, &string_hash_ops);
if (r < 0)
goto fail;
r = hashmap_ensure_allocated(&m->watch_bus, &string_hash_ops);
if (r < 0)
goto fail;
r = sd_event_default(&m->event);
if (r < 0)
goto fail;
r = sd_event_add_defer(m->event, &m->run_queue_event_source, manager_dispatch_run_queue, m);
if (r < 0)
goto fail;
r = sd_event_source_set_priority(m->run_queue_event_source, SD_EVENT_PRIORITY_IDLE);
if (r < 0)
goto fail;
r = sd_event_source_set_enabled(m->run_queue_event_source, SD_EVENT_OFF);
if (r < 0)
goto fail;
(void) sd_event_source_set_description(m->run_queue_event_source, "manager-run-queue");
r = manager_setup_signals(m);
if (r < 0)
goto fail;
r = manager_setup_cgroup(m);
if (r < 0)
goto fail;
r = manager_setup_time_change(m);
if (r < 0)
goto fail;
m->udev = udev_new();
if (!m->udev) {
r = -ENOMEM;
goto fail;
}
/* Note that we do not set up the notify fd here. We do that after deserialization,
* since they might have gotten serialized across the reexec. */
m->taint_usr = dir_is_empty("/usr") > 0;
*_m = m;
return 0;
fail:
manager_free(m);
return r;
}
static int manager_setup_notify(Manager *m) {
int r;
if (m->test_run)
return 0;
if (m->notify_fd < 0) {
_cleanup_close_ int fd = -1;
union sockaddr_union sa = {
.sa.sa_family = AF_UNIX,
};
static const int one = 1;
const char *e;
/* First free all secondary fields */
m->notify_socket = mfree(m->notify_socket);
m->notify_event_source = sd_event_source_unref(m->notify_event_source);
fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
if (fd < 0)
return log_error_errno(errno, "Failed to allocate notification socket: %m");
fd_inc_rcvbuf(fd, NOTIFY_RCVBUF_SIZE);
e = manager_get_runtime_prefix(m);
if (!e) {
log_error("Failed to determine runtime prefix.");
return -EINVAL;
}
m->notify_socket = strappend(e, "/systemd/notify");
if (!m->notify_socket)
return log_oom();
(void) mkdir_parents_label(m->notify_socket, 0755);
(void) unlink(m->notify_socket);
strncpy(sa.un.sun_path, m->notify_socket, sizeof(sa.un.sun_path)-1);
r = bind(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un));
if (r < 0)
return log_error_errno(errno, "bind(%s) failed: %m", sa.un.sun_path);
r = setsockopt(fd, SOL_SOCKET, SO_PASSCRED, &one, sizeof(one));
if (r < 0)
return log_error_errno(errno, "SO_PASSCRED failed: %m");
m->notify_fd = fd;
fd = -1;
log_debug("Using notification socket %s", m->notify_socket);
}
if (!m->notify_event_source) {
r = sd_event_add_io(m->event, &m->notify_event_source, m->notify_fd, EPOLLIN, manager_dispatch_notify_fd, m);
if (r < 0)
return log_error_errno(r, "Failed to allocate notify event source: %m");
/* Process notification messages a bit earlier than SIGCHLD, so that we can still identify to which
* service an exit message belongs. */
r = sd_event_source_set_priority(m->notify_event_source, SD_EVENT_PRIORITY_NORMAL-7);
if (r < 0)
return log_error_errno(r, "Failed to set priority of notify event source: %m");
(void) sd_event_source_set_description(m->notify_event_source, "manager-notify");
}
return 0;
}
static int manager_setup_cgroups_agent(Manager *m) {
static const union sockaddr_union sa = {
.un.sun_family = AF_UNIX,
.un.sun_path = "/run/systemd/cgroups-agent",
};
int r;
/* This creates a listening socket we receive cgroups agent messages on. We do not use D-Bus for delivering
* these messages from the cgroups agent binary to PID 1, as the cgroups agent binary is very short-living, and
* each instance of it needs a new D-Bus connection. Since D-Bus connections are SOCK_STREAM/AF_UNIX, on
* overloaded systems the backlog of the D-Bus socket becomes relevant, as not more than the configured number
* of D-Bus connections may be queued until the kernel will start dropping further incoming connections,
* possibly resulting in lost cgroups agent messages. To avoid this, we'll use a private SOCK_DGRAM/AF_UNIX
* socket, where no backlog is relevant as communication may take place without an actual connect() cycle, and
* we thus won't lose messages.
*
* Note that PID 1 will forward the agent message to system bus, so that the user systemd instance may listen
* to it. The system instance hence listens on this special socket, but the user instances listen on the system
* bus for these messages. */
if (m->test_run)
return 0;
if (!MANAGER_IS_SYSTEM(m))
return 0;
if (cg_unified(SYSTEMD_CGROUP_CONTROLLER) > 0) /* We don't need this anymore on the unified hierarchy */
return 0;
if (m->cgroups_agent_fd < 0) {
_cleanup_close_ int fd = -1;
/* First free all secondary fields */
m->cgroups_agent_event_source = sd_event_source_unref(m->cgroups_agent_event_source);
fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
if (fd < 0)
return log_error_errno(errno, "Failed to allocate cgroups agent socket: %m");
fd_inc_rcvbuf(fd, CGROUPS_AGENT_RCVBUF_SIZE);
(void) unlink(sa.un.sun_path);
/* Only allow root to connect to this socket */
RUN_WITH_UMASK(0077)
r = bind(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un));
if (r < 0)
return log_error_errno(errno, "bind(%s) failed: %m", sa.un.sun_path);
m->cgroups_agent_fd = fd;
fd = -1;
}
if (!m->cgroups_agent_event_source) {
r = sd_event_add_io(m->event, &m->cgroups_agent_event_source, m->cgroups_agent_fd, EPOLLIN, manager_dispatch_cgroups_agent_fd, m);
if (r < 0)
return log_error_errno(r, "Failed to allocate cgroups agent event source: %m");
/* Process cgroups notifications early, but after having processed service notification messages or
* SIGCHLD signals, so that a cgroup running empty is always just the last safety net of notification,
* and we collected the metadata the notification and SIGCHLD stuff offers first. Also see handling of
* cgroup inotify for the unified cgroup stuff. */
r = sd_event_source_set_priority(m->cgroups_agent_event_source, SD_EVENT_PRIORITY_NORMAL-5);
if (r < 0)
return log_error_errno(r, "Failed to set priority of cgroups agent event source: %m");
(void) sd_event_source_set_description(m->cgroups_agent_event_source, "manager-cgroups-agent");
}
return 0;
}
static int manager_setup_user_lookup_fd(Manager *m) {
int r;
assert(m);
/* Set up the socket pair used for passing UID/GID resolution results from forked off processes to PID
* 1. Background: we can't do name lookups (NSS) from PID 1, since it might involve IPC and thus activation,
* and we might hence deadlock on ourselves. Hence we do all user/group lookups asynchronously from the forked
* off processes right before executing the binaries to start. In order to be able to clean up any IPC objects
* created by a unit (see RemoveIPC=) we need to know in PID 1 the used UID/GID of the executed processes,
* hence we establish this communication channel so that forked off processes can pass their UID/GID
* information back to PID 1. The forked off processes send their resolved UID/GID to PID 1 in a simple
* datagram, along with their unit name, so that we can share one communication socket pair among all units for
* this purpose.
*
* You might wonder why we need a communication channel for this that is independent of the usual notification
* socket scheme (i.e. $NOTIFY_SOCKET). The primary difference is about trust: data sent via the $NOTIFY_SOCKET
* channel is only accepted if it originates from the right unit and if reception was enabled for it. The user
* lookup socket OTOH is only accessible by PID 1 and its children until they exec(), and always available.
*
* Note that this function is called under two circumstances: when we first initialize (in which case we
* allocate both the socket pair and the event source to listen on it), and when we deserialize after a reload
* (in which case the socket pair already exists but we still need to allocate the event source for it). */
if (m->user_lookup_fds[0] < 0) {
/* Free all secondary fields */
safe_close_pair(m->user_lookup_fds);
m->user_lookup_event_source = sd_event_source_unref(m->user_lookup_event_source);
if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, m->user_lookup_fds) < 0)
return log_error_errno(errno, "Failed to allocate user lookup socket: %m");
(void) fd_inc_rcvbuf(m->user_lookup_fds[0], NOTIFY_RCVBUF_SIZE);
}
if (!m->user_lookup_event_source) {
r = sd_event_add_io(m->event, &m->user_lookup_event_source, m->user_lookup_fds[0], EPOLLIN, manager_dispatch_user_lookup_fd, m);
if (r < 0)
return log_error_errno(errno, "Failed to allocate user lookup event source: %m");
/* Process even earlier than the notify event source, so that we always know first about valid UID/GID
* resolutions */
r = sd_event_source_set_priority(m->user_lookup_event_source, SD_EVENT_PRIORITY_NORMAL-8);
if (r < 0)
return log_error_errno(errno, "Failed to set priority ot user lookup event source: %m");
(void) sd_event_source_set_description(m->user_lookup_event_source, "user-lookup");
}
return 0;
}
static int manager_connect_bus(Manager *m, bool reexecuting) {
bool try_bus_connect;
assert(m);
if (m->test_run)
return 0;
try_bus_connect =
reexecuting ||
(MANAGER_IS_USER(m) && getenv("DBUS_SESSION_BUS_ADDRESS"));
/* Try to connect to the buses, if possible. */
return bus_init(m, try_bus_connect);
}
static unsigned manager_dispatch_cleanup_queue(Manager *m) {
Unit *u;
unsigned n = 0;
assert(m);
while ((u = m->cleanup_queue)) {
assert(u->in_cleanup_queue);
unit_free(u);
n++;
}
return n;
}
enum {
GC_OFFSET_IN_PATH, /* This one is on the path we were traveling */
GC_OFFSET_UNSURE, /* No clue */
GC_OFFSET_GOOD, /* We still need this unit */
GC_OFFSET_BAD, /* We don't need this unit anymore */
_GC_OFFSET_MAX
};
static void unit_gc_mark_good(Unit *u, unsigned gc_marker) {
Iterator i;
Unit *other;
u->gc_marker = gc_marker + GC_OFFSET_GOOD;
/* Recursively mark referenced units as GOOD as well */
SET_FOREACH(other, u->dependencies[UNIT_REFERENCES], i)
if (other->gc_marker == gc_marker + GC_OFFSET_UNSURE)
unit_gc_mark_good(other, gc_marker);
}
static void unit_gc_sweep(Unit *u, unsigned gc_marker) {
Iterator i;
Unit *other;
bool is_bad;
assert(u);
if (u->gc_marker == gc_marker + GC_OFFSET_GOOD ||
u->gc_marker == gc_marker + GC_OFFSET_BAD ||
u->gc_marker == gc_marker + GC_OFFSET_UNSURE ||
u->gc_marker == gc_marker + GC_OFFSET_IN_PATH)
return;
if (u->in_cleanup_queue)
goto bad;
if (unit_check_gc(u))
goto good;
u->gc_marker = gc_marker + GC_OFFSET_IN_PATH;
is_bad = true;
SET_FOREACH(other, u->dependencies[UNIT_REFERENCED_BY], i) {
unit_gc_sweep(other, gc_marker);
if (other->gc_marker == gc_marker + GC_OFFSET_GOOD)
goto good;
if (other->gc_marker != gc_marker + GC_OFFSET_BAD)
is_bad = false;
}
if (is_bad)
goto bad;
/* We were unable to find anything out about this entry, so
* let's investigate it later */
u->gc_marker = gc_marker + GC_OFFSET_UNSURE;
unit_add_to_gc_queue(u);
return;
bad:
/* We definitely know that this one is not useful anymore, so
* let's mark it for deletion */
u->gc_marker = gc_marker + GC_OFFSET_BAD;
unit_add_to_cleanup_queue(u);
return;
good:
unit_gc_mark_good(u, gc_marker);
}
static unsigned manager_dispatch_gc_queue(Manager *m) {
Unit *u;
unsigned n = 0;
unsigned gc_marker;
assert(m);
/* log_debug("Running GC..."); */
m->gc_marker += _GC_OFFSET_MAX;
if (m->gc_marker + _GC_OFFSET_MAX <= _GC_OFFSET_MAX)
m->gc_marker = 1;
gc_marker = m->gc_marker;
while ((u = m->gc_queue)) {
assert(u->in_gc_queue);
unit_gc_sweep(u, gc_marker);
LIST_REMOVE(gc_queue, m->gc_queue, u);
u->in_gc_queue = false;
n++;
if (u->gc_marker == gc_marker + GC_OFFSET_BAD ||
u->gc_marker == gc_marker + GC_OFFSET_UNSURE) {
if (u->id)
log_unit_debug(u, "Collecting.");
u->gc_marker = gc_marker + GC_OFFSET_BAD;
unit_add_to_cleanup_queue(u);
}
}
m->n_in_gc_queue = 0;
return n;
}
static void manager_clear_jobs_and_units(Manager *m) {
Unit *u;
assert(m);
while ((u = hashmap_first(m->units)))
unit_free(u);
manager_dispatch_cleanup_queue(m);
assert(!m->load_queue);
assert(!m->run_queue);
assert(!m->dbus_unit_queue);
assert(!m->dbus_job_queue);
assert(!m->cleanup_queue);
assert(!m->gc_queue);
assert(hashmap_isempty(m->jobs));
assert(hashmap_isempty(m->units));
m->n_on_console = 0;
m->n_running_jobs = 0;
}
Manager* manager_free(Manager *m) {
UnitType c;
int i;
if (!m)
return NULL;
manager_clear_jobs_and_units(m);
for (c = 0; c < _UNIT_TYPE_MAX; c++)
if (unit_vtable[c]->shutdown)
unit_vtable[c]->shutdown(m);
/* If we reexecute ourselves, we keep the root cgroup
* around */
manager_shutdown_cgroup(m, m->exit_code != MANAGER_REEXECUTE);
lookup_paths_flush_generator(&m->lookup_paths);
bus_done(m);
dynamic_user_vacuum(m, false);
hashmap_free(m->dynamic_users);
hashmap_free(m->units);
hashmap_free(m->units_by_invocation_id);
hashmap_free(m->jobs);
hashmap_free(m->watch_pids1);
hashmap_free(m->watch_pids2);
hashmap_free(m->watch_bus);
set_free(m->startup_units);
set_free(m->failed_units);
sd_event_source_unref(m->signal_event_source);
sd_event_source_unref(m->notify_event_source);
sd_event_source_unref(m->cgroups_agent_event_source);
sd_event_source_unref(m->time_change_event_source);
sd_event_source_unref(m->jobs_in_progress_event_source);
sd_event_source_unref(m->run_queue_event_source);
sd_event_source_unref(m->user_lookup_event_source);
safe_close(m->signal_fd);
safe_close(m->notify_fd);
safe_close(m->cgroups_agent_fd);
safe_close(m->time_change_fd);
safe_close_pair(m->user_lookup_fds);
manager_close_ask_password(m);
manager_close_idle_pipe(m);
udev_unref(m->udev);
sd_event_unref(m->event);
free(m->notify_socket);
lookup_paths_free(&m->lookup_paths);
strv_free(m->environment);
hashmap_free(m->cgroup_unit);
set_free_free(m->unit_path_cache);
free(m->switch_root);
free(m->switch_root_init);
for (i = 0; i < _RLIMIT_MAX; i++)
m->rlimit[i] = mfree(m->rlimit[i]);
assert(hashmap_isempty(m->units_requiring_mounts_for));
hashmap_free(m->units_requiring_mounts_for);
hashmap_free(m->uid_refs);
hashmap_free(m->gid_refs);
return mfree(m);
}
void manager_enumerate(Manager *m) {
UnitType c;
assert(m);
/* Let's ask every type to load all units from disk/kernel
* that it might know */
for (c = 0; c < _UNIT_TYPE_MAX; c++) {
if (!unit_type_supported(c)) {
log_debug("Unit type .%s is not supported on this system.", unit_type_to_string(c));
continue;
}
if (!unit_vtable[c]->enumerate)
continue;
unit_vtable[c]->enumerate(m);
}
manager_dispatch_load_queue(m);
}
static void manager_coldplug(Manager *m) {
Iterator i;
Unit *u;
char *k;
int r;
assert(m);
/* Then, let's set up their initial state. */
HASHMAP_FOREACH_KEY(u, k, m->units, i) {
/* ignore aliases */
if (u->id != k)
continue;
r = unit_coldplug(u);
if (r < 0)
log_warning_errno(r, "We couldn't coldplug %s, proceeding anyway: %m", u->id);
}
}
static void manager_build_unit_path_cache(Manager *m) {
char **i;
int r;
assert(m);
set_free_free(m->unit_path_cache);
m->unit_path_cache = set_new(&string_hash_ops);
if (!m->unit_path_cache) {
r = -ENOMEM;
goto fail;
}
/* This simply builds a list of files we know exist, so that
* we don't always have to go to disk */
STRV_FOREACH(i, m->lookup_paths.search_path) {
_cleanup_closedir_ DIR *d = NULL;
struct dirent *de;
d = opendir(*i);
if (!d) {
if (errno != ENOENT)
log_warning_errno(errno, "Failed to open directory %s, ignoring: %m", *i);
continue;
}
FOREACH_DIRENT(de, d, r = -errno; goto fail) {
char *p;
p = strjoin(streq(*i, "/") ? "" : *i, "/", de->d_name);
if (!p) {
r = -ENOMEM;
goto fail;
}
r = set_consume(m->unit_path_cache, p);
if (r < 0)
goto fail;
}
}
return;
fail:
log_warning_errno(r, "Failed to build unit path cache, proceeding without: %m");
m->unit_path_cache = set_free_free(m->unit_path_cache);
}
static void manager_distribute_fds(Manager *m, FDSet *fds) {
Iterator i;
Unit *u;
assert(m);
HASHMAP_FOREACH(u, m->units, i) {
if (fdset_size(fds) <= 0)
break;
if (!UNIT_VTABLE(u)->distribute_fds)
continue;
UNIT_VTABLE(u)->distribute_fds(u, fds);
}
}
int manager_startup(Manager *m, FILE *serialization, FDSet *fds) {
int r, q;
assert(m);
r = lookup_paths_init(&m->lookup_paths, m->unit_file_scope, 0, NULL);
if (r < 0)
return r;
/* Make sure the transient directory always exists, so that it remains in the search path */
if (!m->test_run) {
r = mkdir_p_label(m->lookup_paths.transient, 0755);
if (r < 0)
return r;
}
dual_timestamp_get(&m->generators_start_timestamp);
r = manager_run_generators(m);
dual_timestamp_get(&m->generators_finish_timestamp);
if (r < 0)
return r;
lookup_paths_reduce(&m->lookup_paths);
manager_build_unit_path_cache(m);
/* If we will deserialize make sure that during enumeration
* this is already known, so we increase the counter here
* already */
if (serialization)
m->n_reloading++;
/* First, enumerate what we can from all config files */
dual_timestamp_get(&m->units_load_start_timestamp);
manager_enumerate(m);
dual_timestamp_get(&m->units_load_finish_timestamp);
/* Second, deserialize if there is something to deserialize */
if (serialization)
r = manager_deserialize(m, serialization, fds);
/* Any fds left? Find some unit which wants them. This is
* useful to allow container managers to pass some file
* descriptors to us pre-initialized. This enables
* socket-based activation of entire containers. */
manager_distribute_fds(m, fds);
/* We might have deserialized the notify fd, but if we didn't
* then let's create the bus now */
q = manager_setup_notify(m);
if (q < 0 && r == 0)
r = q;
q = manager_setup_cgroups_agent(m);
if (q < 0 && r == 0)
r = q;
q = manager_setup_user_lookup_fd(m);
if (q < 0 && r == 0)
r = q;
/* Let's connect to the bus now. */
(void) manager_connect_bus(m, !!serialization);
(void) bus_track_coldplug(m, &m->subscribed, false, m->deserialized_subscribed);
m->deserialized_subscribed = strv_free(m->deserialized_subscribed);
/* Third, fire things up! */
manager_coldplug(m);
/* Release any dynamic users no longer referenced */
dynamic_user_vacuum(m, true);
/* Release any references to UIDs/GIDs no longer referenced, and destroy any IPC owned by them */
manager_vacuum_uid_refs(m);
manager_vacuum_gid_refs(m);
if (serialization) {
assert(m->n_reloading > 0);
m->n_reloading--;
/* Let's wait for the UnitNew/JobNew messages being
* sent, before we notify that the reload is
* finished */
m->send_reloading_done = true;
}
return r;
}
int manager_add_job(Manager *m, JobType type, Unit *unit, JobMode mode, sd_bus_error *e, Job **_ret) {
int r;
Transaction *tr;
assert(m);
assert(type < _JOB_TYPE_MAX);
assert(unit);
assert(mode < _JOB_MODE_MAX);
if (mode == JOB_ISOLATE && type != JOB_START)
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Isolate is only valid for start.");
if (mode == JOB_ISOLATE && !unit->allow_isolate)
return sd_bus_error_setf(e, BUS_ERROR_NO_ISOLATION, "Operation refused, unit may not be isolated.");
log_unit_debug(unit, "Trying to enqueue job %s/%s/%s", unit->id, job_type_to_string(type), job_mode_to_string(mode));
type = job_type_collapse(type, unit);
tr = transaction_new(mode == JOB_REPLACE_IRREVERSIBLY);
if (!tr)
return -ENOMEM;
r = transaction_add_job_and_dependencies(tr, type, unit, NULL, true, false,
mode == JOB_IGNORE_DEPENDENCIES || mode == JOB_IGNORE_REQUIREMENTS,
mode == JOB_IGNORE_DEPENDENCIES, e);
if (r < 0)
goto tr_abort;
if (mode == JOB_ISOLATE) {
r = transaction_add_isolate_jobs(tr, m);
if (r < 0)
goto tr_abort;
}
r = transaction_activate(tr, m, mode, e);
if (r < 0)
goto tr_abort;
log_unit_debug(unit,
"Enqueued job %s/%s as %u", unit->id,
job_type_to_string(type), (unsigned) tr->anchor_job->id);
if (_ret)
*_ret = tr->anchor_job;
transaction_free(tr);
return 0;
tr_abort:
transaction_abort(tr);
transaction_free(tr);
return r;
}
int manager_add_job_by_name(Manager *m, JobType type, const char *name, JobMode mode, sd_bus_error *e, Job **ret) {
Unit *unit;
int r;
assert(m);
assert(type < _JOB_TYPE_MAX);
assert(name);
assert(mode < _JOB_MODE_MAX);
r = manager_load_unit(m, name, NULL, NULL, &unit);
if (r < 0)
return r;
return manager_add_job(m, type, unit, mode, e, ret);
}
int manager_add_job_by_name_and_warn(Manager *m, JobType type, const char *name, JobMode mode, Job **ret) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
int r;
assert(m);
assert(type < _JOB_TYPE_MAX);
assert(name);
assert(mode < _JOB_MODE_MAX);
r = manager_add_job_by_name(m, type, name, mode, &error, ret);
if (r < 0)
return log_warning_errno(r, "Failed to enqueue %s job for %s: %s", job_mode_to_string(mode), name, bus_error_message(&error, r));
return r;
}
Job *manager_get_job(Manager *m, uint32_t id) {
assert(m);
return hashmap_get(m->jobs, UINT32_TO_PTR(id));
}
Unit *manager_get_unit(Manager *m, const char *name) {
assert(m);
assert(name);
return hashmap_get(m->units, name);
}
unsigned manager_dispatch_load_queue(Manager *m) {
Unit *u;
unsigned n = 0;
assert(m);
/* Make sure we are not run recursively */
if (m->dispatching_load_queue)
return 0;
m->dispatching_load_queue = true;
/* Dispatches the load queue. Takes a unit from the queue and
* tries to load its data until the queue is empty */
while ((u = m->load_queue)) {
assert(u->in_load_queue);
unit_load(u);
n++;
}
m->dispatching_load_queue = false;
return n;
}
int manager_load_unit_prepare(
Manager *m,
const char *name,
const char *path,
sd_bus_error *e,
Unit **_ret) {
Unit *ret;
UnitType t;
int r;
assert(m);
assert(name || path);
/* This will prepare the unit for loading, but not actually
* load anything from disk. */
if (path && !is_path(path))
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Path %s is not absolute.", path);
if (!name)
name = basename(path);
t = unit_name_to_type(name);
if (t == _UNIT_TYPE_INVALID || !unit_name_is_valid(name, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) {
if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE))
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is missing the instance name.", name);
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is not valid.", name);
}
ret = manager_get_unit(m, name);
if (ret) {
*_ret = ret;
return 1;
}
ret = unit_new(m, unit_vtable[t]->object_size);
if (!ret)
return -ENOMEM;
if (path) {
ret->fragment_path = strdup(path);
if (!ret->fragment_path) {
unit_free(ret);
return -ENOMEM;
}
}
r = unit_add_name(ret, name);
if (r < 0) {
unit_free(ret);
return r;
}
unit_add_to_load_queue(ret);
unit_add_to_dbus_queue(ret);
unit_add_to_gc_queue(ret);
if (_ret)
*_ret = ret;
return 0;
}
int manager_load_unit(
Manager *m,
const char *name,
const char *path,
sd_bus_error *e,
Unit **_ret) {
int r;
assert(m);
/* This will load the service information files, but not actually
* start any services or anything. */
r = manager_load_unit_prepare(m, name, path, e, _ret);
if (r != 0)
return r;
manager_dispatch_load_queue(m);
if (_ret)
*_ret = unit_follow_merge(*_ret);
return 0;
}
void manager_dump_jobs(Manager *s, FILE *f, const char *prefix) {
Iterator i;
Job *j;
assert(s);
assert(f);
HASHMAP_FOREACH(j, s->jobs, i)
job_dump(j, f, prefix);
}
void manager_dump_units(Manager *s, FILE *f, const char *prefix) {
Iterator i;
Unit *u;
const char *t;
assert(s);
assert(f);
HASHMAP_FOREACH_KEY(u, t, s->units, i)
if (u->id == t)
unit_dump(u, f, prefix);
}
void manager_clear_jobs(Manager *m) {
Job *j;
assert(m);
while ((j = hashmap_first(m->jobs)))
/* No need to recurse. We're cancelling all jobs. */
job_finish_and_invalidate(j, JOB_CANCELED, false, false);
}
static int manager_dispatch_run_queue(sd_event_source *source, void *userdata) {
Manager *m = userdata;
Job *j;
assert(source);
assert(m);
while ((j = m->run_queue)) {
assert(j->installed);
assert(j->in_run_queue);
job_run_and_invalidate(j);
}
if (m->n_running_jobs > 0)
manager_watch_jobs_in_progress(m);
if (m->n_on_console > 0)
manager_watch_idle_pipe(m);
return 1;
}
static unsigned manager_dispatch_dbus_queue(Manager *m) {
Job *j;
Unit *u;
unsigned n = 0;
assert(m);
if (m->dispatching_dbus_queue)
return 0;
m->dispatching_dbus_queue = true;
while ((u = m->dbus_unit_queue)) {
assert(u->in_dbus_queue);
bus_unit_send_change_signal(u);
n++;
}
while ((j = m->dbus_job_queue)) {
assert(j->in_dbus_queue);
bus_job_send_change_signal(j);
n++;
}
m->dispatching_dbus_queue = false;
if (m->send_reloading_done) {
m->send_reloading_done = false;
bus_manager_send_reloading(m, false);
}
if (m->queued_message)
bus_send_queued_message(m);
return n;
}
static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
char buf[PATH_MAX+1];
ssize_t n;
n = recv(fd, buf, sizeof(buf), 0);
if (n < 0)
return log_error_errno(errno, "Failed to read cgroups agent message: %m");
if (n == 0) {
log_error("Got zero-length cgroups agent message, ignoring.");
return 0;
}
if ((size_t) n >= sizeof(buf)) {
log_error("Got overly long cgroups agent message, ignoring.");
return 0;
}
if (memchr(buf, 0, n)) {
log_error("Got cgroups agent message with embedded NUL byte, ignoring.");
return 0;
}
buf[n] = 0;
manager_notify_cgroup_empty(m, buf);
bus_forward_agent_released(m, buf);
return 0;
}
static void manager_invoke_notify_message(Manager *m, Unit *u, pid_t pid, const char *buf, FDSet *fds) {
_cleanup_strv_free_ char **tags = NULL;
assert(m);
assert(u);
assert(buf);
tags = strv_split(buf, "\n\r");
if (!tags) {
log_oom();
return;
}
if (UNIT_VTABLE(u)->notify_message)
UNIT_VTABLE(u)->notify_message(u, pid, tags, fds);
else if (_unlikely_(log_get_max_level() >= LOG_DEBUG)) {
_cleanup_free_ char *x = NULL, *y = NULL;
x = cescape(buf);
if (x)
y = ellipsize(x, 20, 90);
log_unit_debug(u, "Got notification message \"%s\", ignoring.", strnull(y));
}
}
static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
_cleanup_fdset_free_ FDSet *fds = NULL;
Manager *m = userdata;
char buf[NOTIFY_BUFFER_MAX+1];
struct iovec iovec = {
.iov_base = buf,
.iov_len = sizeof(buf)-1,
};
union {
struct cmsghdr cmsghdr;
uint8_t buf[CMSG_SPACE(sizeof(struct ucred)) +
CMSG_SPACE(sizeof(int) * NOTIFY_FD_MAX)];
} control = {};
struct msghdr msghdr = {
.msg_iov = &iovec,
.msg_iovlen = 1,
.msg_control = &control,
.msg_controllen = sizeof(control),
};
struct cmsghdr *cmsg;
struct ucred *ucred = NULL;
Unit *u1, *u2, *u3;
int r, *fd_array = NULL;
unsigned n_fds = 0;
ssize_t n;
assert(m);
assert(m->notify_fd == fd);
if (revents != EPOLLIN) {
log_warning("Got unexpected poll event for notify fd.");
return 0;
}
n = recvmsg(m->notify_fd, &msghdr, MSG_DONTWAIT|MSG_CMSG_CLOEXEC|MSG_TRUNC);
if (n < 0) {
if (IN_SET(errno, EAGAIN, EINTR))
return 0; /* Spurious wakeup, try again */
/* If this is any other, real error, then let's stop processing this socket. This of course means we
* won't take notification messages anymore, but that's still better than busy looping around this:
* being woken up over and over again but being unable to actually read the message off the socket. */
return log_error_errno(errno, "Failed to receive notification message: %m");
}
CMSG_FOREACH(cmsg, &msghdr) {
if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
fd_array = (int*) CMSG_DATA(cmsg);
n_fds = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int);
} else if (cmsg->cmsg_level == SOL_SOCKET &&
cmsg->cmsg_type == SCM_CREDENTIALS &&
cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred))) {
ucred = (struct ucred*) CMSG_DATA(cmsg);
}
}
if (n_fds > 0) {
assert(fd_array);
r = fdset_new_array(&fds, fd_array, n_fds);
if (r < 0) {
close_many(fd_array, n_fds);
log_oom();
return 0;
}
}
if (!ucred || ucred->pid <= 0) {
log_warning("Received notify message without valid credentials. Ignoring.");
return 0;
}
if ((size_t) n >= sizeof(buf) || (msghdr.msg_flags & MSG_TRUNC)) {
log_warning("Received notify message exceeded maximum size. Ignoring.");
return 0;
}
/* As extra safety check, let's make sure the string we get doesn't contain embedded NUL bytes. We permit one
* trailing NUL byte in the message, but don't expect it. */
if (n > 1 && memchr(buf, 0, n-1)) {
log_warning("Received notify message with embedded NUL bytes. Ignoring.");
return 0;
}
/* Make sure it's NUL-terminated. */
buf[n] = 0;
/* Notify every unit that might be interested, but try
* to avoid notifying the same one multiple times. */
u1 = manager_get_unit_by_pid_cgroup(m, ucred->pid);
if (u1)
manager_invoke_notify_message(m, u1, ucred->pid, buf, fds);
u2 = hashmap_get(m->watch_pids1, PID_TO_PTR(ucred->pid));
if (u2 && u2 != u1)
manager_invoke_notify_message(m, u2, ucred->pid, buf, fds);
u3 = hashmap_get(m->watch_pids2, PID_TO_PTR(ucred->pid));
if (u3 && u3 != u2 && u3 != u1)
manager_invoke_notify_message(m, u3, ucred->pid, buf, fds);
if (!u1 && !u2 && !u3)
log_warning("Cannot find unit for notify message of PID "PID_FMT".", ucred->pid);
if (fdset_size(fds) > 0)
log_warning("Got extra auxiliary fds with notification message, closing them.");
return 0;
}
static void invoke_sigchld_event(Manager *m, Unit *u, const siginfo_t *si) {
uint64_t iteration;
assert(m);
assert(u);
assert(si);
sd_event_get_iteration(m->event, &iteration);
log_unit_debug(u, "Child "PID_FMT" belongs to %s", si->si_pid, u->id);
unit_unwatch_pid(u, si->si_pid);
if (UNIT_VTABLE(u)->sigchld_event) {
if (set_size(u->pids) <= 1 ||
iteration != u->sigchldgen ||
unit_main_pid(u) == si->si_pid ||
unit_control_pid(u) == si->si_pid) {
UNIT_VTABLE(u)->sigchld_event(u, si->si_pid, si->si_code, si->si_status);
u->sigchldgen = iteration;
} else
log_debug("%s already issued a sigchld this iteration %" PRIu64 ", skipping. Pids still being watched %d", u->id, iteration, set_size(u->pids));
}
}
static int manager_dispatch_sigchld(Manager *m) {
assert(m);
for (;;) {
siginfo_t si = {};
/* First we call waitd() for a PID and do not reap the
* zombie. That way we can still access /proc/$PID for
* it while it is a zombie. */
if (waitid(P_ALL, 0, &si, WEXITED|WNOHANG|WNOWAIT) < 0) {
if (errno == ECHILD)
break;
if (errno == EINTR)
continue;
return -errno;
}
if (si.si_pid <= 0)
break;
if (si.si_code == CLD_EXITED || si.si_code == CLD_KILLED || si.si_code == CLD_DUMPED) {
_cleanup_free_ char *name = NULL;
Unit *u1, *u2, *u3;
get_process_comm(si.si_pid, &name);
log_debug("Child "PID_FMT" (%s) died (code=%s, status=%i/%s)",
si.si_pid, strna(name),
sigchld_code_to_string(si.si_code),
si.si_status,
strna(si.si_code == CLD_EXITED
? exit_status_to_string(si.si_status, EXIT_STATUS_FULL)
: signal_to_string(si.si_status)));
/* And now figure out the unit this belongs
* to, it might be multiple... */
u1 = manager_get_unit_by_pid_cgroup(m, si.si_pid);
if (u1)
invoke_sigchld_event(m, u1, &si);
u2 = hashmap_get(m->watch_pids1, PID_TO_PTR(si.si_pid));
if (u2 && u2 != u1)
invoke_sigchld_event(m, u2, &si);
u3 = hashmap_get(m->watch_pids2, PID_TO_PTR(si.si_pid));
if (u3 && u3 != u2 && u3 != u1)
invoke_sigchld_event(m, u3, &si);
}
/* And now, we actually reap the zombie. */
if (waitid(P_PID, si.si_pid, &si, WEXITED) < 0) {
if (errno == EINTR)
continue;
return -errno;
}
}
return 0;
}
static int manager_start_target(Manager *m, const char *name, JobMode mode) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
int r;
log_debug("Activating special unit %s", name);
r = manager_add_job_by_name(m, JOB_START, name, mode, &error, NULL);
if (r < 0)
log_error("Failed to enqueue %s job: %s", name, bus_error_message(&error, r));
return r;
}
static void manager_handle_ctrl_alt_del(Manager *m) {
/* If the user presses C-A-D more than
* 7 times within 2s, we reboot/shutdown immediately,
* unless it was disabled in system.conf */
if (ratelimit_test(&m->ctrl_alt_del_ratelimit) || m->cad_burst_action == CAD_BURST_ACTION_IGNORE)
manager_start_target(m, SPECIAL_CTRL_ALT_DEL_TARGET, JOB_REPLACE_IRREVERSIBLY);
else {
switch (m->cad_burst_action) {
case CAD_BURST_ACTION_REBOOT:
m->exit_code = MANAGER_REBOOT;
break;
case CAD_BURST_ACTION_POWEROFF:
m->exit_code = MANAGER_POWEROFF;
break;
default:
assert_not_reached("Unknown action.");
}
log_notice("Ctrl-Alt-Del was pressed more than 7 times within 2s, performing immediate %s.",
cad_burst_action_to_string(m->cad_burst_action));
status_printf(NULL, true, false, "Ctrl-Alt-Del was pressed more than 7 times within 2s, performing immediate %s.",
cad_burst_action_to_string(m->cad_burst_action));
}
}
static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
ssize_t n;
struct signalfd_siginfo sfsi;
bool sigchld = false;
int r;
assert(m);
assert(m->signal_fd == fd);
if (revents != EPOLLIN) {
log_warning("Got unexpected events from signal file descriptor.");
return 0;
}
for (;;) {
n = read(m->signal_fd, &sfsi, sizeof(sfsi));
if (n != sizeof(sfsi)) {
if (n >= 0) {
log_warning("Truncated read from signal fd (%zu bytes)!", n);
return 0;
}
if (IN_SET(errno, EINTR, EAGAIN))
break;
/* We return an error here, which will kill this handler,
* to avoid a busy loop on read error. */
return log_error_errno(errno, "Reading from signal fd failed: %m");
}
log_received_signal(sfsi.ssi_signo == SIGCHLD ||
(sfsi.ssi_signo == SIGTERM && MANAGER_IS_USER(m))
? LOG_DEBUG : LOG_INFO,
&sfsi);
switch (sfsi.ssi_signo) {
case SIGCHLD:
sigchld = true;
break;
case SIGTERM:
if (MANAGER_IS_SYSTEM(m)) {
/* This is for compatibility with the
* original sysvinit */
m->exit_code = MANAGER_REEXECUTE;
break;
}
/* Fall through */
case SIGINT:
if (MANAGER_IS_SYSTEM(m)) {
manager_handle_ctrl_alt_del(m);
break;
}
/* Run the exit target if there is one, if not, just exit. */
if (manager_start_target(m, SPECIAL_EXIT_TARGET, JOB_REPLACE) < 0) {
m->exit_code = MANAGER_EXIT;
return 0;
}
break;
case SIGWINCH:
if (MANAGER_IS_SYSTEM(m))
manager_start_target(m, SPECIAL_KBREQUEST_TARGET, JOB_REPLACE);
/* This is a nop on non-init */
break;
case SIGPWR:
if (MANAGER_IS_SYSTEM(m))
manager_start_target(m, SPECIAL_SIGPWR_TARGET, JOB_REPLACE);
/* This is a nop on non-init */
break;
case SIGUSR1: {
Unit *u;
u = manager_get_unit(m, SPECIAL_DBUS_SERVICE);
if (!u || UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u))) {
log_info("Trying to reconnect to bus...");
bus_init(m, true);
}
if (!u || !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))) {
log_info("Loading D-Bus service...");
manager_start_target(m, SPECIAL_DBUS_SERVICE, JOB_REPLACE);
}
break;
}
case SIGUSR2: {
_cleanup_free_ char *dump = NULL;
_cleanup_fclose_ FILE *f = NULL;
size_t size;
f = open_memstream(&dump, &size);
if (!f) {
log_warning_errno(errno, "Failed to allocate memory stream: %m");
break;
}
manager_dump_units(m, f, "\t");
manager_dump_jobs(m, f, "\t");
r = fflush_and_check(f);
if (r < 0) {
log_warning_errno(r, "Failed to write status stream: %m");
break;
}
log_dump(LOG_INFO, dump);
break;
}
case SIGHUP:
m->exit_code = MANAGER_RELOAD;
break;
default: {
/* Starting SIGRTMIN+0 */
static const char * const target_table[] = {
[0] = SPECIAL_DEFAULT_TARGET,
[1] = SPECIAL_RESCUE_TARGET,
[2] = SPECIAL_EMERGENCY_TARGET,
[3] = SPECIAL_HALT_TARGET,
[4] = SPECIAL_POWEROFF_TARGET,
[5] = SPECIAL_REBOOT_TARGET,
[6] = SPECIAL_KEXEC_TARGET
};
/* Starting SIGRTMIN+13, so that target halt and system halt are 10 apart */
static const ManagerExitCode code_table[] = {
[0] = MANAGER_HALT,
[1] = MANAGER_POWEROFF,
[2] = MANAGER_REBOOT,
[3] = MANAGER_KEXEC
};
if ((int) sfsi.ssi_signo >= SIGRTMIN+0 &&
(int) sfsi.ssi_signo < SIGRTMIN+(int) ELEMENTSOF(target_table)) {
int idx = (int) sfsi.ssi_signo - SIGRTMIN;
manager_start_target(m, target_table[idx],
(idx == 1 || idx == 2) ? JOB_ISOLATE : JOB_REPLACE);
break;
}
if ((int) sfsi.ssi_signo >= SIGRTMIN+13 &&
(int) sfsi.ssi_signo < SIGRTMIN+13+(int) ELEMENTSOF(code_table)) {
m->exit_code = code_table[sfsi.ssi_signo - SIGRTMIN - 13];
break;
}
switch (sfsi.ssi_signo - SIGRTMIN) {
case 20:
manager_set_show_status(m, SHOW_STATUS_YES);
break;
case 21:
manager_set_show_status(m, SHOW_STATUS_NO);
break;
case 22:
log_set_max_level(LOG_DEBUG);
log_info("Setting log level to debug.");
break;
case 23:
log_set_max_level(LOG_INFO);
log_info("Setting log level to info.");
break;
case 24:
if (MANAGER_IS_USER(m)) {
m->exit_code = MANAGER_EXIT;
return 0;
}
/* This is a nop on init */
break;
case 26:
case 29: /* compatibility: used to be mapped to LOG_TARGET_SYSLOG_OR_KMSG */
log_set_target(LOG_TARGET_JOURNAL_OR_KMSG);
log_notice("Setting log target to journal-or-kmsg.");
break;
case 27:
log_set_target(LOG_TARGET_CONSOLE);
log_notice("Setting log target to console.");
break;
case 28:
log_set_target(LOG_TARGET_KMSG);
log_notice("Setting log target to kmsg.");
break;
default:
log_warning("Got unhandled signal <%s>.", signal_to_string(sfsi.ssi_signo));
}
}
}
}
if (sigchld)
manager_dispatch_sigchld(m);
return 0;
}
static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
Iterator i;
Unit *u;
assert(m);
assert(m->time_change_fd == fd);
log_struct(LOG_INFO,
LOG_MESSAGE_ID(SD_MESSAGE_TIME_CHANGE),
LOG_MESSAGE("Time has been changed"),
NULL);
/* Restart the watch */
m->time_change_event_source = sd_event_source_unref(m->time_change_event_source);
m->time_change_fd = safe_close(m->time_change_fd);
manager_setup_time_change(m);
HASHMAP_FOREACH(u, m->units, i)
if (UNIT_VTABLE(u)->time_change)
UNIT_VTABLE(u)->time_change(u);
return 0;
}
static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
assert(m);
assert(m->idle_pipe[2] == fd);
m->no_console_output = m->n_on_console > 0;
manager_close_idle_pipe(m);
return 0;
}
static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata) {
Manager *m = userdata;
int r;
uint64_t next;
assert(m);
assert(source);
manager_print_jobs_in_progress(m);
next = now(CLOCK_MONOTONIC) + JOBS_IN_PROGRESS_PERIOD_USEC;
r = sd_event_source_set_time(source, next);
if (r < 0)
return r;
return sd_event_source_set_enabled(source, SD_EVENT_ONESHOT);
}
int manager_loop(Manager *m) {
int r;
RATELIMIT_DEFINE(rl, 1*USEC_PER_SEC, 50000);
assert(m);
m->exit_code = MANAGER_OK;
/* Release the path cache */
m->unit_path_cache = set_free_free(m->unit_path_cache);
manager_check_finished(m);
/* There might still be some zombies hanging around from
* before we were exec()'ed. Let's reap them. */
r = manager_dispatch_sigchld(m);
if (r < 0)
return r;
while (m->exit_code == MANAGER_OK) {
usec_t wait_usec;
if (m->runtime_watchdog > 0 && m->runtime_watchdog != USEC_INFINITY && MANAGER_IS_SYSTEM(m))
watchdog_ping();
if (!ratelimit_test(&rl)) {
/* Yay, something is going seriously wrong, pause a little */
log_warning("Looping too fast. Throttling execution a little.");
sleep(1);
}
if (manager_dispatch_load_queue(m) > 0)
continue;
if (manager_dispatch_gc_queue(m) > 0)
continue;
if (manager_dispatch_cleanup_queue(m) > 0)
continue;
if (manager_dispatch_cgroup_queue(m) > 0)
continue;
if (manager_dispatch_dbus_queue(m) > 0)
continue;
/* Sleep for half the watchdog time */
if (m->runtime_watchdog > 0 && m->runtime_watchdog != USEC_INFINITY && MANAGER_IS_SYSTEM(m)) {
wait_usec = m->runtime_watchdog / 2;
if (wait_usec <= 0)
wait_usec = 1;
} else
wait_usec = USEC_INFINITY;
r = sd_event_run(m->event, wait_usec);
if (r < 0)
return log_error_errno(r, "Failed to run event loop: %m");
}
return m->exit_code;
}
int manager_load_unit_from_dbus_path(Manager *m, const char *s, sd_bus_error *e, Unit **_u) {
_cleanup_free_ char *n = NULL;
sd_id128_t invocation_id;
Unit *u;
int r;
assert(m);
assert(s);
assert(_u);
r = unit_name_from_dbus_path(s, &n);
if (r < 0)
return r;
/* Permit addressing units by invocation ID: if the passed bus path is suffixed by a 128bit ID then we use it
* as invocation ID. */
r = sd_id128_from_string(n, &invocation_id);
if (r >= 0) {
u = hashmap_get(m->units_by_invocation_id, &invocation_id);
if (u) {
*_u = u;
return 0;
}
return sd_bus_error_setf(e, BUS_ERROR_NO_UNIT_FOR_INVOCATION_ID, "No unit with the specified invocation ID " SD_ID128_FORMAT_STR " known.", SD_ID128_FORMAT_VAL(invocation_id));
}
/* If this didn't work, we use the suffix as unit name. */
r = manager_load_unit(m, n, NULL, e, &u);
if (r < 0)
return r;
*_u = u;
return 0;
}
int manager_get_job_from_dbus_path(Manager *m, const char *s, Job **_j) {
const char *p;
unsigned id;
Job *j;
int r;
assert(m);
assert(s);
assert(_j);
p = startswith(s, "/org/freedesktop/systemd1/job/");
if (!p)
return -EINVAL;
r = safe_atou(p, &id);
if (r < 0)
return r;
j = manager_get_job(m, id);
if (!j)
return -ENOENT;
*_j = j;
return 0;
}
void manager_send_unit_audit(Manager *m, Unit *u, int type, bool success) {
#ifdef HAVE_AUDIT
_cleanup_free_ char *p = NULL;
const char *msg;
int audit_fd, r;
if (!MANAGER_IS_SYSTEM(m))
return;
audit_fd = get_audit_fd();
if (audit_fd < 0)
return;
/* Don't generate audit events if the service was already
* started and we're just deserializing */
if (MANAGER_IS_RELOADING(m))
return;
if (u->type != UNIT_SERVICE)
return;
r = unit_name_to_prefix_and_instance(u->id, &p);
if (r < 0) {
log_error_errno(r, "Failed to extract prefix and instance of unit name: %m");
return;
}
msg = strjoina("unit=", p);
if (audit_log_user_comm_message(audit_fd, type, msg, "systemd", NULL, NULL, NULL, success) < 0) {
if (errno == EPERM)
/* We aren't allowed to send audit messages?
* Then let's not retry again. */
close_audit_fd();
else
log_warning_errno(errno, "Failed to send audit message: %m");
}
#endif
}
void manager_send_unit_plymouth(Manager *m, Unit *u) {
static const union sockaddr_union sa = PLYMOUTH_SOCKET;
_cleanup_free_ char *message = NULL;
_cleanup_close_ int fd = -1;
int n = 0;
/* Don't generate plymouth events if the service was already
* started and we're just deserializing */
if (MANAGER_IS_RELOADING(m))
return;
if (!MANAGER_IS_SYSTEM(m))
return;
if (detect_container() > 0)
return;
if (u->type != UNIT_SERVICE &&
u->type != UNIT_MOUNT &&
u->type != UNIT_SWAP)
return;
/* We set SOCK_NONBLOCK here so that we rather drop the
* message then wait for plymouth */
fd = socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
if (fd < 0) {
log_error_errno(errno, "socket() failed: %m");
return;
}
if (connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)) < 0) {
if (!IN_SET(errno, EPIPE, EAGAIN, ENOENT, ECONNREFUSED, ECONNRESET, ECONNABORTED))
log_error_errno(errno, "connect() failed: %m");
return;
}
if (asprintf(&message, "U\002%c%s%n", (int) (strlen(u->id) + 1), u->id, &n) < 0) {
log_oom();
return;
}
errno = 0;
if (write(fd, message, n + 1) != n + 1)
if (!IN_SET(errno, EPIPE, EAGAIN, ENOENT, ECONNREFUSED, ECONNRESET, ECONNABORTED))
log_error_errno(errno, "Failed to write Plymouth message: %m");
}
int manager_open_serialization(Manager *m, FILE **_f) {
const char *path;
int fd = -1;
FILE *f;
assert(_f);
path = MANAGER_IS_SYSTEM(m) ? "/run/systemd" : "/tmp";
fd = open_tmpfile_unlinkable(path, O_RDWR|O_CLOEXEC);
if (fd < 0)
return -errno;
log_debug("Serializing state to %s", path);
f = fdopen(fd, "w+");
if (!f) {
safe_close(fd);
return -errno;
}
*_f = f;
return 0;
}
int manager_serialize(Manager *m, FILE *f, FDSet *fds, bool switching_root) {
Iterator i;
Unit *u;
const char *t;
char **e;
int r;
assert(m);
assert(f);
assert(fds);
m->n_reloading++;
fprintf(f, "current-job-id=%"PRIu32"\n", m->current_job_id);
fprintf(f, "taint-usr=%s\n", yes_no(m->taint_usr));
fprintf(f, "n-installed-jobs=%u\n", m->n_installed_jobs);
fprintf(f, "n-failed-jobs=%u\n", m->n_failed_jobs);
dual_timestamp_serialize(f, "firmware-timestamp", &m->firmware_timestamp);
dual_timestamp_serialize(f, "loader-timestamp", &m->loader_timestamp);
dual_timestamp_serialize(f, "kernel-timestamp", &m->kernel_timestamp);
dual_timestamp_serialize(f, "initrd-timestamp", &m->initrd_timestamp);
if (!in_initrd()) {
dual_timestamp_serialize(f, "userspace-timestamp", &m->userspace_timestamp);
dual_timestamp_serialize(f, "finish-timestamp", &m->finish_timestamp);
dual_timestamp_serialize(f, "security-start-timestamp", &m->security_start_timestamp);
dual_timestamp_serialize(f, "security-finish-timestamp", &m->security_finish_timestamp);
dual_timestamp_serialize(f, "generators-start-timestamp", &m->generators_start_timestamp);
dual_timestamp_serialize(f, "generators-finish-timestamp", &m->generators_finish_timestamp);
dual_timestamp_serialize(f, "units-load-start-timestamp", &m->units_load_start_timestamp);
dual_timestamp_serialize(f, "units-load-finish-timestamp", &m->units_load_finish_timestamp);
}
if (!switching_root) {
STRV_FOREACH(e, m->environment) {
_cleanup_free_ char *ce;
ce = cescape(*e);
if (!ce)
return -ENOMEM;
fprintf(f, "env=%s\n", *e);
}
}
if (m->notify_fd >= 0) {
int copy;
copy = fdset_put_dup(fds, m->notify_fd);
if (copy < 0)
return copy;
fprintf(f, "notify-fd=%i\n", copy);
fprintf(f, "notify-socket=%s\n", m->notify_socket);
}
if (m->cgroups_agent_fd >= 0) {
int copy;
copy = fdset_put_dup(fds, m->cgroups_agent_fd);
if (copy < 0)
return copy;
fprintf(f, "cgroups-agent-fd=%i\n", copy);
}
if (m->user_lookup_fds[0] >= 0) {
int copy0, copy1;
copy0 = fdset_put_dup(fds, m->user_lookup_fds[0]);
if (copy0 < 0)
return copy0;
copy1 = fdset_put_dup(fds, m->user_lookup_fds[1]);
if (copy1 < 0)
return copy1;
fprintf(f, "user-lookup=%i %i\n", copy0, copy1);
}
bus_track_serialize(m->subscribed, f, "subscribed");
r = dynamic_user_serialize(m, f, fds);
if (r < 0)
return r;
manager_serialize_uid_refs(m, f);
manager_serialize_gid_refs(m, f);
fputc('\n', f);
HASHMAP_FOREACH_KEY(u, t, m->units, i) {
if (u->id != t)
continue;
/* Start marker */
fputs(u->id, f);
fputc('\n', f);
r = unit_serialize(u, f, fds, !switching_root);
if (r < 0) {
m->n_reloading--;
return r;
}
}
assert(m->n_reloading > 0);
m->n_reloading--;
if (ferror(f))
return -EIO;
r = bus_fdset_add_all(m, fds);
if (r < 0)
return r;
return 0;
}
int manager_deserialize(Manager *m, FILE *f, FDSet *fds) {
int r = 0;
assert(m);
assert(f);
log_debug("Deserializing state...");
m->n_reloading++;
for (;;) {
char line[LINE_MAX], *l;
const char *val;
if (!fgets(line, sizeof(line), f)) {
if (feof(f))
r = 0;
else
r = -errno;
goto finish;
}
char_array_0(line);
l = strstrip(line);
if (l[0] == 0)
break;
if ((val = startswith(l, "current-job-id="))) {
uint32_t id;
if (safe_atou32(val, &id) < 0)
log_debug("Failed to parse current job id value %s", val);
else
m->current_job_id = MAX(m->current_job_id, id);
} else if ((val = startswith(l, "n-installed-jobs="))) {
uint32_t n;
if (safe_atou32(val, &n) < 0)
log_debug("Failed to parse installed jobs counter %s", val);
else
m->n_installed_jobs += n;
} else if ((val = startswith(l, "n-failed-jobs="))) {
uint32_t n;
if (safe_atou32(val, &n) < 0)
log_debug("Failed to parse failed jobs counter %s", val);
else
m->n_failed_jobs += n;
} else if ((val = startswith(l, "taint-usr="))) {
int b;
b = parse_boolean(val);
if (b < 0)
log_debug("Failed to parse taint /usr flag %s", val);
else
m->taint_usr = m->taint_usr || b;
} else if ((val = startswith(l, "firmware-timestamp=")))
dual_timestamp_deserialize(val, &m->firmware_timestamp);
else if ((val = startswith(l, "loader-timestamp=")))
dual_timestamp_deserialize(val, &m->loader_timestamp);
else if ((val = startswith(l, "kernel-timestamp=")))
dual_timestamp_deserialize(val, &m->kernel_timestamp);
else if ((val = startswith(l, "initrd-timestamp=")))
dual_timestamp_deserialize(val, &m->initrd_timestamp);
else if ((val = startswith(l, "userspace-timestamp=")))
dual_timestamp_deserialize(val, &m->userspace_timestamp);
else if ((val = startswith(l, "finish-timestamp=")))
dual_timestamp_deserialize(val, &m->finish_timestamp);
else if ((val = startswith(l, "security-start-timestamp=")))
dual_timestamp_deserialize(val, &m->security_start_timestamp);
else if ((val = startswith(l, "security-finish-timestamp=")))
dual_timestamp_deserialize(val, &m->security_finish_timestamp);
else if ((val = startswith(l, "generators-start-timestamp=")))
dual_timestamp_deserialize(val, &m->generators_start_timestamp);
else if ((val = startswith(l, "generators-finish-timestamp=")))
dual_timestamp_deserialize(val, &m->generators_finish_timestamp);
else if ((val = startswith(l, "units-load-start-timestamp=")))
dual_timestamp_deserialize(val, &m->units_load_start_timestamp);
else if ((val = startswith(l, "units-load-finish-timestamp=")))
dual_timestamp_deserialize(val, &m->units_load_finish_timestamp);
else if (startswith(l, "env=")) {
_cleanup_free_ char *uce = NULL;
char **e;
r = cunescape(l + 4, UNESCAPE_RELAX, &uce);
if (r < 0)
goto finish;
e = strv_env_set(m->environment, uce);
if (!e) {
r = -ENOMEM;
goto finish;
}
strv_free(m->environment);
m->environment = e;
} else if ((val = startswith(l, "notify-fd="))) {
int fd;
if (safe_atoi(val, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd))
log_debug("Failed to parse notify fd: %s", val);
else {
m->notify_event_source = sd_event_source_unref(m->notify_event_source);
safe_close(m->notify_fd);
m->notify_fd = fdset_remove(fds, fd);
}
} else if ((val = startswith(l, "notify-socket="))) {
char *n;
n = strdup(val);
if (!n) {
r = -ENOMEM;
goto finish;
}
free(m->notify_socket);
m->notify_socket = n;
} else if ((val = startswith(l, "cgroups-agent-fd="))) {
int fd;
if (safe_atoi(val, &fd) < 0 || fd < 0 || !fdset_contains(fds, fd))
log_debug("Failed to parse cgroups agent fd: %s", val);
else {
m->cgroups_agent_event_source = sd_event_source_unref(m->cgroups_agent_event_source);
safe_close(m->cgroups_agent_fd);
m->cgroups_agent_fd = fdset_remove(fds, fd);
}
} else if ((val = startswith(l, "user-lookup="))) {
int fd0, fd1;
if (sscanf(val, "%i %i", &fd0, &fd1) != 2 || fd0 < 0 || fd1 < 0 || fd0 == fd1 || !fdset_contains(fds, fd0) || !fdset_contains(fds, fd1))
log_debug("Failed to parse user lookup fd: %s", val);
else {
m->user_lookup_event_source = sd_event_source_unref(m->user_lookup_event_source);
safe_close_pair(m->user_lookup_fds);
m->user_lookup_fds[0] = fdset_remove(fds, fd0);
m->user_lookup_fds[1] = fdset_remove(fds, fd1);
}
} else if ((val = startswith(l, "dynamic-user=")))
dynamic_user_deserialize_one(m, val, fds);
else if ((val = startswith(l, "destroy-ipc-uid=")))
manager_deserialize_uid_refs_one(m, val);
else if ((val = startswith(l, "destroy-ipc-gid=")))
manager_deserialize_gid_refs_one(m, val);
else if ((val = startswith(l, "subscribed="))) {
if (strv_extend(&m->deserialized_subscribed, val) < 0)
log_oom();
} else if (!startswith(l, "kdbus-fd=")) /* ignore this one */
log_debug("Unknown serialization item '%s'", l);
}
for (;;) {
Unit *u;
char name[UNIT_NAME_MAX+2];
/* Start marker */
if (!fgets(name, sizeof(name), f)) {
if (feof(f))
r = 0;
else
r = -errno;
goto finish;
}
char_array_0(name);
r = manager_load_unit(m, strstrip(name), NULL, NULL, &u);
if (r < 0)
goto finish;
r = unit_deserialize(u, f, fds);
if (r < 0)
goto finish;
}
finish:
if (ferror(f))
r = -EIO;
assert(m->n_reloading > 0);
m->n_reloading--;
return r;
}
int manager_reload(Manager *m) {
int r, q;
_cleanup_fclose_ FILE *f = NULL;
_cleanup_fdset_free_ FDSet *fds = NULL;
assert(m);
r = manager_open_serialization(m, &f);
if (r < 0)
return r;
m->n_reloading++;
bus_manager_send_reloading(m, true);
fds = fdset_new();
if (!fds) {
m->n_reloading--;
return -ENOMEM;
}
r = manager_serialize(m, f, fds, false);
if (r < 0) {
m->n_reloading--;
return r;
}
if (fseeko(f, 0, SEEK_SET) < 0) {
m->n_reloading--;
return -errno;
}
/* From here on there is no way back. */
manager_clear_jobs_and_units(m);
lookup_paths_flush_generator(&m->lookup_paths);
lookup_paths_free(&m->lookup_paths);
dynamic_user_vacuum(m, false);
m->uid_refs = hashmap_free(m->uid_refs);
m->gid_refs = hashmap_free(m->gid_refs);
q = lookup_paths_init(&m->lookup_paths, m->unit_file_scope, 0, NULL);
if (q < 0 && r >= 0)
r = q;
/* Find new unit paths */
q = manager_run_generators(m);
if (q < 0 && r >= 0)
r = q;
lookup_paths_reduce(&m->lookup_paths);
manager_build_unit_path_cache(m);
/* First, enumerate what we can from all config files */
manager_enumerate(m);
/* Second, deserialize our stored data */
q = manager_deserialize(m, f, fds);
if (q < 0 && r >= 0)
r = q;
fclose(f);
f = NULL;
/* Re-register notify_fd as event source */
q = manager_setup_notify(m);
if (q < 0 && r >= 0)
r = q;
q = manager_setup_cgroups_agent(m);
if (q < 0 && r >= 0)
r = q;
q = manager_setup_user_lookup_fd(m);
if (q < 0 && r >= 0)
r = q;
/* Third, fire things up! */
manager_coldplug(m);
/* Release any dynamic users no longer referenced */
dynamic_user_vacuum(m, true);
/* Release any references to UIDs/GIDs no longer referenced, and destroy any IPC owned by them */
manager_vacuum_uid_refs(m);
manager_vacuum_gid_refs(m);
/* Sync current state of bus names with our set of listening units */
if (m->api_bus)
manager_sync_bus_names(m, m->api_bus);
assert(m->n_reloading > 0);
m->n_reloading--;
m->send_reloading_done = true;
return r;
}
void manager_reset_failed(Manager *m) {
Unit *u;
Iterator i;
assert(m);
HASHMAP_FOREACH(u, m->units, i)
unit_reset_failed(u);
}
bool manager_unit_inactive_or_pending(Manager *m, const char *name) {
Unit *u;
assert(m);
assert(name);
/* Returns true if the unit is inactive or going down */
u = manager_get_unit(m, name);
if (!u)
return true;
return unit_inactive_or_pending(u);
}
static void manager_notify_finished(Manager *m) {
char userspace[FORMAT_TIMESPAN_MAX], initrd[FORMAT_TIMESPAN_MAX], kernel[FORMAT_TIMESPAN_MAX], sum[FORMAT_TIMESPAN_MAX];
usec_t firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec;
if (m->test_run)
return;
if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0) {
/* Note that m->kernel_usec.monotonic is always at 0,
* and m->firmware_usec.monotonic and
* m->loader_usec.monotonic should be considered
* negative values. */
firmware_usec = m->firmware_timestamp.monotonic - m->loader_timestamp.monotonic;
loader_usec = m->loader_timestamp.monotonic - m->kernel_timestamp.monotonic;
userspace_usec = m->finish_timestamp.monotonic - m->userspace_timestamp.monotonic;
total_usec = m->firmware_timestamp.monotonic + m->finish_timestamp.monotonic;
if (dual_timestamp_is_set(&m->initrd_timestamp)) {
kernel_usec = m->initrd_timestamp.monotonic - m->kernel_timestamp.monotonic;
initrd_usec = m->userspace_timestamp.monotonic - m->initrd_timestamp.monotonic;
log_struct(LOG_INFO,
LOG_MESSAGE_ID(SD_MESSAGE_STARTUP_FINISHED),
"KERNEL_USEC="USEC_FMT, kernel_usec,
"INITRD_USEC="USEC_FMT, initrd_usec,
"USERSPACE_USEC="USEC_FMT, userspace_usec,
LOG_MESSAGE("Startup finished in %s (kernel) + %s (initrd) + %s (userspace) = %s.",
format_timespan(kernel, sizeof(kernel), kernel_usec, USEC_PER_MSEC),
format_timespan(initrd, sizeof(initrd), initrd_usec, USEC_PER_MSEC),
format_timespan(userspace, sizeof(userspace), userspace_usec, USEC_PER_MSEC),
format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)),
NULL);
} else {
kernel_usec = m->userspace_timestamp.monotonic - m->kernel_timestamp.monotonic;
initrd_usec = 0;
log_struct(LOG_INFO,
LOG_MESSAGE_ID(SD_MESSAGE_STARTUP_FINISHED),
"KERNEL_USEC="USEC_FMT, kernel_usec,
"USERSPACE_USEC="USEC_FMT, userspace_usec,
LOG_MESSAGE("Startup finished in %s (kernel) + %s (userspace) = %s.",
format_timespan(kernel, sizeof(kernel), kernel_usec, USEC_PER_MSEC),
format_timespan(userspace, sizeof(userspace), userspace_usec, USEC_PER_MSEC),
format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)),
NULL);
}
} else {
firmware_usec = loader_usec = initrd_usec = kernel_usec = 0;
total_usec = userspace_usec = m->finish_timestamp.monotonic - m->userspace_timestamp.monotonic;
log_struct(LOG_INFO,
LOG_MESSAGE_ID(SD_MESSAGE_STARTUP_FINISHED),
"USERSPACE_USEC="USEC_FMT, userspace_usec,
LOG_MESSAGE("Startup finished in %s.",
format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC)),
NULL);
}
bus_manager_send_finished(m, firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec);
sd_notifyf(false,
"READY=1\n"
"STATUS=Startup finished in %s.",
format_timespan(sum, sizeof(sum), total_usec, USEC_PER_MSEC));
}
void manager_check_finished(Manager *m) {
assert(m);
if (MANAGER_IS_RELOADING(m))
return;
/* Verify that we are actually running currently. Initially
* the exit code is set to invalid, and during operation it is
* then set to MANAGER_OK */
if (m->exit_code != MANAGER_OK)
return;
if (hashmap_size(m->jobs) > 0) {
if (m->jobs_in_progress_event_source)
/* Ignore any failure, this is only for feedback */
(void) sd_event_source_set_time(m->jobs_in_progress_event_source, now(CLOCK_MONOTONIC) + JOBS_IN_PROGRESS_WAIT_USEC);
return;
}
manager_flip_auto_status(m, false);
/* Notify Type=idle units that we are done now */
manager_close_idle_pipe(m);
/* Turn off confirm spawn now */
m->confirm_spawn = false;
/* No need to update ask password status when we're going non-interactive */
manager_close_ask_password(m);
/* This is no longer the first boot */
manager_set_first_boot(m, false);
if (dual_timestamp_is_set(&m->finish_timestamp))
return;
dual_timestamp_get(&m->finish_timestamp);
manager_notify_finished(m);
manager_invalidate_startup_units(m);
}
static int manager_run_generators(Manager *m) {
_cleanup_strv_free_ char **paths = NULL;
const char *argv[5];
char **path;
int r;
assert(m);
if (m->test_run)
return 0;
paths = generator_binary_paths(m->unit_file_scope);
if (!paths)
return log_oom();
/* Optimize by skipping the whole process by not creating output directories
* if no generators are found. */
STRV_FOREACH(path, paths) {
if (access(*path, F_OK) >= 0)
goto found;
if (errno != ENOENT)
log_warning_errno(errno, "Failed to open generator directory %s: %m", *path);
}
return 0;
found:
r = lookup_paths_mkdir_generator(&m->lookup_paths);
if (r < 0)
goto finish;
argv[0] = NULL; /* Leave this empty, execute_directory() will fill something in */
argv[1] = m->lookup_paths.generator;
argv[2] = m->lookup_paths.generator_early;
argv[3] = m->lookup_paths.generator_late;
argv[4] = NULL;
RUN_WITH_UMASK(0022)
execute_directories((const char* const*) paths, DEFAULT_TIMEOUT_USEC, (char**) argv);
finish:
lookup_paths_trim_generator(&m->lookup_paths);
return r;
}
int manager_environment_add(Manager *m, char **minus, char **plus) {
char **a = NULL, **b = NULL, **l;
assert(m);
l = m->environment;
if (!strv_isempty(minus)) {
a = strv_env_delete(l, 1, minus);
if (!a)
return -ENOMEM;
l = a;
}
if (!strv_isempty(plus)) {
b = strv_env_merge(2, l, plus);
if (!b) {
strv_free(a);
return -ENOMEM;
}
l = b;
}
if (m->environment != l)
strv_free(m->environment);
if (a != l)
strv_free(a);
if (b != l)
strv_free(b);
m->environment = l;
manager_clean_environment(m);
strv_sort(m->environment);
return 0;
}
int manager_set_default_rlimits(Manager *m, struct rlimit **default_rlimit) {
int i;
assert(m);
for (i = 0; i < _RLIMIT_MAX; i++) {
m->rlimit[i] = mfree(m->rlimit[i]);
if (!default_rlimit[i])
continue;
m->rlimit[i] = newdup(struct rlimit, default_rlimit[i], 1);
if (!m->rlimit[i])
return log_oom();
}
return 0;
}
void manager_recheck_journal(Manager *m) {
Unit *u;
assert(m);
if (!MANAGER_IS_SYSTEM(m))
return;
u = manager_get_unit(m, SPECIAL_JOURNALD_SOCKET);
if (u && SOCKET(u)->state != SOCKET_RUNNING) {
log_close_journal();
return;
}
u = manager_get_unit(m, SPECIAL_JOURNALD_SERVICE);
if (u && SERVICE(u)->state != SERVICE_RUNNING) {
log_close_journal();
return;
}
/* Hmm, OK, so the socket is fully up and the service is up
* too, then let's make use of the thing. */
log_open();
}
void manager_set_show_status(Manager *m, ShowStatus mode) {
assert(m);
assert(IN_SET(mode, SHOW_STATUS_AUTO, SHOW_STATUS_NO, SHOW_STATUS_YES, SHOW_STATUS_TEMPORARY));
if (!MANAGER_IS_SYSTEM(m))
return;
if (m->show_status != mode)
log_debug("%s showing of status.",
mode == SHOW_STATUS_NO ? "Disabling" : "Enabling");
m->show_status = mode;
if (mode > 0)
(void) touch("/run/systemd/show-status");
else
(void) unlink("/run/systemd/show-status");
}
static bool manager_get_show_status(Manager *m, StatusType type) {
assert(m);
if (!MANAGER_IS_SYSTEM(m))
return false;
if (m->no_console_output)
return false;
if (!IN_SET(manager_state(m), MANAGER_INITIALIZING, MANAGER_STARTING, MANAGER_STOPPING))
return false;
/* If we cannot find out the status properly, just proceed. */
if (type != STATUS_TYPE_EMERGENCY && manager_check_ask_password(m) > 0)
return false;
if (m->show_status > 0)
return true;
return false;
}
void manager_set_first_boot(Manager *m, bool b) {
assert(m);
if (!MANAGER_IS_SYSTEM(m))
return;
if (m->first_boot != (int) b) {
if (b)
(void) touch("/run/systemd/first-boot");
else
(void) unlink("/run/systemd/first-boot");
}
m->first_boot = b;
}
void manager_status_printf(Manager *m, StatusType type, const char *status, const char *format, ...) {
va_list ap;
/* If m is NULL, assume we're after shutdown and let the messages through. */
if (m && !manager_get_show_status(m, type))
return;
/* XXX We should totally drop the check for ephemeral here
* and thus effectively make 'Type=idle' pointless. */
if (type == STATUS_TYPE_EPHEMERAL && m && m->n_on_console > 0)
return;
va_start(ap, format);
status_vprintf(status, true, type == STATUS_TYPE_EPHEMERAL, format, ap);
va_end(ap);
}
Set *manager_get_units_requiring_mounts_for(Manager *m, const char *path) {
char p[strlen(path)+1];
assert(m);
assert(path);
strcpy(p, path);
path_kill_slashes(p);
return hashmap_get(m->units_requiring_mounts_for, streq(p, "/") ? "" : p);
}
const char *manager_get_runtime_prefix(Manager *m) {
assert(m);
return MANAGER_IS_SYSTEM(m) ?
"/run" :
getenv("XDG_RUNTIME_DIR");
}
int manager_update_failed_units(Manager *m, Unit *u, bool failed) {
unsigned size;
int r;
assert(m);
assert(u->manager == m);
size = set_size(m->failed_units);
if (failed) {
r = set_ensure_allocated(&m->failed_units, NULL);
if (r < 0)
return log_oom();
if (set_put(m->failed_units, u) < 0)
return log_oom();
} else
(void) set_remove(m->failed_units, u);
if (set_size(m->failed_units) != size)
bus_manager_send_change_signal(m);
return 0;
}
ManagerState manager_state(Manager *m) {
Unit *u;
assert(m);
/* Did we ever finish booting? If not then we are still starting up */
if (!dual_timestamp_is_set(&m->finish_timestamp)) {
u = manager_get_unit(m, SPECIAL_BASIC_TARGET);
if (!u || !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
return MANAGER_INITIALIZING;
return MANAGER_STARTING;
}
/* Is the special shutdown target queued? If so, we are in shutdown state */
u = manager_get_unit(m, SPECIAL_SHUTDOWN_TARGET);
if (u && u->job && IN_SET(u->job->type, JOB_START, JOB_RESTART, JOB_RELOAD_OR_START))
return MANAGER_STOPPING;
/* Are the rescue or emergency targets active or queued? If so we are in maintenance state */
u = manager_get_unit(m, SPECIAL_RESCUE_TARGET);
if (u && (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)) ||
(u->job && IN_SET(u->job->type, JOB_START, JOB_RESTART, JOB_RELOAD_OR_START))))
return MANAGER_MAINTENANCE;
u = manager_get_unit(m, SPECIAL_EMERGENCY_TARGET);
if (u && (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)) ||
(u->job && IN_SET(u->job->type, JOB_START, JOB_RESTART, JOB_RELOAD_OR_START))))
return MANAGER_MAINTENANCE;
/* Are there any failed units? If so, we are in degraded mode */
if (set_size(m->failed_units) > 0)
return MANAGER_DEGRADED;
return MANAGER_RUNNING;
}
#define DESTROY_IPC_FLAG (UINT32_C(1) << 31)
static void manager_unref_uid_internal(
Manager *m,
Hashmap **uid_refs,
uid_t uid,
bool destroy_now,
int (*_clean_ipc)(uid_t uid)) {
uint32_t c, n;
assert(m);
assert(uid_refs);
assert(uid_is_valid(uid));
assert(_clean_ipc);
/* A generic implementation, covering both manager_unref_uid() and manager_unref_gid(), under the assumption
* that uid_t and gid_t are actually defined the same way, with the same validity rules.
*
* We store a hashmap where the UID/GID is they key and the value is a 32bit reference counter, whose highest
* bit is used as flag for marking UIDs/GIDs whose IPC objects to remove when the last reference to the UID/GID
* is dropped. The flag is set to on, once at least one reference from a unit where RemoveIPC= is set is added
* on a UID/GID. It is reset when the UID's/GID's reference counter drops to 0 again. */
assert_cc(sizeof(uid_t) == sizeof(gid_t));
assert_cc(UID_INVALID == (uid_t) GID_INVALID);
if (uid == 0) /* We don't keep track of root, and will never destroy it */
return;
c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid)));
n = c & ~DESTROY_IPC_FLAG;
assert(n > 0);
n--;
if (destroy_now && n == 0) {
hashmap_remove(*uid_refs, UID_TO_PTR(uid));
if (c & DESTROY_IPC_FLAG) {
log_debug("%s " UID_FMT " is no longer referenced, cleaning up its IPC.",
_clean_ipc == clean_ipc_by_uid ? "UID" : "GID",
uid);
(void) _clean_ipc(uid);
}
} else {
c = n | (c & DESTROY_IPC_FLAG);
assert_se(hashmap_update(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c)) >= 0);
}
}
void manager_unref_uid(Manager *m, uid_t uid, bool destroy_now) {
manager_unref_uid_internal(m, &m->uid_refs, uid, destroy_now, clean_ipc_by_uid);
}
void manager_unref_gid(Manager *m, gid_t gid, bool destroy_now) {
manager_unref_uid_internal(m, &m->gid_refs, (uid_t) gid, destroy_now, clean_ipc_by_gid);
}
static int manager_ref_uid_internal(
Manager *m,
Hashmap **uid_refs,
uid_t uid,
bool clean_ipc) {
uint32_t c, n;
int r;
assert(m);
assert(uid_refs);
assert(uid_is_valid(uid));
/* A generic implementation, covering both manager_ref_uid() and manager_ref_gid(), under the assumption
* that uid_t and gid_t are actually defined the same way, with the same validity rules. */
assert_cc(sizeof(uid_t) == sizeof(gid_t));
assert_cc(UID_INVALID == (uid_t) GID_INVALID);
if (uid == 0) /* We don't keep track of root, and will never destroy it */
return 0;
r = hashmap_ensure_allocated(uid_refs, &trivial_hash_ops);
if (r < 0)
return r;
c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid)));
n = c & ~DESTROY_IPC_FLAG;
n++;
if (n & DESTROY_IPC_FLAG) /* check for overflow */
return -EOVERFLOW;
c = n | (c & DESTROY_IPC_FLAG) | (clean_ipc ? DESTROY_IPC_FLAG : 0);
return hashmap_replace(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c));
}
int manager_ref_uid(Manager *m, uid_t uid, bool clean_ipc) {
return manager_ref_uid_internal(m, &m->uid_refs, uid, clean_ipc);
}
int manager_ref_gid(Manager *m, gid_t gid, bool clean_ipc) {
return manager_ref_uid_internal(m, &m->gid_refs, (uid_t) gid, clean_ipc);
}
static void manager_vacuum_uid_refs_internal(
Manager *m,
Hashmap **uid_refs,
int (*_clean_ipc)(uid_t uid)) {
Iterator i;
void *p, *k;
assert(m);
assert(uid_refs);
assert(_clean_ipc);
HASHMAP_FOREACH_KEY(p, k, *uid_refs, i) {
uint32_t c, n;
uid_t uid;
uid = PTR_TO_UID(k);
c = PTR_TO_UINT32(p);
n = c & ~DESTROY_IPC_FLAG;
if (n > 0)
continue;
if (c & DESTROY_IPC_FLAG) {
log_debug("Found unreferenced %s " UID_FMT " after reload/reexec. Cleaning up.",
_clean_ipc == clean_ipc_by_uid ? "UID" : "GID",
uid);
(void) _clean_ipc(uid);
}
assert_se(hashmap_remove(*uid_refs, k) == p);
}
}
void manager_vacuum_uid_refs(Manager *m) {
manager_vacuum_uid_refs_internal(m, &m->uid_refs, clean_ipc_by_uid);
}
void manager_vacuum_gid_refs(Manager *m) {
manager_vacuum_uid_refs_internal(m, &m->gid_refs, clean_ipc_by_gid);
}
static void manager_serialize_uid_refs_internal(
Manager *m,
FILE *f,
Hashmap **uid_refs,
const char *field_name) {
Iterator i;
void *p, *k;
assert(m);
assert(f);
assert(uid_refs);
assert(field_name);
/* Serialize the UID reference table. Or actually, just the IPC destruction flag of it, as the actual counter
* of it is better rebuild after a reload/reexec. */
HASHMAP_FOREACH_KEY(p, k, *uid_refs, i) {
uint32_t c;
uid_t uid;
uid = PTR_TO_UID(k);
c = PTR_TO_UINT32(p);
if (!(c & DESTROY_IPC_FLAG))
continue;
fprintf(f, "%s=" UID_FMT "\n", field_name, uid);
}
}
void manager_serialize_uid_refs(Manager *m, FILE *f) {
manager_serialize_uid_refs_internal(m, f, &m->uid_refs, "destroy-ipc-uid");
}
void manager_serialize_gid_refs(Manager *m, FILE *f) {
manager_serialize_uid_refs_internal(m, f, &m->gid_refs, "destroy-ipc-gid");
}
static void manager_deserialize_uid_refs_one_internal(
Manager *m,
Hashmap** uid_refs,
const char *value) {
uid_t uid;
uint32_t c;
int r;
assert(m);
assert(uid_refs);
assert(value);
r = parse_uid(value, &uid);
if (r < 0 || uid == 0) {
log_debug("Unable to parse UID reference serialization");
return;
}
r = hashmap_ensure_allocated(uid_refs, &trivial_hash_ops);
if (r < 0) {
log_oom();
return;
}
c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid)));
if (c & DESTROY_IPC_FLAG)
return;
c |= DESTROY_IPC_FLAG;
r = hashmap_replace(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c));
if (r < 0) {
log_debug("Failed to add UID reference entry");
return;
}
}
void manager_deserialize_uid_refs_one(Manager *m, const char *value) {
manager_deserialize_uid_refs_one_internal(m, &m->uid_refs, value);
}
void manager_deserialize_gid_refs_one(Manager *m, const char *value) {
manager_deserialize_uid_refs_one_internal(m, &m->gid_refs, value);
}
int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
struct buffer {
uid_t uid;
gid_t gid;
char unit_name[UNIT_NAME_MAX+1];
} _packed_ buffer;
Manager *m = userdata;
ssize_t l;
size_t n;
Unit *u;
assert_se(source);
assert_se(m);
/* Invoked whenever a child process succeeded resolving its user/group to use and sent us the resulting UID/GID
* in a datagram. We parse the datagram here and pass it off to the unit, so that it can add a reference to the
* UID/GID so that it can destroy the UID/GID's IPC objects when the reference counter drops to 0. */
l = recv(fd, &buffer, sizeof(buffer), MSG_DONTWAIT);
if (l < 0) {
if (errno == EINTR || errno == EAGAIN)
return 0;
return log_error_errno(errno, "Failed to read from user lookup fd: %m");
}
if ((size_t) l <= offsetof(struct buffer, unit_name)) {
log_warning("Received too short user lookup message, ignoring.");
return 0;
}
if ((size_t) l > offsetof(struct buffer, unit_name) + UNIT_NAME_MAX) {
log_warning("Received too long user lookup message, ignoring.");
return 0;
}
if (!uid_is_valid(buffer.uid) && !gid_is_valid(buffer.gid)) {
log_warning("Got user lookup message with invalid UID/GID pair, ignoring.");
return 0;
}
n = (size_t) l - offsetof(struct buffer, unit_name);
if (memchr(buffer.unit_name, 0, n)) {
log_warning("Received lookup message with embedded NUL character, ignoring.");
return 0;
}
buffer.unit_name[n] = 0;
u = manager_get_unit(m, buffer.unit_name);
if (!u) {
log_debug("Got user lookup message but unit doesn't exist, ignoring.");
return 0;
}
log_unit_debug(u, "User lookup succeeded: uid=" UID_FMT " gid=" GID_FMT, buffer.uid, buffer.gid);
unit_notify_user_lookup(u, buffer.uid, buffer.gid);
return 0;
}
static const char *const manager_state_table[_MANAGER_STATE_MAX] = {
[MANAGER_INITIALIZING] = "initializing",
[MANAGER_STARTING] = "starting",
[MANAGER_RUNNING] = "running",
[MANAGER_DEGRADED] = "degraded",
[MANAGER_MAINTENANCE] = "maintenance",
[MANAGER_STOPPING] = "stopping",
};
DEFINE_STRING_TABLE_LOOKUP(manager_state, ManagerState);
static const char *const cad_burst_action_table[_CAD_BURST_ACTION_MAX] = {
[CAD_BURST_ACTION_IGNORE] = "ignore",
[CAD_BURST_ACTION_REBOOT] = "reboot-force",
[CAD_BURST_ACTION_POWEROFF] = "poweroff-force",
};
DEFINE_STRING_TABLE_LOOKUP(cad_burst_action, CADBurstAction);