/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/ /*** This file is part of systemd. Copyright 2010 Lennart Poettering systemd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with systemd; If not, see <http://www.gnu.org/licenses/>. ***/ #include <errno.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <unistd.h> #include "sd-id128.h" #include "sd-messages.h" #include "alloc-util.h" #include "bus-common-errors.h" #include "bus-util.h" #include "cgroup-util.h" #include "dbus-unit.h" #include "dbus.h" #include "dropin.h" #include "escape.h" #include "execute.h" #include "fileio-label.h" #include "formats-util.h" #include "load-dropin.h" #include "load-fragment.h" #include "log.h" #include "macro.h" #include "missing.h" #include "mkdir.h" #include "parse-util.h" #include "path-util.h" #include "process-util.h" #include "set.h" #include "special.h" #include "stat-util.h" #include "string-util.h" #include "strv.h" #include "unit-name.h" #include "unit.h" #include "user-util.h" #include "virt.h" const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = { [UNIT_SERVICE] = &service_vtable, [UNIT_SOCKET] = &socket_vtable, [UNIT_BUSNAME] = &busname_vtable, [UNIT_TARGET] = &target_vtable, [UNIT_SNAPSHOT] = &snapshot_vtable, [UNIT_DEVICE] = &device_vtable, [UNIT_MOUNT] = &mount_vtable, [UNIT_AUTOMOUNT] = &automount_vtable, [UNIT_SWAP] = &swap_vtable, [UNIT_TIMER] = &timer_vtable, [UNIT_PATH] = &path_vtable, [UNIT_SLICE] = &slice_vtable, [UNIT_SCOPE] = &scope_vtable }; static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency); Unit *unit_new(Manager *m, size_t size) { Unit *u; assert(m); assert(size >= sizeof(Unit)); u = malloc0(size); if (!u) return NULL; u->names = set_new(&string_hash_ops); if (!u->names) { free(u); return NULL; } u->manager = m; u->type = _UNIT_TYPE_INVALID; u->default_dependencies = true; u->unit_file_state = _UNIT_FILE_STATE_INVALID; u->unit_file_preset = -1; u->on_failure_job_mode = JOB_REPLACE; u->cgroup_inotify_wd = -1; RATELIMIT_INIT(u->auto_stop_ratelimit, 10 * USEC_PER_SEC, 16); return u; } bool unit_has_name(Unit *u, const char *name) { assert(u); assert(name); return !!set_get(u->names, (char*) name); } static void unit_init(Unit *u) { CGroupContext *cc; ExecContext *ec; KillContext *kc; assert(u); assert(u->manager); assert(u->type >= 0); cc = unit_get_cgroup_context(u); if (cc) { cgroup_context_init(cc); /* Copy in the manager defaults into the cgroup * context, _before_ the rest of the settings have * been initialized */ cc->cpu_accounting = u->manager->default_cpu_accounting; cc->blockio_accounting = u->manager->default_blockio_accounting; cc->memory_accounting = u->manager->default_memory_accounting; cc->tasks_accounting = u->manager->default_tasks_accounting; } ec = unit_get_exec_context(u); if (ec) exec_context_init(ec); kc = unit_get_kill_context(u); if (kc) kill_context_init(kc); if (UNIT_VTABLE(u)->init) UNIT_VTABLE(u)->init(u); } int unit_add_name(Unit *u, const char *text) { _cleanup_free_ char *s = NULL, *i = NULL; UnitType t; int r; assert(u); assert(text); if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) { if (!u->instance) return -EINVAL; r = unit_name_replace_instance(text, u->instance, &s); if (r < 0) return r; } else { s = strdup(text); if (!s) return -ENOMEM; } if (set_contains(u->names, s)) return 0; if (hashmap_contains(u->manager->units, s)) return -EEXIST; if (!unit_name_is_valid(s, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) return -EINVAL; t = unit_name_to_type(s); if (t < 0) return -EINVAL; if (u->type != _UNIT_TYPE_INVALID && t != u->type) return -EINVAL; r = unit_name_to_instance(s, &i); if (r < 0) return r; if (i && unit_vtable[t]->no_instances) return -EINVAL; /* Ensure that this unit is either instanced or not instanced, * but not both. Note that we do allow names with different * instance names however! */ if (u->type != _UNIT_TYPE_INVALID && !u->instance != !i) return -EINVAL; if (unit_vtable[t]->no_alias && !set_isempty(u->names)) return -EEXIST; if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES) return -E2BIG; r = set_put(u->names, s); if (r < 0) return r; assert(r > 0); r = hashmap_put(u->manager->units, s, u); if (r < 0) { (void) set_remove(u->names, s); return r; } if (u->type == _UNIT_TYPE_INVALID) { u->type = t; u->id = s; u->instance = i; LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u); unit_init(u); i = NULL; } s = NULL; unit_add_to_dbus_queue(u); return 0; } int unit_choose_id(Unit *u, const char *name) { _cleanup_free_ char *t = NULL; char *s, *i; int r; assert(u); assert(name); if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) { if (!u->instance) return -EINVAL; r = unit_name_replace_instance(name, u->instance, &t); if (r < 0) return r; name = t; } /* Selects one of the names of this unit as the id */ s = set_get(u->names, (char*) name); if (!s) return -ENOENT; /* Determine the new instance from the new id */ r = unit_name_to_instance(s, &i); if (r < 0) return r; u->id = s; free(u->instance); u->instance = i; unit_add_to_dbus_queue(u); return 0; } int unit_set_description(Unit *u, const char *description) { char *s; assert(u); if (isempty(description)) s = NULL; else { s = strdup(description); if (!s) return -ENOMEM; } free(u->description); u->description = s; unit_add_to_dbus_queue(u); return 0; } bool unit_check_gc(Unit *u) { UnitActiveState state; assert(u); if (u->job) return true; if (u->nop_job) return true; state = unit_active_state(u); /* If the unit is inactive and failed and no job is queued for * it, then release its runtime resources */ if (UNIT_IS_INACTIVE_OR_FAILED(state) && UNIT_VTABLE(u)->release_resources) UNIT_VTABLE(u)->release_resources(u); /* But we keep the unit object around for longer when it is * referenced or configured to not be gc'ed */ if (state != UNIT_INACTIVE) return true; if (UNIT_VTABLE(u)->no_gc) return true; if (u->no_gc) return true; if (u->refs) return true; if (UNIT_VTABLE(u)->check_gc) if (UNIT_VTABLE(u)->check_gc(u)) return true; return false; } void unit_add_to_load_queue(Unit *u) { assert(u); assert(u->type != _UNIT_TYPE_INVALID); if (u->load_state != UNIT_STUB || u->in_load_queue) return; LIST_PREPEND(load_queue, u->manager->load_queue, u); u->in_load_queue = true; } void unit_add_to_cleanup_queue(Unit *u) { assert(u); if (u->in_cleanup_queue) return; LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u); u->in_cleanup_queue = true; } void unit_add_to_gc_queue(Unit *u) { assert(u); if (u->in_gc_queue || u->in_cleanup_queue) return; if (unit_check_gc(u)) return; LIST_PREPEND(gc_queue, u->manager->gc_queue, u); u->in_gc_queue = true; u->manager->n_in_gc_queue ++; } void unit_add_to_dbus_queue(Unit *u) { assert(u); assert(u->type != _UNIT_TYPE_INVALID); if (u->load_state == UNIT_STUB || u->in_dbus_queue) return; /* Shortcut things if nobody cares */ if (sd_bus_track_count(u->manager->subscribed) <= 0 && set_isempty(u->manager->private_buses)) { u->sent_dbus_new_signal = true; return; } LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u); u->in_dbus_queue = true; } static void bidi_set_free(Unit *u, Set *s) { Iterator i; Unit *other; assert(u); /* Frees the set and makes sure we are dropped from the * inverse pointers */ SET_FOREACH(other, s, i) { UnitDependency d; for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) set_remove(other->dependencies[d], u); unit_add_to_gc_queue(other); } set_free(s); } static void unit_remove_transient(Unit *u) { char **i; assert(u); if (!u->transient) return; if (u->fragment_path) (void) unlink(u->fragment_path); STRV_FOREACH(i, u->dropin_paths) { _cleanup_free_ char *p = NULL; (void) unlink(*i); p = dirname_malloc(*i); if (p) (void) rmdir(p); } } static void unit_free_requires_mounts_for(Unit *u) { char **j; STRV_FOREACH(j, u->requires_mounts_for) { char s[strlen(*j) + 1]; PATH_FOREACH_PREFIX_MORE(s, *j) { char *y; Set *x; x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y); if (!x) continue; set_remove(x, u); if (set_isempty(x)) { hashmap_remove(u->manager->units_requiring_mounts_for, y); free(y); set_free(x); } } } u->requires_mounts_for = strv_free(u->requires_mounts_for); } static void unit_done(Unit *u) { ExecContext *ec; CGroupContext *cc; int r; assert(u); if (u->type < 0) return; if (UNIT_VTABLE(u)->done) UNIT_VTABLE(u)->done(u); ec = unit_get_exec_context(u); if (ec) exec_context_done(ec); cc = unit_get_cgroup_context(u); if (cc) cgroup_context_done(cc); r = unit_remove_from_netclass_cgroup(u); if (r < 0) log_warning_errno(r, "Unable to remove unit from netclass group: %m"); } void unit_free(Unit *u) { UnitDependency d; Iterator i; char *t; assert(u); if (u->manager->n_reloading <= 0) unit_remove_transient(u); bus_unit_send_removed_signal(u); unit_done(u); sd_bus_slot_unref(u->match_bus_slot); unit_free_requires_mounts_for(u); SET_FOREACH(t, u->names, i) hashmap_remove_value(u->manager->units, t, u); if (u->job) { Job *j = u->job; job_uninstall(j); job_free(j); } if (u->nop_job) { Job *j = u->nop_job; job_uninstall(j); job_free(j); } for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) bidi_set_free(u, u->dependencies[d]); if (u->type != _UNIT_TYPE_INVALID) LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u); if (u->in_load_queue) LIST_REMOVE(load_queue, u->manager->load_queue, u); if (u->in_dbus_queue) LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u); if (u->in_cleanup_queue) LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u); if (u->in_gc_queue) { LIST_REMOVE(gc_queue, u->manager->gc_queue, u); u->manager->n_in_gc_queue--; } if (u->in_cgroup_queue) LIST_REMOVE(cgroup_queue, u->manager->cgroup_queue, u); unit_release_cgroup(u); (void) manager_update_failed_units(u->manager, u, false); set_remove(u->manager->startup_units, u); free(u->description); strv_free(u->documentation); free(u->fragment_path); free(u->source_path); strv_free(u->dropin_paths); free(u->instance); free(u->job_timeout_reboot_arg); set_free_free(u->names); unit_unwatch_all_pids(u); condition_free_list(u->conditions); condition_free_list(u->asserts); unit_ref_unset(&u->slice); while (u->refs) unit_ref_unset(u->refs); free(u); } UnitActiveState unit_active_state(Unit *u) { assert(u); if (u->load_state == UNIT_MERGED) return unit_active_state(unit_follow_merge(u)); /* After a reload it might happen that a unit is not correctly * loaded but still has a process around. That's why we won't * shortcut failed loading to UNIT_INACTIVE_FAILED. */ return UNIT_VTABLE(u)->active_state(u); } const char* unit_sub_state_to_string(Unit *u) { assert(u); return UNIT_VTABLE(u)->sub_state_to_string(u); } static int complete_move(Set **s, Set **other) { int r; assert(s); assert(other); if (!*other) return 0; if (*s) { r = set_move(*s, *other); if (r < 0) return r; } else { *s = *other; *other = NULL; } return 0; } static int merge_names(Unit *u, Unit *other) { char *t; Iterator i; int r; assert(u); assert(other); r = complete_move(&u->names, &other->names); if (r < 0) return r; set_free_free(other->names); other->names = NULL; other->id = NULL; SET_FOREACH(t, u->names, i) assert_se(hashmap_replace(u->manager->units, t, u) == 0); return 0; } static int reserve_dependencies(Unit *u, Unit *other, UnitDependency d) { unsigned n_reserve; assert(u); assert(other); assert(d < _UNIT_DEPENDENCY_MAX); /* * If u does not have this dependency set allocated, there is no need * to reserve anything. In that case other's set will be transferred * as a whole to u by complete_move(). */ if (!u->dependencies[d]) return 0; /* merge_dependencies() will skip a u-on-u dependency */ n_reserve = set_size(other->dependencies[d]) - !!set_get(other->dependencies[d], u); return set_reserve(u->dependencies[d], n_reserve); } static void merge_dependencies(Unit *u, Unit *other, const char *other_id, UnitDependency d) { Iterator i; Unit *back; int r; assert(u); assert(other); assert(d < _UNIT_DEPENDENCY_MAX); /* Fix backwards pointers */ SET_FOREACH(back, other->dependencies[d], i) { UnitDependency k; for (k = 0; k < _UNIT_DEPENDENCY_MAX; k++) { /* Do not add dependencies between u and itself */ if (back == u) { if (set_remove(back->dependencies[k], other)) maybe_warn_about_dependency(u, other_id, k); } else { r = set_remove_and_put(back->dependencies[k], other, u); if (r == -EEXIST) set_remove(back->dependencies[k], other); else assert(r >= 0 || r == -ENOENT); } } } /* Also do not move dependencies on u to itself */ back = set_remove(other->dependencies[d], u); if (back) maybe_warn_about_dependency(u, other_id, d); /* The move cannot fail. The caller must have performed a reservation. */ assert_se(complete_move(&u->dependencies[d], &other->dependencies[d]) == 0); other->dependencies[d] = set_free(other->dependencies[d]); } int unit_merge(Unit *u, Unit *other) { UnitDependency d; const char *other_id = NULL; int r; assert(u); assert(other); assert(u->manager == other->manager); assert(u->type != _UNIT_TYPE_INVALID); other = unit_follow_merge(other); if (other == u) return 0; if (u->type != other->type) return -EINVAL; if (!u->instance != !other->instance) return -EINVAL; if (other->load_state != UNIT_STUB && other->load_state != UNIT_NOT_FOUND) return -EEXIST; if (other->job) return -EEXIST; if (other->nop_job) return -EEXIST; if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other))) return -EEXIST; if (other->id) other_id = strdupa(other->id); /* Make reservations to ensure merge_dependencies() won't fail */ for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) { r = reserve_dependencies(u, other, d); /* * We don't rollback reservations if we fail. We don't have * a way to undo reservations. A reservation is not a leak. */ if (r < 0) return r; } /* Merge names */ r = merge_names(u, other); if (r < 0) return r; /* Redirect all references */ while (other->refs) unit_ref_set(other->refs, u); /* Merge dependencies */ for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) merge_dependencies(u, other, other_id, d); other->load_state = UNIT_MERGED; other->merged_into = u; /* If there is still some data attached to the other node, we * don't need it anymore, and can free it. */ if (other->load_state != UNIT_STUB) if (UNIT_VTABLE(other)->done) UNIT_VTABLE(other)->done(other); unit_add_to_dbus_queue(u); unit_add_to_cleanup_queue(other); return 0; } int unit_merge_by_name(Unit *u, const char *name) { Unit *other; int r; _cleanup_free_ char *s = NULL; assert(u); assert(name); if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) { if (!u->instance) return -EINVAL; r = unit_name_replace_instance(name, u->instance, &s); if (r < 0) return r; name = s; } other = manager_get_unit(u->manager, name); if (other) return unit_merge(u, other); return unit_add_name(u, name); } Unit* unit_follow_merge(Unit *u) { assert(u); while (u->load_state == UNIT_MERGED) assert_se(u = u->merged_into); return u; } int unit_add_exec_dependencies(Unit *u, ExecContext *c) { int r; assert(u); assert(c); if (c->working_directory) { r = unit_require_mounts_for(u, c->working_directory); if (r < 0) return r; } if (c->root_directory) { r = unit_require_mounts_for(u, c->root_directory); if (r < 0) return r; } if (u->manager->running_as != MANAGER_SYSTEM) return 0; if (c->private_tmp) { r = unit_require_mounts_for(u, "/tmp"); if (r < 0) return r; r = unit_require_mounts_for(u, "/var/tmp"); if (r < 0) return r; } if (c->std_output != EXEC_OUTPUT_KMSG && c->std_output != EXEC_OUTPUT_SYSLOG && c->std_output != EXEC_OUTPUT_JOURNAL && c->std_output != EXEC_OUTPUT_KMSG_AND_CONSOLE && c->std_output != EXEC_OUTPUT_SYSLOG_AND_CONSOLE && c->std_output != EXEC_OUTPUT_JOURNAL_AND_CONSOLE && c->std_error != EXEC_OUTPUT_KMSG && c->std_error != EXEC_OUTPUT_SYSLOG && c->std_error != EXEC_OUTPUT_JOURNAL && c->std_error != EXEC_OUTPUT_KMSG_AND_CONSOLE && c->std_error != EXEC_OUTPUT_JOURNAL_AND_CONSOLE && c->std_error != EXEC_OUTPUT_SYSLOG_AND_CONSOLE) return 0; /* If syslog or kernel logging is requested, make sure our own * logging daemon is run first. */ r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, NULL, true); if (r < 0) return r; return 0; } const char *unit_description(Unit *u) { assert(u); if (u->description) return u->description; return strna(u->id); } void unit_dump(Unit *u, FILE *f, const char *prefix) { char *t, **j; UnitDependency d; Iterator i; const char *prefix2; char timestamp1[FORMAT_TIMESTAMP_MAX], timestamp2[FORMAT_TIMESTAMP_MAX], timestamp3[FORMAT_TIMESTAMP_MAX], timestamp4[FORMAT_TIMESTAMP_MAX], timespan[FORMAT_TIMESPAN_MAX]; Unit *following; _cleanup_set_free_ Set *following_set = NULL; int r; assert(u); assert(u->type >= 0); prefix = strempty(prefix); prefix2 = strjoina(prefix, "\t"); fprintf(f, "%s-> Unit %s:\n" "%s\tDescription: %s\n" "%s\tInstance: %s\n" "%s\tUnit Load State: %s\n" "%s\tUnit Active State: %s\n" "%s\tInactive Exit Timestamp: %s\n" "%s\tActive Enter Timestamp: %s\n" "%s\tActive Exit Timestamp: %s\n" "%s\tInactive Enter Timestamp: %s\n" "%s\tGC Check Good: %s\n" "%s\tNeed Daemon Reload: %s\n" "%s\tTransient: %s\n" "%s\tSlice: %s\n" "%s\tCGroup: %s\n" "%s\tCGroup realized: %s\n" "%s\tCGroup mask: 0x%x\n" "%s\tCGroup members mask: 0x%x\n", prefix, u->id, prefix, unit_description(u), prefix, strna(u->instance), prefix, unit_load_state_to_string(u->load_state), prefix, unit_active_state_to_string(unit_active_state(u)), prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->inactive_exit_timestamp.realtime)), prefix, strna(format_timestamp(timestamp2, sizeof(timestamp2), u->active_enter_timestamp.realtime)), prefix, strna(format_timestamp(timestamp3, sizeof(timestamp3), u->active_exit_timestamp.realtime)), prefix, strna(format_timestamp(timestamp4, sizeof(timestamp4), u->inactive_enter_timestamp.realtime)), prefix, yes_no(unit_check_gc(u)), prefix, yes_no(unit_need_daemon_reload(u)), prefix, yes_no(u->transient), prefix, strna(unit_slice_name(u)), prefix, strna(u->cgroup_path), prefix, yes_no(u->cgroup_realized), prefix, u->cgroup_realized_mask, prefix, u->cgroup_members_mask); SET_FOREACH(t, u->names, i) fprintf(f, "%s\tName: %s\n", prefix, t); STRV_FOREACH(j, u->documentation) fprintf(f, "%s\tDocumentation: %s\n", prefix, *j); following = unit_following(u); if (following) fprintf(f, "%s\tFollowing: %s\n", prefix, following->id); r = unit_following_set(u, &following_set); if (r >= 0) { Unit *other; SET_FOREACH(other, following_set, i) fprintf(f, "%s\tFollowing Set Member: %s\n", prefix, other->id); } if (u->fragment_path) fprintf(f, "%s\tFragment Path: %s\n", prefix, u->fragment_path); if (u->source_path) fprintf(f, "%s\tSource Path: %s\n", prefix, u->source_path); STRV_FOREACH(j, u->dropin_paths) fprintf(f, "%s\tDropIn Path: %s\n", prefix, *j); if (u->job_timeout > 0) fprintf(f, "%s\tJob Timeout: %s\n", prefix, format_timespan(timespan, sizeof(timespan), u->job_timeout, 0)); if (u->job_timeout_action != FAILURE_ACTION_NONE) fprintf(f, "%s\tJob Timeout Action: %s\n", prefix, failure_action_to_string(u->job_timeout_action)); if (u->job_timeout_reboot_arg) fprintf(f, "%s\tJob Timeout Reboot Argument: %s\n", prefix, u->job_timeout_reboot_arg); condition_dump_list(u->conditions, f, prefix, condition_type_to_string); condition_dump_list(u->asserts, f, prefix, assert_type_to_string); if (dual_timestamp_is_set(&u->condition_timestamp)) fprintf(f, "%s\tCondition Timestamp: %s\n" "%s\tCondition Result: %s\n", prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->condition_timestamp.realtime)), prefix, yes_no(u->condition_result)); if (dual_timestamp_is_set(&u->assert_timestamp)) fprintf(f, "%s\tAssert Timestamp: %s\n" "%s\tAssert Result: %s\n", prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->assert_timestamp.realtime)), prefix, yes_no(u->assert_result)); for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) { Unit *other; SET_FOREACH(other, u->dependencies[d], i) fprintf(f, "%s\t%s: %s\n", prefix, unit_dependency_to_string(d), other->id); } if (!strv_isempty(u->requires_mounts_for)) { fprintf(f, "%s\tRequiresMountsFor:", prefix); STRV_FOREACH(j, u->requires_mounts_for) fprintf(f, " %s", *j); fputs("\n", f); } if (u->load_state == UNIT_LOADED) { fprintf(f, "%s\tStopWhenUnneeded: %s\n" "%s\tRefuseManualStart: %s\n" "%s\tRefuseManualStop: %s\n" "%s\tDefaultDependencies: %s\n" "%s\tOnFailureJobMode: %s\n" "%s\tIgnoreOnIsolate: %s\n" "%s\tIgnoreOnSnapshot: %s\n", prefix, yes_no(u->stop_when_unneeded), prefix, yes_no(u->refuse_manual_start), prefix, yes_no(u->refuse_manual_stop), prefix, yes_no(u->default_dependencies), prefix, job_mode_to_string(u->on_failure_job_mode), prefix, yes_no(u->ignore_on_isolate), prefix, yes_no(u->ignore_on_snapshot)); if (UNIT_VTABLE(u)->dump) UNIT_VTABLE(u)->dump(u, f, prefix2); } else if (u->load_state == UNIT_MERGED) fprintf(f, "%s\tMerged into: %s\n", prefix, u->merged_into->id); else if (u->load_state == UNIT_ERROR) fprintf(f, "%s\tLoad Error Code: %s\n", prefix, strerror(-u->load_error)); if (u->job) job_dump(u->job, f, prefix2); if (u->nop_job) job_dump(u->nop_job, f, prefix2); } /* Common implementation for multiple backends */ int unit_load_fragment_and_dropin(Unit *u) { int r; assert(u); /* Load a .{service,socket,...} file */ r = unit_load_fragment(u); if (r < 0) return r; if (u->load_state == UNIT_STUB) return -ENOENT; /* Load drop-in directory data */ r = unit_load_dropin(unit_follow_merge(u)); if (r < 0) return r; return 0; } /* Common implementation for multiple backends */ int unit_load_fragment_and_dropin_optional(Unit *u) { int r; assert(u); /* Same as unit_load_fragment_and_dropin(), but whether * something can be loaded or not doesn't matter. */ /* Load a .service file */ r = unit_load_fragment(u); if (r < 0) return r; if (u->load_state == UNIT_STUB) u->load_state = UNIT_LOADED; /* Load drop-in directory data */ r = unit_load_dropin(unit_follow_merge(u)); if (r < 0) return r; return 0; } int unit_add_default_target_dependency(Unit *u, Unit *target) { assert(u); assert(target); if (target->type != UNIT_TARGET) return 0; /* Only add the dependency if both units are loaded, so that * that loop check below is reliable */ if (u->load_state != UNIT_LOADED || target->load_state != UNIT_LOADED) return 0; /* If either side wants no automatic dependencies, then let's * skip this */ if (!u->default_dependencies || !target->default_dependencies) return 0; /* Don't create loops */ if (set_get(target->dependencies[UNIT_BEFORE], u)) return 0; return unit_add_dependency(target, UNIT_AFTER, u, true); } static int unit_add_target_dependencies(Unit *u) { static const UnitDependency deps[] = { UNIT_REQUIRED_BY, UNIT_REQUIRED_BY_OVERRIDABLE, UNIT_REQUISITE_OF, UNIT_REQUISITE_OF_OVERRIDABLE, UNIT_WANTED_BY, UNIT_BOUND_BY }; Unit *target; Iterator i; unsigned k; int r = 0; assert(u); for (k = 0; k < ELEMENTSOF(deps); k++) SET_FOREACH(target, u->dependencies[deps[k]], i) { r = unit_add_default_target_dependency(u, target); if (r < 0) return r; } return r; } static int unit_add_slice_dependencies(Unit *u) { assert(u); if (!UNIT_HAS_CGROUP_CONTEXT(u)) return 0; if (UNIT_ISSET(u->slice)) return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_REQUIRES, UNIT_DEREF(u->slice), true); if (unit_has_name(u, SPECIAL_ROOT_SLICE)) return 0; return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, SPECIAL_ROOT_SLICE, NULL, true); } static int unit_add_mount_dependencies(Unit *u) { char **i; int r; assert(u); STRV_FOREACH(i, u->requires_mounts_for) { char prefix[strlen(*i) + 1]; PATH_FOREACH_PREFIX_MORE(prefix, *i) { _cleanup_free_ char *p = NULL; Unit *m; r = unit_name_from_path(prefix, ".mount", &p); if (r < 0) return r; m = manager_get_unit(u->manager, p); if (!m) { /* Make sure to load the mount unit if * it exists. If so the dependencies * on this unit will be added later * during the loading of the mount * unit. */ (void) manager_load_unit_prepare(u->manager, p, NULL, NULL, &m); continue; } if (m == u) continue; if (m->load_state != UNIT_LOADED) continue; r = unit_add_dependency(u, UNIT_AFTER, m, true); if (r < 0) return r; if (m->fragment_path) { r = unit_add_dependency(u, UNIT_REQUIRES, m, true); if (r < 0) return r; } } } return 0; } static int unit_add_startup_units(Unit *u) { CGroupContext *c; int r; c = unit_get_cgroup_context(u); if (!c) return 0; if (c->startup_cpu_shares == CGROUP_CPU_SHARES_INVALID && c->startup_blockio_weight == CGROUP_BLKIO_WEIGHT_INVALID) return 0; r = set_ensure_allocated(&u->manager->startup_units, NULL); if (r < 0) return r; return set_put(u->manager->startup_units, u); } int unit_load(Unit *u) { int r; assert(u); if (u->in_load_queue) { LIST_REMOVE(load_queue, u->manager->load_queue, u); u->in_load_queue = false; } if (u->type == _UNIT_TYPE_INVALID) return -EINVAL; if (u->load_state != UNIT_STUB) return 0; if (UNIT_VTABLE(u)->load) { r = UNIT_VTABLE(u)->load(u); if (r < 0) goto fail; } if (u->load_state == UNIT_STUB) { r = -ENOENT; goto fail; } if (u->load_state == UNIT_LOADED) { r = unit_add_target_dependencies(u); if (r < 0) goto fail; r = unit_add_slice_dependencies(u); if (r < 0) goto fail; r = unit_add_mount_dependencies(u); if (r < 0) goto fail; r = unit_add_startup_units(u); if (r < 0) goto fail; if (u->on_failure_job_mode == JOB_ISOLATE && set_size(u->dependencies[UNIT_ON_FAILURE]) > 1) { log_unit_error(u, "More than one OnFailure= dependencies specified but OnFailureJobMode=isolate set. Refusing."); r = -EINVAL; goto fail; } unit_update_cgroup_members_masks(u); /* If we are reloading, we need to wait for the deserializer * to restore the net_cls ids that have been set previously */ if (u->manager->n_reloading <= 0) { r = unit_add_to_netclass_cgroup(u); if (r < 0) return r; } } assert((u->load_state != UNIT_MERGED) == !u->merged_into); unit_add_to_dbus_queue(unit_follow_merge(u)); unit_add_to_gc_queue(u); return 0; fail: u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND : UNIT_ERROR; u->load_error = r; unit_add_to_dbus_queue(u); unit_add_to_gc_queue(u); log_unit_debug_errno(u, r, "Failed to load configuration: %m"); return r; } static bool unit_condition_test_list(Unit *u, Condition *first, const char *(*to_string)(ConditionType t)) { Condition *c; int triggered = -1; assert(u); assert(to_string); /* If the condition list is empty, then it is true */ if (!first) return true; /* Otherwise, if all of the non-trigger conditions apply and * if any of the trigger conditions apply (unless there are * none) we return true */ LIST_FOREACH(conditions, c, first) { int r; r = condition_test(c); if (r < 0) log_unit_warning(u, "Couldn't determine result for %s=%s%s%s, assuming failed: %m", to_string(c->type), c->trigger ? "|" : "", c->negate ? "!" : "", c->parameter); else log_unit_debug(u, "%s=%s%s%s %s.", to_string(c->type), c->trigger ? "|" : "", c->negate ? "!" : "", c->parameter, condition_result_to_string(c->result)); if (!c->trigger && r <= 0) return false; if (c->trigger && triggered <= 0) triggered = r > 0; } return triggered != 0; } static bool unit_condition_test(Unit *u) { assert(u); dual_timestamp_get(&u->condition_timestamp); u->condition_result = unit_condition_test_list(u, u->conditions, condition_type_to_string); return u->condition_result; } static bool unit_assert_test(Unit *u) { assert(u); dual_timestamp_get(&u->assert_timestamp); u->assert_result = unit_condition_test_list(u, u->asserts, assert_type_to_string); return u->assert_result; } _pure_ static const char* unit_get_status_message_format(Unit *u, JobType t) { const char *format; const UnitStatusMessageFormats *format_table; assert(u); assert(t == JOB_START || t == JOB_STOP || t == JOB_RELOAD); if (t != JOB_RELOAD) { format_table = &UNIT_VTABLE(u)->status_message_formats; if (format_table) { format = format_table->starting_stopping[t == JOB_STOP]; if (format) return format; } } /* Return generic strings */ if (t == JOB_START) return "Starting %s."; else if (t == JOB_STOP) return "Stopping %s."; else return "Reloading %s."; } static void unit_status_print_starting_stopping(Unit *u, JobType t) { const char *format; assert(u); format = unit_get_status_message_format(u, t); DISABLE_WARNING_FORMAT_NONLITERAL; unit_status_printf(u, "", format); REENABLE_WARNING; } static void unit_status_log_starting_stopping_reloading(Unit *u, JobType t) { const char *format; char buf[LINE_MAX]; sd_id128_t mid; assert(u); if (t != JOB_START && t != JOB_STOP && t != JOB_RELOAD) return; if (log_on_console()) return; /* We log status messages for all units and all operations. */ format = unit_get_status_message_format(u, t); DISABLE_WARNING_FORMAT_NONLITERAL; snprintf(buf, sizeof(buf), format, unit_description(u)); REENABLE_WARNING; mid = t == JOB_START ? SD_MESSAGE_UNIT_STARTING : t == JOB_STOP ? SD_MESSAGE_UNIT_STOPPING : SD_MESSAGE_UNIT_RELOADING; /* Note that we deliberately use LOG_MESSAGE() instead of * LOG_UNIT_MESSAGE() here, since this is supposed to mimic * closely what is written to screen using the status output, * which is supposed the highest level, friendliest output * possible, which means we should avoid the low-level unit * name. */ log_struct(LOG_INFO, LOG_MESSAGE_ID(mid), LOG_UNIT_ID(u), LOG_MESSAGE("%s", buf), NULL); } void unit_status_emit_starting_stopping_reloading(Unit *u, JobType t) { unit_status_log_starting_stopping_reloading(u, t); /* Reload status messages have traditionally not been printed to console. */ if (t != JOB_RELOAD) unit_status_print_starting_stopping(u, t); } /* Errors: * -EBADR: This unit type does not support starting. * -EALREADY: Unit is already started. * -EAGAIN: An operation is already in progress. Retry later. * -ECANCELED: Too many requests for now. * -EPROTO: Assert failed */ int unit_start(Unit *u) { UnitActiveState state; Unit *following; assert(u); /* Units that aren't loaded cannot be started */ if (u->load_state != UNIT_LOADED) return -EINVAL; /* If this is already started, then this will succeed. Note * that this will even succeed if this unit is not startable * by the user. This is relied on to detect when we need to * wait for units and when waiting is finished. */ state = unit_active_state(u); if (UNIT_IS_ACTIVE_OR_RELOADING(state)) return -EALREADY; /* If the conditions failed, don't do anything at all. If we * already are activating this call might still be useful to * speed up activation in case there is some hold-off time, * but we don't want to recheck the condition in that case. */ if (state != UNIT_ACTIVATING && !unit_condition_test(u)) { log_unit_debug(u, "Starting requested but condition failed. Not starting unit."); return -EALREADY; } /* If the asserts failed, fail the entire job */ if (state != UNIT_ACTIVATING && !unit_assert_test(u)) { log_unit_notice(u, "Starting requested but asserts failed."); return -EPROTO; } /* Units of types that aren't supported cannot be * started. Note that we do this test only after the condition * checks, so that we rather return condition check errors * (which are usually not considered a true failure) than "not * supported" errors (which are considered a failure). */ if (!unit_supported(u)) return -EOPNOTSUPP; /* Forward to the main object, if we aren't it. */ following = unit_following(u); if (following) { log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id); return unit_start(following); } /* If it is stopped, but we cannot start it, then fail */ if (!UNIT_VTABLE(u)->start) return -EBADR; /* We don't suppress calls to ->start() here when we are * already starting, to allow this request to be used as a * "hurry up" call, for example when the unit is in some "auto * restart" state where it waits for a holdoff timer to elapse * before it will start again. */ unit_add_to_dbus_queue(u); return UNIT_VTABLE(u)->start(u); } bool unit_can_start(Unit *u) { assert(u); if (u->load_state != UNIT_LOADED) return false; if (!unit_supported(u)) return false; return !!UNIT_VTABLE(u)->start; } bool unit_can_isolate(Unit *u) { assert(u); return unit_can_start(u) && u->allow_isolate; } /* Errors: * -EBADR: This unit type does not support stopping. * -EALREADY: Unit is already stopped. * -EAGAIN: An operation is already in progress. Retry later. */ int unit_stop(Unit *u) { UnitActiveState state; Unit *following; assert(u); state = unit_active_state(u); if (UNIT_IS_INACTIVE_OR_FAILED(state)) return -EALREADY; following = unit_following(u); if (following) { log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id); return unit_stop(following); } if (!UNIT_VTABLE(u)->stop) return -EBADR; unit_add_to_dbus_queue(u); return UNIT_VTABLE(u)->stop(u); } /* Errors: * -EBADR: This unit type does not support reloading. * -ENOEXEC: Unit is not started. * -EAGAIN: An operation is already in progress. Retry later. */ int unit_reload(Unit *u) { UnitActiveState state; Unit *following; assert(u); if (u->load_state != UNIT_LOADED) return -EINVAL; if (!unit_can_reload(u)) return -EBADR; state = unit_active_state(u); if (state == UNIT_RELOADING) return -EALREADY; if (state != UNIT_ACTIVE) { log_unit_warning(u, "Unit cannot be reloaded because it is inactive."); return -ENOEXEC; } following = unit_following(u); if (following) { log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id); return unit_reload(following); } unit_add_to_dbus_queue(u); return UNIT_VTABLE(u)->reload(u); } bool unit_can_reload(Unit *u) { assert(u); if (!UNIT_VTABLE(u)->reload) return false; if (!UNIT_VTABLE(u)->can_reload) return true; return UNIT_VTABLE(u)->can_reload(u); } static void unit_check_unneeded(Unit *u) { static const UnitDependency needed_dependencies[] = { UNIT_REQUIRED_BY, UNIT_REQUIRED_BY_OVERRIDABLE, UNIT_REQUISITE_OF, UNIT_REQUISITE_OF_OVERRIDABLE, UNIT_WANTED_BY, UNIT_BOUND_BY, }; Unit *other; Iterator i; unsigned j; int r; assert(u); /* If this service shall be shut down when unneeded then do * so. */ if (!u->stop_when_unneeded) return; if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))) return; for (j = 0; j < ELEMENTSOF(needed_dependencies); j++) SET_FOREACH(other, u->dependencies[needed_dependencies[j]], i) if (unit_active_or_pending(other)) return; /* If stopping a unit fails continously we might enter a stop * loop here, hence stop acting on the service being * unnecessary after a while. */ if (!ratelimit_test(&u->auto_stop_ratelimit)) { log_unit_warning(u, "Unit not needed anymore, but not stopping since we tried this too often recently."); return; } log_unit_info(u, "Unit not needed anymore. Stopping."); /* Ok, nobody needs us anymore. Sniff. Then let's commit suicide */ r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, true, NULL, NULL); if (r < 0) log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %m"); } static void unit_check_binds_to(Unit *u) { bool stop = false; Unit *other; Iterator i; int r; assert(u); if (u->job) return; if (unit_active_state(u) != UNIT_ACTIVE) return; SET_FOREACH(other, u->dependencies[UNIT_BINDS_TO], i) { if (other->job) continue; if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other))) continue; stop = true; break; } if (!stop) return; /* If stopping a unit fails continously we might enter a stop * loop here, hence stop acting on the service being * unnecessary after a while. */ if (!ratelimit_test(&u->auto_stop_ratelimit)) { log_unit_warning(u, "Unit is bound to inactive unit %s, but not stopping since we tried this too often recently.", other->id); return; } assert(other); log_unit_info(u, "Unit is bound to inactive unit %s. Stopping, too.", other->id); /* A unit we need to run is gone. Sniff. Let's stop this. */ r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, true, NULL, NULL); if (r < 0) log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %m"); } static void retroactively_start_dependencies(Unit *u) { Iterator i; Unit *other; assert(u); assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))); SET_FOREACH(other, u->dependencies[UNIT_REQUIRES], i) if (!set_get(u->dependencies[UNIT_AFTER], other) && !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, true, NULL, NULL); SET_FOREACH(other, u->dependencies[UNIT_BINDS_TO], i) if (!set_get(u->dependencies[UNIT_AFTER], other) && !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, true, NULL, NULL); SET_FOREACH(other, u->dependencies[UNIT_REQUIRES_OVERRIDABLE], i) if (!set_get(u->dependencies[UNIT_AFTER], other) && !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_START, other, JOB_FAIL, false, NULL, NULL); SET_FOREACH(other, u->dependencies[UNIT_WANTS], i) if (!set_get(u->dependencies[UNIT_AFTER], other) && !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_START, other, JOB_FAIL, false, NULL, NULL); SET_FOREACH(other, u->dependencies[UNIT_CONFLICTS], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, true, NULL, NULL); SET_FOREACH(other, u->dependencies[UNIT_CONFLICTED_BY], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, true, NULL, NULL); } static void retroactively_stop_dependencies(Unit *u) { Iterator i; Unit *other; assert(u); assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u))); /* Pull down units which are bound to us recursively if enabled */ SET_FOREACH(other, u->dependencies[UNIT_BOUND_BY], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, true, NULL, NULL); } static void check_unneeded_dependencies(Unit *u) { Iterator i; Unit *other; assert(u); assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u))); /* Garbage collect services that might not be needed anymore, if enabled */ SET_FOREACH(other, u->dependencies[UNIT_REQUIRES], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_unneeded(other); SET_FOREACH(other, u->dependencies[UNIT_REQUIRES_OVERRIDABLE], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_unneeded(other); SET_FOREACH(other, u->dependencies[UNIT_WANTS], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_unneeded(other); SET_FOREACH(other, u->dependencies[UNIT_REQUISITE], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_unneeded(other); SET_FOREACH(other, u->dependencies[UNIT_REQUISITE_OVERRIDABLE], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_unneeded(other); SET_FOREACH(other, u->dependencies[UNIT_BINDS_TO], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_unneeded(other); } void unit_start_on_failure(Unit *u) { Unit *other; Iterator i; assert(u); if (set_size(u->dependencies[UNIT_ON_FAILURE]) <= 0) return; log_unit_info(u, "Triggering OnFailure= dependencies."); SET_FOREACH(other, u->dependencies[UNIT_ON_FAILURE], i) { int r; r = manager_add_job(u->manager, JOB_START, other, u->on_failure_job_mode, true, NULL, NULL); if (r < 0) log_unit_error_errno(u, r, "Failed to enqueue OnFailure= job: %m"); } } void unit_trigger_notify(Unit *u) { Unit *other; Iterator i; assert(u); SET_FOREACH(other, u->dependencies[UNIT_TRIGGERED_BY], i) if (UNIT_VTABLE(other)->trigger_notify) UNIT_VTABLE(other)->trigger_notify(other, u); } void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, bool reload_success) { Manager *m; bool unexpected; assert(u); assert(os < _UNIT_ACTIVE_STATE_MAX); assert(ns < _UNIT_ACTIVE_STATE_MAX); /* Note that this is called for all low-level state changes, * even if they might map to the same high-level * UnitActiveState! That means that ns == os is an expected * behavior here. For example: if a mount point is remounted * this function will be called too! */ m = u->manager; /* Update timestamps for state changes */ if (m->n_reloading <= 0) { dual_timestamp ts; dual_timestamp_get(&ts); if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns)) u->inactive_exit_timestamp = ts; else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns)) u->inactive_enter_timestamp = ts; if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns)) u->active_enter_timestamp = ts; else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns)) u->active_exit_timestamp = ts; } /* Keep track of failed units */ (void) manager_update_failed_units(u->manager, u, ns == UNIT_FAILED); /* Make sure the cgroup is always removed when we become inactive */ if (UNIT_IS_INACTIVE_OR_FAILED(ns)) unit_prune_cgroup(u); /* Note that this doesn't apply to RemainAfterExit services exiting * successfully, since there's no change of state in that case. Which is * why it is handled in service_set_state() */ if (UNIT_IS_INACTIVE_OR_FAILED(os) != UNIT_IS_INACTIVE_OR_FAILED(ns)) { ExecContext *ec; ec = unit_get_exec_context(u); if (ec && exec_context_may_touch_console(ec)) { if (UNIT_IS_INACTIVE_OR_FAILED(ns)) { m->n_on_console --; if (m->n_on_console == 0) /* unset no_console_output flag, since the console is free */ m->no_console_output = false; } else m->n_on_console ++; } } if (u->job) { unexpected = false; if (u->job->state == JOB_WAITING) /* So we reached a different state for this * job. Let's see if we can run it now if it * failed previously due to EAGAIN. */ job_add_to_run_queue(u->job); /* Let's check whether this state change constitutes a * finished job, or maybe contradicts a running job and * hence needs to invalidate jobs. */ switch (u->job->type) { case JOB_START: case JOB_VERIFY_ACTIVE: if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) job_finish_and_invalidate(u->job, JOB_DONE, true); else if (u->job->state == JOB_RUNNING && ns != UNIT_ACTIVATING) { unexpected = true; if (UNIT_IS_INACTIVE_OR_FAILED(ns)) job_finish_and_invalidate(u->job, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true); } break; case JOB_RELOAD: case JOB_RELOAD_OR_START: if (u->job->state == JOB_RUNNING) { if (ns == UNIT_ACTIVE) job_finish_and_invalidate(u->job, reload_success ? JOB_DONE : JOB_FAILED, true); else if (ns != UNIT_ACTIVATING && ns != UNIT_RELOADING) { unexpected = true; if (UNIT_IS_INACTIVE_OR_FAILED(ns)) job_finish_and_invalidate(u->job, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true); } } break; case JOB_STOP: case JOB_RESTART: case JOB_TRY_RESTART: if (UNIT_IS_INACTIVE_OR_FAILED(ns)) job_finish_and_invalidate(u->job, JOB_DONE, true); else if (u->job->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) { unexpected = true; job_finish_and_invalidate(u->job, JOB_FAILED, true); } break; default: assert_not_reached("Job type unknown"); } } else unexpected = true; if (m->n_reloading <= 0) { /* If this state change happened without being * requested by a job, then let's retroactively start * or stop dependencies. We skip that step when * deserializing, since we don't want to create any * additional jobs just because something is already * activated. */ if (unexpected) { if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns)) retroactively_start_dependencies(u); else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns)) retroactively_stop_dependencies(u); } /* stop unneeded units regardless if going down was expected or not */ if (UNIT_IS_INACTIVE_OR_DEACTIVATING(ns)) check_unneeded_dependencies(u); if (ns != os && ns == UNIT_FAILED) { log_unit_notice(u, "Unit entered failed state."); unit_start_on_failure(u); } } /* Some names are special */ if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) { if (unit_has_name(u, SPECIAL_DBUS_SERVICE)) /* The bus might have just become available, * hence try to connect to it, if we aren't * yet connected. */ bus_init(m, true); if (u->type == UNIT_SERVICE && !UNIT_IS_ACTIVE_OR_RELOADING(os) && m->n_reloading <= 0) { /* Write audit record if we have just finished starting up */ manager_send_unit_audit(m, u, AUDIT_SERVICE_START, true); u->in_audit = true; } if (!UNIT_IS_ACTIVE_OR_RELOADING(os)) manager_send_unit_plymouth(m, u); } else { /* We don't care about D-Bus here, since we'll get an * asynchronous notification for it anyway. */ if (u->type == UNIT_SERVICE && UNIT_IS_INACTIVE_OR_FAILED(ns) && !UNIT_IS_INACTIVE_OR_FAILED(os) && m->n_reloading <= 0) { /* Hmm, if there was no start record written * write it now, so that we always have a nice * pair */ if (!u->in_audit) { manager_send_unit_audit(m, u, AUDIT_SERVICE_START, ns == UNIT_INACTIVE); if (ns == UNIT_INACTIVE) manager_send_unit_audit(m, u, AUDIT_SERVICE_STOP, true); } else /* Write audit record if we have just finished shutting down */ manager_send_unit_audit(m, u, AUDIT_SERVICE_STOP, ns == UNIT_INACTIVE); u->in_audit = false; } } manager_recheck_journal(m); unit_trigger_notify(u); if (u->manager->n_reloading <= 0) { /* Maybe we finished startup and are now ready for * being stopped because unneeded? */ unit_check_unneeded(u); /* Maybe we finished startup, but something we needed * has vanished? Let's die then. (This happens when * something BindsTo= to a Type=oneshot unit, as these * units go directly from starting to inactive, * without ever entering started.) */ unit_check_binds_to(u); } unit_add_to_dbus_queue(u); unit_add_to_gc_queue(u); } int unit_watch_pid(Unit *u, pid_t pid) { int q, r; assert(u); assert(pid >= 1); /* Watch a specific PID. We only support one or two units * watching each PID for now, not more. */ r = set_ensure_allocated(&u->pids, NULL); if (r < 0) return r; r = hashmap_ensure_allocated(&u->manager->watch_pids1, NULL); if (r < 0) return r; r = hashmap_put(u->manager->watch_pids1, PID_TO_PTR(pid), u); if (r == -EEXIST) { r = hashmap_ensure_allocated(&u->manager->watch_pids2, NULL); if (r < 0) return r; r = hashmap_put(u->manager->watch_pids2, PID_TO_PTR(pid), u); } q = set_put(u->pids, PID_TO_PTR(pid)); if (q < 0) return q; return r; } void unit_unwatch_pid(Unit *u, pid_t pid) { assert(u); assert(pid >= 1); (void) hashmap_remove_value(u->manager->watch_pids1, PID_TO_PTR(pid), u); (void) hashmap_remove_value(u->manager->watch_pids2, PID_TO_PTR(pid), u); (void) set_remove(u->pids, PID_TO_PTR(pid)); } void unit_unwatch_all_pids(Unit *u) { assert(u); while (!set_isempty(u->pids)) unit_unwatch_pid(u, PTR_TO_PID(set_first(u->pids))); u->pids = set_free(u->pids); } void unit_tidy_watch_pids(Unit *u, pid_t except1, pid_t except2) { Iterator i; void *e; assert(u); /* Cleans dead PIDs from our list */ SET_FOREACH(e, u->pids, i) { pid_t pid = PTR_TO_PID(e); if (pid == except1 || pid == except2) continue; if (!pid_is_unwaited(pid)) unit_unwatch_pid(u, pid); } } bool unit_job_is_applicable(Unit *u, JobType j) { assert(u); assert(j >= 0 && j < _JOB_TYPE_MAX); switch (j) { case JOB_VERIFY_ACTIVE: case JOB_START: case JOB_STOP: case JOB_NOP: return true; case JOB_RESTART: case JOB_TRY_RESTART: return unit_can_start(u); case JOB_RELOAD: return unit_can_reload(u); case JOB_RELOAD_OR_START: return unit_can_reload(u) && unit_can_start(u); default: assert_not_reached("Invalid job type"); } } static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency) { assert(u); /* Only warn about some unit types */ if (!IN_SET(dependency, UNIT_CONFLICTS, UNIT_CONFLICTED_BY, UNIT_BEFORE, UNIT_AFTER, UNIT_ON_FAILURE, UNIT_TRIGGERS, UNIT_TRIGGERED_BY)) return; if (streq_ptr(u->id, other)) log_unit_warning(u, "Dependency %s=%s dropped", unit_dependency_to_string(dependency), u->id); else log_unit_warning(u, "Dependency %s=%s dropped, merged into %s", unit_dependency_to_string(dependency), strna(other), u->id); } int unit_add_dependency(Unit *u, UnitDependency d, Unit *other, bool add_reference) { static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = { [UNIT_REQUIRES] = UNIT_REQUIRED_BY, [UNIT_REQUIRES_OVERRIDABLE] = UNIT_REQUIRED_BY_OVERRIDABLE, [UNIT_WANTS] = UNIT_WANTED_BY, [UNIT_REQUISITE] = UNIT_REQUISITE_OF, [UNIT_REQUISITE_OVERRIDABLE] = UNIT_REQUISITE_OF_OVERRIDABLE, [UNIT_BINDS_TO] = UNIT_BOUND_BY, [UNIT_PART_OF] = UNIT_CONSISTS_OF, [UNIT_REQUIRED_BY] = UNIT_REQUIRES, [UNIT_REQUIRED_BY_OVERRIDABLE] = UNIT_REQUIRES_OVERRIDABLE, [UNIT_REQUISITE_OF] = UNIT_REQUISITE, [UNIT_REQUISITE_OF_OVERRIDABLE] = UNIT_REQUISITE_OVERRIDABLE, [UNIT_WANTED_BY] = UNIT_WANTS, [UNIT_BOUND_BY] = UNIT_BINDS_TO, [UNIT_CONSISTS_OF] = UNIT_PART_OF, [UNIT_CONFLICTS] = UNIT_CONFLICTED_BY, [UNIT_CONFLICTED_BY] = UNIT_CONFLICTS, [UNIT_BEFORE] = UNIT_AFTER, [UNIT_AFTER] = UNIT_BEFORE, [UNIT_ON_FAILURE] = _UNIT_DEPENDENCY_INVALID, [UNIT_REFERENCES] = UNIT_REFERENCED_BY, [UNIT_REFERENCED_BY] = UNIT_REFERENCES, [UNIT_TRIGGERS] = UNIT_TRIGGERED_BY, [UNIT_TRIGGERED_BY] = UNIT_TRIGGERS, [UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM, [UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO, [UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF, }; int r, q = 0, v = 0, w = 0; Unit *orig_u = u, *orig_other = other; assert(u); assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX); assert(other); u = unit_follow_merge(u); other = unit_follow_merge(other); /* We won't allow dependencies on ourselves. We will not * consider them an error however. */ if (u == other) { maybe_warn_about_dependency(orig_u, orig_other->id, d); return 0; } r = set_ensure_allocated(&u->dependencies[d], NULL); if (r < 0) return r; if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID) { r = set_ensure_allocated(&other->dependencies[inverse_table[d]], NULL); if (r < 0) return r; } if (add_reference) { r = set_ensure_allocated(&u->dependencies[UNIT_REFERENCES], NULL); if (r < 0) return r; r = set_ensure_allocated(&other->dependencies[UNIT_REFERENCED_BY], NULL); if (r < 0) return r; } q = set_put(u->dependencies[d], other); if (q < 0) return q; if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID && inverse_table[d] != d) { v = set_put(other->dependencies[inverse_table[d]], u); if (v < 0) { r = v; goto fail; } } if (add_reference) { w = set_put(u->dependencies[UNIT_REFERENCES], other); if (w < 0) { r = w; goto fail; } r = set_put(other->dependencies[UNIT_REFERENCED_BY], u); if (r < 0) goto fail; } unit_add_to_dbus_queue(u); return 0; fail: if (q > 0) set_remove(u->dependencies[d], other); if (v > 0) set_remove(other->dependencies[inverse_table[d]], u); if (w > 0) set_remove(u->dependencies[UNIT_REFERENCES], other); return r; } int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference) { int r; assert(u); r = unit_add_dependency(u, d, other, add_reference); if (r < 0) return r; return unit_add_dependency(u, e, other, add_reference); } static int resolve_template(Unit *u, const char *name, const char*path, char **buf, const char **ret) { int r; assert(u); assert(name || path); assert(buf); assert(ret); if (!name) name = basename(path); if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) { *buf = NULL; *ret = name; return 0; } if (u->instance) r = unit_name_replace_instance(name, u->instance, buf); else { _cleanup_free_ char *i = NULL; r = unit_name_to_prefix(u->id, &i); if (r < 0) return r; r = unit_name_replace_instance(name, i, buf); } if (r < 0) return r; *ret = *buf; return 0; } int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, const char *path, bool add_reference) { _cleanup_free_ char *buf = NULL; Unit *other; int r; assert(u); assert(name || path); r = resolve_template(u, name, path, &buf, &name); if (r < 0) return r; r = manager_load_unit(u->manager, name, path, NULL, &other); if (r < 0) return r; return unit_add_dependency(u, d, other, add_reference); } int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, const char *path, bool add_reference) { _cleanup_free_ char *buf = NULL; Unit *other; int r; assert(u); assert(name || path); r = resolve_template(u, name, path, &buf, &name); if (r < 0) return r; r = manager_load_unit(u->manager, name, path, NULL, &other); if (r < 0) return r; return unit_add_two_dependencies(u, d, e, other, add_reference); } int set_unit_path(const char *p) { /* This is mostly for debug purposes */ if (setenv("SYSTEMD_UNIT_PATH", p, 1) < 0) return -errno; return 0; } char *unit_dbus_path(Unit *u) { assert(u); if (!u->id) return NULL; return unit_dbus_path_from_name(u->id); } int unit_set_slice(Unit *u, Unit *slice) { assert(u); assert(slice); /* Sets the unit slice if it has not been set before. Is extra * careful, to only allow this for units that actually have a * cgroup context. Also, we don't allow to set this for slices * (since the parent slice is derived from the name). Make * sure the unit we set is actually a slice. */ if (!UNIT_HAS_CGROUP_CONTEXT(u)) return -EOPNOTSUPP; if (u->type == UNIT_SLICE) return -EINVAL; if (unit_active_state(u) != UNIT_INACTIVE) return -EBUSY; if (slice->type != UNIT_SLICE) return -EINVAL; if (unit_has_name(u, SPECIAL_INIT_SCOPE) && !unit_has_name(slice, SPECIAL_ROOT_SLICE)) return -EPERM; if (UNIT_DEREF(u->slice) == slice) return 0; if (UNIT_ISSET(u->slice)) return -EBUSY; unit_ref_set(&u->slice, slice); return 1; } int unit_set_default_slice(Unit *u) { _cleanup_free_ char *b = NULL; const char *slice_name; Unit *slice; int r; assert(u); if (UNIT_ISSET(u->slice)) return 0; if (u->instance) { _cleanup_free_ char *prefix = NULL, *escaped = NULL; /* Implicitly place all instantiated units in their * own per-template slice */ r = unit_name_to_prefix(u->id, &prefix); if (r < 0) return r; /* The prefix is already escaped, but it might include * "-" which has a special meaning for slice units, * hence escape it here extra. */ escaped = unit_name_escape(prefix); if (!escaped) return -ENOMEM; if (u->manager->running_as == MANAGER_SYSTEM) b = strjoin("system-", escaped, ".slice", NULL); else b = strappend(escaped, ".slice"); if (!b) return -ENOMEM; slice_name = b; } else slice_name = u->manager->running_as == MANAGER_SYSTEM && !unit_has_name(u, SPECIAL_INIT_SCOPE) ? SPECIAL_SYSTEM_SLICE : SPECIAL_ROOT_SLICE; r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice); if (r < 0) return r; return unit_set_slice(u, slice); } const char *unit_slice_name(Unit *u) { assert(u); if (!UNIT_ISSET(u->slice)) return NULL; return UNIT_DEREF(u->slice)->id; } int unit_load_related_unit(Unit *u, const char *type, Unit **_found) { _cleanup_free_ char *t = NULL; int r; assert(u); assert(type); assert(_found); r = unit_name_change_suffix(u->id, type, &t); if (r < 0) return r; if (unit_has_name(u, t)) return -EINVAL; r = manager_load_unit(u->manager, t, NULL, NULL, _found); assert(r < 0 || *_found != u); return r; } static int signal_name_owner_changed(sd_bus_message *message, void *userdata, sd_bus_error *error) { const char *name, *old_owner, *new_owner; Unit *u = userdata; int r; assert(message); assert(u); r = sd_bus_message_read(message, "sss", &name, &old_owner, &new_owner); if (r < 0) { bus_log_parse_error(r); return 0; } if (UNIT_VTABLE(u)->bus_name_owner_change) UNIT_VTABLE(u)->bus_name_owner_change(u, name, old_owner, new_owner); return 0; } int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name) { const char *match; assert(u); assert(bus); assert(name); if (u->match_bus_slot) return -EBUSY; match = strjoina("type='signal'," "sender='org.freedesktop.DBus'," "path='/org/freedesktop/DBus'," "interface='org.freedesktop.DBus'," "member='NameOwnerChanged'," "arg0='", name, "'", NULL); return sd_bus_add_match(bus, &u->match_bus_slot, match, signal_name_owner_changed, u); } int unit_watch_bus_name(Unit *u, const char *name) { int r; assert(u); assert(name); /* Watch a specific name on the bus. We only support one unit * watching each name for now. */ if (u->manager->api_bus) { /* If the bus is already available, install the match directly. * Otherwise, just put the name in the list. bus_setup_api() will take care later. */ r = unit_install_bus_match(u, u->manager->api_bus, name); if (r < 0) return log_warning_errno(r, "Failed to subscribe to NameOwnerChanged signal for '%s': %m", name); } r = hashmap_put(u->manager->watch_bus, name, u); if (r < 0) { u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot); return log_warning_errno(r, "Failed to put bus name to hashmap: %m"); } return 0; } void unit_unwatch_bus_name(Unit *u, const char *name) { assert(u); assert(name); hashmap_remove_value(u->manager->watch_bus, name, u); u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot); } bool unit_can_serialize(Unit *u) { assert(u); return UNIT_VTABLE(u)->serialize && UNIT_VTABLE(u)->deserialize_item; } int unit_serialize(Unit *u, FILE *f, FDSet *fds, bool serialize_jobs) { int r; assert(u); assert(f); assert(fds); if (unit_can_serialize(u)) { ExecRuntime *rt; r = UNIT_VTABLE(u)->serialize(u, f, fds); if (r < 0) return r; rt = unit_get_exec_runtime(u); if (rt) { r = exec_runtime_serialize(u, rt, f, fds); if (r < 0) return r; } } dual_timestamp_serialize(f, "inactive-exit-timestamp", &u->inactive_exit_timestamp); dual_timestamp_serialize(f, "active-enter-timestamp", &u->active_enter_timestamp); dual_timestamp_serialize(f, "active-exit-timestamp", &u->active_exit_timestamp); dual_timestamp_serialize(f, "inactive-enter-timestamp", &u->inactive_enter_timestamp); dual_timestamp_serialize(f, "condition-timestamp", &u->condition_timestamp); dual_timestamp_serialize(f, "assert-timestamp", &u->assert_timestamp); if (dual_timestamp_is_set(&u->condition_timestamp)) unit_serialize_item(u, f, "condition-result", yes_no(u->condition_result)); if (dual_timestamp_is_set(&u->assert_timestamp)) unit_serialize_item(u, f, "assert-result", yes_no(u->assert_result)); unit_serialize_item(u, f, "transient", yes_no(u->transient)); unit_serialize_item_format(u, f, "cpuacct-usage-base", "%" PRIu64, u->cpuacct_usage_base); if (u->cgroup_path) unit_serialize_item(u, f, "cgroup", u->cgroup_path); unit_serialize_item(u, f, "cgroup-realized", yes_no(u->cgroup_realized)); if (u->cgroup_netclass_id) unit_serialize_item_format(u, f, "netclass-id", "%" PRIu32, u->cgroup_netclass_id); if (serialize_jobs) { if (u->job) { fprintf(f, "job\n"); job_serialize(u->job, f, fds); } if (u->nop_job) { fprintf(f, "job\n"); job_serialize(u->nop_job, f, fds); } } /* End marker */ fputc('\n', f); return 0; } int unit_serialize_item(Unit *u, FILE *f, const char *key, const char *value) { assert(u); assert(f); assert(key); if (!value) return 0; fputs(key, f); fputc('=', f); fputs(value, f); fputc('\n', f); return 1; } int unit_serialize_item_escaped(Unit *u, FILE *f, const char *key, const char *value) { _cleanup_free_ char *c = NULL; assert(u); assert(f); assert(key); if (!value) return 0; c = cescape(value); if (!c) return -ENOMEM; fputs(key, f); fputc('=', f); fputs(c, f); fputc('\n', f); return 1; } int unit_serialize_item_fd(Unit *u, FILE *f, FDSet *fds, const char *key, int fd) { int copy; assert(u); assert(f); assert(key); if (fd < 0) return 0; copy = fdset_put_dup(fds, fd); if (copy < 0) return copy; fprintf(f, "%s=%i\n", key, copy); return 1; } void unit_serialize_item_format(Unit *u, FILE *f, const char *key, const char *format, ...) { va_list ap; assert(u); assert(f); assert(key); assert(format); fputs(key, f); fputc('=', f); va_start(ap, format); vfprintf(f, format, ap); va_end(ap); fputc('\n', f); } int unit_deserialize(Unit *u, FILE *f, FDSet *fds) { ExecRuntime **rt = NULL; size_t offset; int r; assert(u); assert(f); assert(fds); offset = UNIT_VTABLE(u)->exec_runtime_offset; if (offset > 0) rt = (ExecRuntime**) ((uint8_t*) u + offset); for (;;) { char line[LINE_MAX], *l, *v; size_t k; if (!fgets(line, sizeof(line), f)) { if (feof(f)) return 0; return -errno; } char_array_0(line); l = strstrip(line); /* End marker */ if (isempty(l)) return 0; k = strcspn(l, "="); if (l[k] == '=') { l[k] = 0; v = l+k+1; } else v = l+k; if (streq(l, "job")) { if (v[0] == '\0') { /* new-style serialized job */ Job *j; j = job_new_raw(u); if (!j) return log_oom(); r = job_deserialize(j, f, fds); if (r < 0) { job_free(j); return r; } r = hashmap_put(u->manager->jobs, UINT32_TO_PTR(j->id), j); if (r < 0) { job_free(j); return r; } r = job_install_deserialized(j); if (r < 0) { hashmap_remove(u->manager->jobs, UINT32_TO_PTR(j->id)); job_free(j); return r; } } else /* legacy for pre-44 */ log_unit_warning(u, "Update from too old systemd versions are unsupported, cannot deserialize job: %s", v); continue; } else if (streq(l, "inactive-exit-timestamp")) { dual_timestamp_deserialize(v, &u->inactive_exit_timestamp); continue; } else if (streq(l, "active-enter-timestamp")) { dual_timestamp_deserialize(v, &u->active_enter_timestamp); continue; } else if (streq(l, "active-exit-timestamp")) { dual_timestamp_deserialize(v, &u->active_exit_timestamp); continue; } else if (streq(l, "inactive-enter-timestamp")) { dual_timestamp_deserialize(v, &u->inactive_enter_timestamp); continue; } else if (streq(l, "condition-timestamp")) { dual_timestamp_deserialize(v, &u->condition_timestamp); continue; } else if (streq(l, "assert-timestamp")) { dual_timestamp_deserialize(v, &u->assert_timestamp); continue; } else if (streq(l, "condition-result")) { r = parse_boolean(v); if (r < 0) log_unit_debug(u, "Failed to parse condition result value %s, ignoring.", v); else u->condition_result = r; continue; } else if (streq(l, "assert-result")) { r = parse_boolean(v); if (r < 0) log_unit_debug(u, "Failed to parse assert result value %s, ignoring.", v); else u->assert_result = r; continue; } else if (streq(l, "transient")) { r = parse_boolean(v); if (r < 0) log_unit_debug(u, "Failed to parse transient bool %s, ignoring.", v); else u->transient = r; continue; } else if (streq(l, "cpuacct-usage-base")) { r = safe_atou64(v, &u->cpuacct_usage_base); if (r < 0) log_unit_debug(u, "Failed to parse CPU usage %s, ignoring.", v); continue; } else if (streq(l, "cgroup")) { r = unit_set_cgroup_path(u, v); if (r < 0) log_unit_debug_errno(u, r, "Failed to set cgroup path %s, ignoring: %m", v); (void) unit_watch_cgroup(u); continue; } else if (streq(l, "cgroup-realized")) { int b; b = parse_boolean(v); if (b < 0) log_unit_debug(u, "Failed to parse cgroup-realized bool %s, ignoring.", v); else u->cgroup_realized = b; continue; } else if (streq(l, "netclass-id")) { r = safe_atou32(v, &u->cgroup_netclass_id); if (r < 0) log_unit_debug(u, "Failed to parse netclass ID %s, ignoring.", v); else { r = unit_add_to_netclass_cgroup(u); if (r < 0) log_unit_debug_errno(u, r, "Failed to add unit to netclass cgroup, ignoring: %m"); } continue; } if (unit_can_serialize(u)) { if (rt) { r = exec_runtime_deserialize_item(u, rt, l, v, fds); if (r < 0) { log_unit_warning(u, "Failed to deserialize runtime parameter '%s', ignoring.", l); continue; } /* Returns positive if key was handled by the call */ if (r > 0) continue; } r = UNIT_VTABLE(u)->deserialize_item(u, l, v, fds); if (r < 0) log_unit_warning(u, "Failed to deserialize unit parameter '%s', ignoring.", l); } } } int unit_add_node_link(Unit *u, const char *what, bool wants) { Unit *device; _cleanup_free_ char *e = NULL; int r; assert(u); /* Adds in links to the device node that this unit is based on */ if (isempty(what)) return 0; if (!is_device_path(what)) return 0; /* When device units aren't supported (such as in a * container), don't create dependencies on them. */ if (!unit_type_supported(UNIT_DEVICE)) return 0; r = unit_name_from_path(what, ".device", &e); if (r < 0) return r; r = manager_load_unit(u->manager, e, NULL, NULL, &device); if (r < 0) return r; r = unit_add_two_dependencies(u, UNIT_AFTER, u->manager->running_as == MANAGER_SYSTEM ? UNIT_BINDS_TO : UNIT_WANTS, device, true); if (r < 0) return r; if (wants) { r = unit_add_dependency(device, UNIT_WANTS, u, false); if (r < 0) return r; } return 0; } int unit_coldplug(Unit *u) { int r; assert(u); /* Make sure we don't enter a loop, when coldplugging * recursively. */ if (u->coldplugged) return 0; u->coldplugged = true; if (UNIT_VTABLE(u)->coldplug) { r = UNIT_VTABLE(u)->coldplug(u); if (r < 0) return r; } if (u->job) { r = job_coldplug(u->job); if (r < 0) return r; } return 0; } void unit_status_printf(Unit *u, const char *status, const char *unit_status_msg_format) { DISABLE_WARNING_FORMAT_NONLITERAL; manager_status_printf(u->manager, STATUS_TYPE_NORMAL, status, unit_status_msg_format, unit_description(u)); REENABLE_WARNING; } bool unit_need_daemon_reload(Unit *u) { _cleanup_strv_free_ char **t = NULL; char **path; struct stat st; unsigned loaded_cnt, current_cnt; assert(u); if (u->fragment_path) { zero(st); if (stat(u->fragment_path, &st) < 0) /* What, cannot access this anymore? */ return true; if (u->fragment_mtime > 0 && timespec_load(&st.st_mtim) != u->fragment_mtime) return true; } if (u->source_path) { zero(st); if (stat(u->source_path, &st) < 0) return true; if (u->source_mtime > 0 && timespec_load(&st.st_mtim) != u->source_mtime) return true; } (void) unit_find_dropin_paths(u, &t); loaded_cnt = strv_length(t); current_cnt = strv_length(u->dropin_paths); if (loaded_cnt == current_cnt) { if (loaded_cnt == 0) return false; if (strv_overlap(u->dropin_paths, t)) { STRV_FOREACH(path, u->dropin_paths) { zero(st); if (stat(*path, &st) < 0) return true; if (u->dropin_mtime > 0 && timespec_load(&st.st_mtim) > u->dropin_mtime) return true; } return false; } else return true; } else return true; } void unit_reset_failed(Unit *u) { assert(u); if (UNIT_VTABLE(u)->reset_failed) UNIT_VTABLE(u)->reset_failed(u); } Unit *unit_following(Unit *u) { assert(u); if (UNIT_VTABLE(u)->following) return UNIT_VTABLE(u)->following(u); return NULL; } bool unit_stop_pending(Unit *u) { assert(u); /* This call does check the current state of the unit. It's * hence useful to be called from state change calls of the * unit itself, where the state isn't updated yet. This is * different from unit_inactive_or_pending() which checks both * the current state and for a queued job. */ return u->job && u->job->type == JOB_STOP; } bool unit_inactive_or_pending(Unit *u) { assert(u); /* Returns true if the unit is inactive or going down */ if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u))) return true; if (unit_stop_pending(u)) return true; return false; } bool unit_active_or_pending(Unit *u) { assert(u); /* Returns true if the unit is active or going up */ if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))) return true; if (u->job && (u->job->type == JOB_START || u->job->type == JOB_RELOAD_OR_START || u->job->type == JOB_RESTART)) return true; return false; } int unit_kill(Unit *u, KillWho w, int signo, sd_bus_error *error) { assert(u); assert(w >= 0 && w < _KILL_WHO_MAX); assert(signo > 0); assert(signo < _NSIG); if (!UNIT_VTABLE(u)->kill) return -EOPNOTSUPP; return UNIT_VTABLE(u)->kill(u, w, signo, error); } static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) { Set *pid_set; int r; pid_set = set_new(NULL); if (!pid_set) return NULL; /* Exclude the main/control pids from being killed via the cgroup */ if (main_pid > 0) { r = set_put(pid_set, PID_TO_PTR(main_pid)); if (r < 0) goto fail; } if (control_pid > 0) { r = set_put(pid_set, PID_TO_PTR(control_pid)); if (r < 0) goto fail; } return pid_set; fail: set_free(pid_set); return NULL; } int unit_kill_common( Unit *u, KillWho who, int signo, pid_t main_pid, pid_t control_pid, sd_bus_error *error) { int r = 0; bool killed = false; if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL)) { if (main_pid < 0) return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type)); else if (main_pid == 0) return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill"); } if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL)) { if (control_pid < 0) return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type)); else if (control_pid == 0) return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill"); } if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL, KILL_ALL, KILL_ALL_FAIL)) if (control_pid > 0) { if (kill(control_pid, signo) < 0) r = -errno; else killed = true; } if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL, KILL_ALL, KILL_ALL_FAIL)) if (main_pid > 0) { if (kill(main_pid, signo) < 0) r = -errno; else killed = true; } if (IN_SET(who, KILL_ALL, KILL_ALL_FAIL) && u->cgroup_path) { _cleanup_set_free_ Set *pid_set = NULL; int q; /* Exclude the main/control pids from being killed via the cgroup */ pid_set = unit_pid_set(main_pid, control_pid); if (!pid_set) return -ENOMEM; q = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, false, false, false, pid_set); if (q < 0 && q != -EAGAIN && q != -ESRCH && q != -ENOENT) r = q; else killed = true; } if (r == 0 && !killed && IN_SET(who, KILL_ALL_FAIL, KILL_CONTROL_FAIL, KILL_ALL_FAIL)) return -ESRCH; return r; } int unit_following_set(Unit *u, Set **s) { assert(u); assert(s); if (UNIT_VTABLE(u)->following_set) return UNIT_VTABLE(u)->following_set(u, s); *s = NULL; return 0; } UnitFileState unit_get_unit_file_state(Unit *u) { assert(u); if (u->unit_file_state < 0 && u->fragment_path) u->unit_file_state = unit_file_get_state( u->manager->running_as == MANAGER_SYSTEM ? UNIT_FILE_SYSTEM : UNIT_FILE_USER, NULL, basename(u->fragment_path)); return u->unit_file_state; } int unit_get_unit_file_preset(Unit *u) { assert(u); if (u->unit_file_preset < 0 && u->fragment_path) u->unit_file_preset = unit_file_query_preset( u->manager->running_as == MANAGER_SYSTEM ? UNIT_FILE_SYSTEM : UNIT_FILE_USER, NULL, basename(u->fragment_path)); return u->unit_file_preset; } Unit* unit_ref_set(UnitRef *ref, Unit *u) { assert(ref); assert(u); if (ref->unit) unit_ref_unset(ref); ref->unit = u; LIST_PREPEND(refs, u->refs, ref); return u; } void unit_ref_unset(UnitRef *ref) { assert(ref); if (!ref->unit) return; LIST_REMOVE(refs, ref->unit->refs, ref); ref->unit = NULL; } int unit_patch_contexts(Unit *u) { CGroupContext *cc; ExecContext *ec; unsigned i; int r; assert(u); /* Patch in the manager defaults into the exec and cgroup * contexts, _after_ the rest of the settings have been * initialized */ ec = unit_get_exec_context(u); if (ec) { /* This only copies in the ones that need memory */ for (i = 0; i < _RLIMIT_MAX; i++) if (u->manager->rlimit[i] && !ec->rlimit[i]) { ec->rlimit[i] = newdup(struct rlimit, u->manager->rlimit[i], 1); if (!ec->rlimit[i]) return -ENOMEM; } if (u->manager->running_as == MANAGER_USER && !ec->working_directory) { r = get_home_dir(&ec->working_directory); if (r < 0) return r; /* Allow user services to run, even if the * home directory is missing */ ec->working_directory_missing_ok = true; } if (u->manager->running_as == MANAGER_USER && (ec->syscall_whitelist || !set_isempty(ec->syscall_filter) || !set_isempty(ec->syscall_archs) || ec->address_families_whitelist || !set_isempty(ec->address_families))) ec->no_new_privileges = true; if (ec->private_devices) ec->capability_bounding_set_drop |= (uint64_t) 1ULL << (uint64_t) CAP_MKNOD; } cc = unit_get_cgroup_context(u); if (cc) { if (ec && ec->private_devices && cc->device_policy == CGROUP_AUTO) cc->device_policy = CGROUP_CLOSED; } return 0; } ExecContext *unit_get_exec_context(Unit *u) { size_t offset; assert(u); if (u->type < 0) return NULL; offset = UNIT_VTABLE(u)->exec_context_offset; if (offset <= 0) return NULL; return (ExecContext*) ((uint8_t*) u + offset); } KillContext *unit_get_kill_context(Unit *u) { size_t offset; assert(u); if (u->type < 0) return NULL; offset = UNIT_VTABLE(u)->kill_context_offset; if (offset <= 0) return NULL; return (KillContext*) ((uint8_t*) u + offset); } CGroupContext *unit_get_cgroup_context(Unit *u) { size_t offset; if (u->type < 0) return NULL; offset = UNIT_VTABLE(u)->cgroup_context_offset; if (offset <= 0) return NULL; return (CGroupContext*) ((uint8_t*) u + offset); } ExecRuntime *unit_get_exec_runtime(Unit *u) { size_t offset; if (u->type < 0) return NULL; offset = UNIT_VTABLE(u)->exec_runtime_offset; if (offset <= 0) return NULL; return *(ExecRuntime**) ((uint8_t*) u + offset); } static int unit_drop_in_dir(Unit *u, UnitSetPropertiesMode mode, bool transient, char **dir) { assert(u); if (u->manager->running_as == MANAGER_USER) { int r; if (mode == UNIT_PERSISTENT && !transient) r = user_config_home(dir); else r = user_runtime_dir(dir); if (r == 0) return -ENOENT; return r; } if (mode == UNIT_PERSISTENT && !transient) *dir = strdup("/etc/systemd/system"); else *dir = strdup("/run/systemd/system"); if (!*dir) return -ENOMEM; return 0; } int unit_write_drop_in(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *data) { _cleanup_free_ char *dir = NULL, *p = NULL, *q = NULL; int r; assert(u); if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME)) return 0; r = unit_drop_in_dir(u, mode, u->transient, &dir); if (r < 0) return r; r = write_drop_in(dir, u->id, 50, name, data); if (r < 0) return r; r = drop_in_file(dir, u->id, 50, name, &p, &q); if (r < 0) return r; r = strv_extend(&u->dropin_paths, q); if (r < 0) return r; strv_sort(u->dropin_paths); strv_uniq(u->dropin_paths); u->dropin_mtime = now(CLOCK_REALTIME); return 0; } int unit_write_drop_in_format(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *format, ...) { _cleanup_free_ char *p = NULL; va_list ap; int r; assert(u); assert(name); assert(format); if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME)) return 0; va_start(ap, format); r = vasprintf(&p, format, ap); va_end(ap); if (r < 0) return -ENOMEM; return unit_write_drop_in(u, mode, name, p); } int unit_write_drop_in_private(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *data) { _cleanup_free_ char *ndata = NULL; assert(u); assert(name); assert(data); if (!UNIT_VTABLE(u)->private_section) return -EINVAL; if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME)) return 0; ndata = strjoin("[", UNIT_VTABLE(u)->private_section, "]\n", data, NULL); if (!ndata) return -ENOMEM; return unit_write_drop_in(u, mode, name, ndata); } int unit_write_drop_in_private_format(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *format, ...) { _cleanup_free_ char *p = NULL; va_list ap; int r; assert(u); assert(name); assert(format); if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME)) return 0; va_start(ap, format); r = vasprintf(&p, format, ap); va_end(ap); if (r < 0) return -ENOMEM; return unit_write_drop_in_private(u, mode, name, p); } int unit_make_transient(Unit *u) { assert(u); if (!UNIT_VTABLE(u)->can_transient) return -EOPNOTSUPP; u->load_state = UNIT_STUB; u->load_error = 0; u->transient = true; u->fragment_path = mfree(u->fragment_path); return 0; } int unit_kill_context( Unit *u, KillContext *c, KillOperation k, pid_t main_pid, pid_t control_pid, bool main_pid_alien) { bool wait_for_exit = false; int sig, r; assert(u); assert(c); if (c->kill_mode == KILL_NONE) return 0; switch (k) { case KILL_KILL: sig = SIGKILL; break; case KILL_ABORT: sig = SIGABRT; break; case KILL_TERMINATE: sig = c->kill_signal; break; default: assert_not_reached("KillOperation unknown"); } if (main_pid > 0) { r = kill_and_sigcont(main_pid, sig); if (r < 0 && r != -ESRCH) { _cleanup_free_ char *comm = NULL; get_process_comm(main_pid, &comm); log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s), ignoring: %m", main_pid, strna(comm)); } else { if (!main_pid_alien) wait_for_exit = true; if (c->send_sighup && k == KILL_TERMINATE) (void) kill(main_pid, SIGHUP); } } if (control_pid > 0) { r = kill_and_sigcont(control_pid, sig); if (r < 0 && r != -ESRCH) { _cleanup_free_ char *comm = NULL; get_process_comm(control_pid, &comm); log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", control_pid, strna(comm)); } else { wait_for_exit = true; if (c->send_sighup && k == KILL_TERMINATE) (void) kill(control_pid, SIGHUP); } } if (u->cgroup_path && (c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL))) { _cleanup_set_free_ Set *pid_set = NULL; /* Exclude the main/control pids from being killed via the cgroup */ pid_set = unit_pid_set(main_pid, control_pid); if (!pid_set) return -ENOMEM; r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, sig, true, k != KILL_TERMINATE, false, pid_set); if (r < 0) { if (r != -EAGAIN && r != -ESRCH && r != -ENOENT) log_unit_warning_errno(u, r, "Failed to kill control group %s, ignoring: %m", u->cgroup_path); } else if (r > 0) { /* FIXME: For now, on the legacy hierarchy, we * will not wait for the cgroup members to die * if we are running in a container or if this * is a delegation unit, simply because cgroup * notification is unreliable in these * cases. It doesn't work at all in * containers, and outside of containers it * can be confused easily by left-over * directories in the cgroup -- which however * should not exist in non-delegated units. On * the unified hierarchy that's different, * there we get proper events. Hence rely on * them.*/ if (cg_unified() > 0 || (detect_container() == 0 && !unit_cgroup_delegate(u))) wait_for_exit = true; if (c->send_sighup && k != KILL_KILL) { set_free(pid_set); pid_set = unit_pid_set(main_pid, control_pid); if (!pid_set) return -ENOMEM; cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, SIGHUP, false, true, false, pid_set); } } } return wait_for_exit; } int unit_require_mounts_for(Unit *u, const char *path) { char prefix[strlen(path) + 1], *p; int r; assert(u); assert(path); /* Registers a unit for requiring a certain path and all its * prefixes. We keep a simple array of these paths in the * unit, since its usually short. However, we build a prefix * table for all possible prefixes so that new appearing mount * units can easily determine which units to make themselves a * dependency of. */ if (!path_is_absolute(path)) return -EINVAL; p = strdup(path); if (!p) return -ENOMEM; path_kill_slashes(p); if (!path_is_safe(p)) { free(p); return -EPERM; } if (strv_contains(u->requires_mounts_for, p)) { free(p); return 0; } r = strv_consume(&u->requires_mounts_for, p); if (r < 0) return r; PATH_FOREACH_PREFIX_MORE(prefix, p) { Set *x; x = hashmap_get(u->manager->units_requiring_mounts_for, prefix); if (!x) { char *q; r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &string_hash_ops); if (r < 0) return r; q = strdup(prefix); if (!q) return -ENOMEM; x = set_new(NULL); if (!x) { free(q); return -ENOMEM; } r = hashmap_put(u->manager->units_requiring_mounts_for, q, x); if (r < 0) { free(q); set_free(x); return r; } } r = set_put(x, u); if (r < 0) return r; } return 0; } int unit_setup_exec_runtime(Unit *u) { ExecRuntime **rt; size_t offset; Iterator i; Unit *other; offset = UNIT_VTABLE(u)->exec_runtime_offset; assert(offset > 0); /* Check if there already is an ExecRuntime for this unit? */ rt = (ExecRuntime**) ((uint8_t*) u + offset); if (*rt) return 0; /* Try to get it from somebody else */ SET_FOREACH(other, u->dependencies[UNIT_JOINS_NAMESPACE_OF], i) { *rt = unit_get_exec_runtime(other); if (*rt) { exec_runtime_ref(*rt); return 0; } } return exec_runtime_make(rt, unit_get_exec_context(u), u->id); } bool unit_type_supported(UnitType t) { if (_unlikely_(t < 0)) return false; if (_unlikely_(t >= _UNIT_TYPE_MAX)) return false; if (!unit_vtable[t]->supported) return true; return unit_vtable[t]->supported(); } void unit_warn_if_dir_nonempty(Unit *u, const char* where) { int r; assert(u); assert(where); r = dir_is_empty(where); if (r > 0) return; if (r < 0) { log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where); return; } log_struct(LOG_NOTICE, LOG_MESSAGE_ID(SD_MESSAGE_OVERMOUNTING), LOG_UNIT_ID(u), LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where), "WHERE=%s", where, NULL); } int unit_fail_if_symlink(Unit *u, const char* where) { int r; assert(u); assert(where); r = is_symlink(where); if (r < 0) { log_unit_debug_errno(u, r, "Failed to check symlink %s, ignoring: %m", where); return 0; } if (r == 0) return 0; log_struct(LOG_ERR, LOG_MESSAGE_ID(SD_MESSAGE_OVERMOUNTING), LOG_UNIT_ID(u), LOG_UNIT_MESSAGE(u, "Mount on symlink %s not allowed.", where), "WHERE=%s", where, NULL); return -ELOOP; }