/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
/***
This file is part of systemd.
Copyright 2010 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see .
***/
#include
#include
#include
#include
#include
#include "sd-id128.h"
#include "sd-messages.h"
#include "set.h"
#include "unit.h"
#include "macro.h"
#include "strv.h"
#include "path-util.h"
#include "load-fragment.h"
#include "load-dropin.h"
#include "log.h"
#include "unit-name.h"
#include "dbus-unit.h"
#include "special.h"
#include "cgroup-util.h"
#include "missing.h"
#include "mkdir.h"
#include "fileio-label.h"
#include "bus-common-errors.h"
#include "dbus.h"
#include "execute.h"
#include "dropin.h"
#include "formats-util.h"
#include "process-util.h"
const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = {
[UNIT_SERVICE] = &service_vtable,
[UNIT_SOCKET] = &socket_vtable,
[UNIT_BUSNAME] = &busname_vtable,
[UNIT_TARGET] = &target_vtable,
[UNIT_SNAPSHOT] = &snapshot_vtable,
[UNIT_DEVICE] = &device_vtable,
[UNIT_MOUNT] = &mount_vtable,
[UNIT_AUTOMOUNT] = &automount_vtable,
[UNIT_SWAP] = &swap_vtable,
[UNIT_TIMER] = &timer_vtable,
[UNIT_PATH] = &path_vtable,
[UNIT_SLICE] = &slice_vtable,
[UNIT_SCOPE] = &scope_vtable
};
static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency);
Unit *unit_new(Manager *m, size_t size) {
Unit *u;
assert(m);
assert(size >= sizeof(Unit));
u = malloc0(size);
if (!u)
return NULL;
u->names = set_new(&string_hash_ops);
if (!u->names) {
free(u);
return NULL;
}
u->manager = m;
u->type = _UNIT_TYPE_INVALID;
u->default_dependencies = true;
u->unit_file_state = _UNIT_FILE_STATE_INVALID;
u->unit_file_preset = -1;
u->on_failure_job_mode = JOB_REPLACE;
RATELIMIT_INIT(u->auto_stop_ratelimit, 10 * USEC_PER_SEC, 16);
return u;
}
bool unit_has_name(Unit *u, const char *name) {
assert(u);
assert(name);
return !!set_get(u->names, (char*) name);
}
static void unit_init(Unit *u) {
CGroupContext *cc;
ExecContext *ec;
KillContext *kc;
assert(u);
assert(u->manager);
assert(u->type >= 0);
cc = unit_get_cgroup_context(u);
if (cc) {
cgroup_context_init(cc);
/* Copy in the manager defaults into the cgroup
* context, _before_ the rest of the settings have
* been initialized */
cc->cpu_accounting = u->manager->default_cpu_accounting;
cc->blockio_accounting = u->manager->default_blockio_accounting;
cc->memory_accounting = u->manager->default_memory_accounting;
}
ec = unit_get_exec_context(u);
if (ec)
exec_context_init(ec);
kc = unit_get_kill_context(u);
if (kc)
kill_context_init(kc);
if (UNIT_VTABLE(u)->init)
UNIT_VTABLE(u)->init(u);
}
int unit_add_name(Unit *u, const char *text) {
_cleanup_free_ char *s = NULL, *i = NULL;
UnitType t;
int r;
assert(u);
assert(text);
if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) {
if (!u->instance)
return -EINVAL;
r = unit_name_replace_instance(text, u->instance, &s);
if (r < 0)
return r;
} else {
s = strdup(text);
if (!s)
return -ENOMEM;
}
if (set_contains(u->names, s))
return 0;
if (hashmap_contains(u->manager->units, s))
return -EEXIST;
if (!unit_name_is_valid(s, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
return -EINVAL;
t = unit_name_to_type(s);
if (t < 0)
return -EINVAL;
if (u->type != _UNIT_TYPE_INVALID && t != u->type)
return -EINVAL;
r = unit_name_to_instance(s, &i);
if (r < 0)
return r;
if (i && unit_vtable[t]->no_instances)
return -EINVAL;
/* Ensure that this unit is either instanced or not instanced,
* but not both. Note that we do allow names with different
* instance names however! */
if (u->type != _UNIT_TYPE_INVALID && !u->instance != !i)
return -EINVAL;
if (unit_vtable[t]->no_alias && !set_isempty(u->names))
return -EEXIST;
if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES)
return -E2BIG;
r = set_put(u->names, s);
if (r < 0)
return r;
assert(r > 0);
r = hashmap_put(u->manager->units, s, u);
if (r < 0) {
(void) set_remove(u->names, s);
return r;
}
if (u->type == _UNIT_TYPE_INVALID) {
u->type = t;
u->id = s;
u->instance = i;
LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u);
unit_init(u);
i = NULL;
}
s = NULL;
unit_add_to_dbus_queue(u);
return 0;
}
int unit_choose_id(Unit *u, const char *name) {
_cleanup_free_ char *t = NULL;
char *s, *i;
int r;
assert(u);
assert(name);
if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
if (!u->instance)
return -EINVAL;
r = unit_name_replace_instance(name, u->instance, &t);
if (r < 0)
return r;
name = t;
}
/* Selects one of the names of this unit as the id */
s = set_get(u->names, (char*) name);
if (!s)
return -ENOENT;
/* Determine the new instance from the new id */
r = unit_name_to_instance(s, &i);
if (r < 0)
return r;
u->id = s;
free(u->instance);
u->instance = i;
unit_add_to_dbus_queue(u);
return 0;
}
int unit_set_description(Unit *u, const char *description) {
char *s;
assert(u);
if (isempty(description))
s = NULL;
else {
s = strdup(description);
if (!s)
return -ENOMEM;
}
free(u->description);
u->description = s;
unit_add_to_dbus_queue(u);
return 0;
}
bool unit_check_gc(Unit *u) {
UnitActiveState state;
assert(u);
if (u->job)
return true;
if (u->nop_job)
return true;
state = unit_active_state(u);
/* If the unit is inactive and failed and no job is queued for
* it, then release its runtime resources */
if (UNIT_IS_INACTIVE_OR_FAILED(state) &&
UNIT_VTABLE(u)->release_resources)
UNIT_VTABLE(u)->release_resources(u);
/* But we keep the unit object around for longer when it is
* referenced or configured to not be gc'ed */
if (state != UNIT_INACTIVE)
return true;
if (UNIT_VTABLE(u)->no_gc)
return true;
if (u->no_gc)
return true;
if (u->refs)
return true;
if (UNIT_VTABLE(u)->check_gc)
if (UNIT_VTABLE(u)->check_gc(u))
return true;
return false;
}
void unit_add_to_load_queue(Unit *u) {
assert(u);
assert(u->type != _UNIT_TYPE_INVALID);
if (u->load_state != UNIT_STUB || u->in_load_queue)
return;
LIST_PREPEND(load_queue, u->manager->load_queue, u);
u->in_load_queue = true;
}
void unit_add_to_cleanup_queue(Unit *u) {
assert(u);
if (u->in_cleanup_queue)
return;
LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u);
u->in_cleanup_queue = true;
}
void unit_add_to_gc_queue(Unit *u) {
assert(u);
if (u->in_gc_queue || u->in_cleanup_queue)
return;
if (unit_check_gc(u))
return;
LIST_PREPEND(gc_queue, u->manager->gc_queue, u);
u->in_gc_queue = true;
u->manager->n_in_gc_queue ++;
}
void unit_add_to_dbus_queue(Unit *u) {
assert(u);
assert(u->type != _UNIT_TYPE_INVALID);
if (u->load_state == UNIT_STUB || u->in_dbus_queue)
return;
/* Shortcut things if nobody cares */
if (sd_bus_track_count(u->manager->subscribed) <= 0 &&
set_isempty(u->manager->private_buses)) {
u->sent_dbus_new_signal = true;
return;
}
LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u);
u->in_dbus_queue = true;
}
static void bidi_set_free(Unit *u, Set *s) {
Iterator i;
Unit *other;
assert(u);
/* Frees the set and makes sure we are dropped from the
* inverse pointers */
SET_FOREACH(other, s, i) {
UnitDependency d;
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
set_remove(other->dependencies[d], u);
unit_add_to_gc_queue(other);
}
set_free(s);
}
static void unit_remove_transient(Unit *u) {
char **i;
assert(u);
if (!u->transient)
return;
if (u->fragment_path)
unlink(u->fragment_path);
STRV_FOREACH(i, u->dropin_paths) {
_cleanup_free_ char *p = NULL;
int r;
unlink(*i);
r = path_get_parent(*i, &p);
if (r >= 0)
rmdir(p);
}
}
static void unit_free_requires_mounts_for(Unit *u) {
char **j;
STRV_FOREACH(j, u->requires_mounts_for) {
char s[strlen(*j) + 1];
PATH_FOREACH_PREFIX_MORE(s, *j) {
char *y;
Set *x;
x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y);
if (!x)
continue;
set_remove(x, u);
if (set_isempty(x)) {
hashmap_remove(u->manager->units_requiring_mounts_for, y);
free(y);
set_free(x);
}
}
}
strv_free(u->requires_mounts_for);
u->requires_mounts_for = NULL;
}
static void unit_done(Unit *u) {
ExecContext *ec;
CGroupContext *cc;
assert(u);
if (u->type < 0)
return;
if (UNIT_VTABLE(u)->done)
UNIT_VTABLE(u)->done(u);
ec = unit_get_exec_context(u);
if (ec)
exec_context_done(ec);
cc = unit_get_cgroup_context(u);
if (cc)
cgroup_context_done(cc);
}
void unit_free(Unit *u) {
UnitDependency d;
Iterator i;
char *t;
assert(u);
if (u->manager->n_reloading <= 0)
unit_remove_transient(u);
bus_unit_send_removed_signal(u);
unit_done(u);
unit_free_requires_mounts_for(u);
SET_FOREACH(t, u->names, i)
hashmap_remove_value(u->manager->units, t, u);
if (u->job) {
Job *j = u->job;
job_uninstall(j);
job_free(j);
}
if (u->nop_job) {
Job *j = u->nop_job;
job_uninstall(j);
job_free(j);
}
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
bidi_set_free(u, u->dependencies[d]);
if (u->type != _UNIT_TYPE_INVALID)
LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u);
if (u->in_load_queue)
LIST_REMOVE(load_queue, u->manager->load_queue, u);
if (u->in_dbus_queue)
LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u);
if (u->in_cleanup_queue)
LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u);
if (u->in_gc_queue) {
LIST_REMOVE(gc_queue, u->manager->gc_queue, u);
u->manager->n_in_gc_queue--;
}
if (u->in_cgroup_queue)
LIST_REMOVE(cgroup_queue, u->manager->cgroup_queue, u);
if (u->cgroup_path) {
hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
free(u->cgroup_path);
}
manager_update_failed_units(u->manager, u, false);
set_remove(u->manager->startup_units, u);
free(u->description);
strv_free(u->documentation);
free(u->fragment_path);
free(u->source_path);
strv_free(u->dropin_paths);
free(u->instance);
free(u->job_timeout_reboot_arg);
set_free_free(u->names);
unit_unwatch_all_pids(u);
condition_free_list(u->conditions);
condition_free_list(u->asserts);
unit_ref_unset(&u->slice);
while (u->refs)
unit_ref_unset(u->refs);
free(u);
}
UnitActiveState unit_active_state(Unit *u) {
assert(u);
if (u->load_state == UNIT_MERGED)
return unit_active_state(unit_follow_merge(u));
/* After a reload it might happen that a unit is not correctly
* loaded but still has a process around. That's why we won't
* shortcut failed loading to UNIT_INACTIVE_FAILED. */
return UNIT_VTABLE(u)->active_state(u);
}
const char* unit_sub_state_to_string(Unit *u) {
assert(u);
return UNIT_VTABLE(u)->sub_state_to_string(u);
}
static int complete_move(Set **s, Set **other) {
int r;
assert(s);
assert(other);
if (!*other)
return 0;
if (*s) {
r = set_move(*s, *other);
if (r < 0)
return r;
} else {
*s = *other;
*other = NULL;
}
return 0;
}
static int merge_names(Unit *u, Unit *other) {
char *t;
Iterator i;
int r;
assert(u);
assert(other);
r = complete_move(&u->names, &other->names);
if (r < 0)
return r;
set_free_free(other->names);
other->names = NULL;
other->id = NULL;
SET_FOREACH(t, u->names, i)
assert_se(hashmap_replace(u->manager->units, t, u) == 0);
return 0;
}
static int reserve_dependencies(Unit *u, Unit *other, UnitDependency d) {
unsigned n_reserve;
assert(u);
assert(other);
assert(d < _UNIT_DEPENDENCY_MAX);
/*
* If u does not have this dependency set allocated, there is no need
* to reserve anything. In that case other's set will be transferred
* as a whole to u by complete_move().
*/
if (!u->dependencies[d])
return 0;
/* merge_dependencies() will skip a u-on-u dependency */
n_reserve = set_size(other->dependencies[d]) - !!set_get(other->dependencies[d], u);
return set_reserve(u->dependencies[d], n_reserve);
}
static void merge_dependencies(Unit *u, Unit *other, const char *other_id, UnitDependency d) {
Iterator i;
Unit *back;
int r;
assert(u);
assert(other);
assert(d < _UNIT_DEPENDENCY_MAX);
/* Fix backwards pointers */
SET_FOREACH(back, other->dependencies[d], i) {
UnitDependency k;
for (k = 0; k < _UNIT_DEPENDENCY_MAX; k++) {
/* Do not add dependencies between u and itself */
if (back == u) {
if (set_remove(back->dependencies[k], other))
maybe_warn_about_dependency(u, other_id, k);
} else {
r = set_remove_and_put(back->dependencies[k], other, u);
if (r == -EEXIST)
set_remove(back->dependencies[k], other);
else
assert(r >= 0 || r == -ENOENT);
}
}
}
/* Also do not move dependencies on u to itself */
back = set_remove(other->dependencies[d], u);
if (back)
maybe_warn_about_dependency(u, other_id, d);
/* The move cannot fail. The caller must have performed a reservation. */
assert_se(complete_move(&u->dependencies[d], &other->dependencies[d]) == 0);
set_free(other->dependencies[d]);
other->dependencies[d] = NULL;
}
int unit_merge(Unit *u, Unit *other) {
UnitDependency d;
const char *other_id = NULL;
int r;
assert(u);
assert(other);
assert(u->manager == other->manager);
assert(u->type != _UNIT_TYPE_INVALID);
other = unit_follow_merge(other);
if (other == u)
return 0;
if (u->type != other->type)
return -EINVAL;
if (!u->instance != !other->instance)
return -EINVAL;
if (other->load_state != UNIT_STUB &&
other->load_state != UNIT_NOT_FOUND)
return -EEXIST;
if (other->job)
return -EEXIST;
if (other->nop_job)
return -EEXIST;
if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
return -EEXIST;
if (other->id)
other_id = strdupa(other->id);
/* Make reservations to ensure merge_dependencies() won't fail */
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
r = reserve_dependencies(u, other, d);
/*
* We don't rollback reservations if we fail. We don't have
* a way to undo reservations. A reservation is not a leak.
*/
if (r < 0)
return r;
}
/* Merge names */
r = merge_names(u, other);
if (r < 0)
return r;
/* Redirect all references */
while (other->refs)
unit_ref_set(other->refs, u);
/* Merge dependencies */
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
merge_dependencies(u, other, other_id, d);
other->load_state = UNIT_MERGED;
other->merged_into = u;
/* If there is still some data attached to the other node, we
* don't need it anymore, and can free it. */
if (other->load_state != UNIT_STUB)
if (UNIT_VTABLE(other)->done)
UNIT_VTABLE(other)->done(other);
unit_add_to_dbus_queue(u);
unit_add_to_cleanup_queue(other);
return 0;
}
int unit_merge_by_name(Unit *u, const char *name) {
Unit *other;
int r;
_cleanup_free_ char *s = NULL;
assert(u);
assert(name);
if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
if (!u->instance)
return -EINVAL;
r = unit_name_replace_instance(name, u->instance, &s);
if (r < 0)
return r;
name = s;
}
other = manager_get_unit(u->manager, name);
if (other)
return unit_merge(u, other);
return unit_add_name(u, name);
}
Unit* unit_follow_merge(Unit *u) {
assert(u);
while (u->load_state == UNIT_MERGED)
assert_se(u = u->merged_into);
return u;
}
int unit_add_exec_dependencies(Unit *u, ExecContext *c) {
int r;
assert(u);
assert(c);
if (c->working_directory) {
r = unit_require_mounts_for(u, c->working_directory);
if (r < 0)
return r;
}
if (c->root_directory) {
r = unit_require_mounts_for(u, c->root_directory);
if (r < 0)
return r;
}
if (u->manager->running_as != MANAGER_SYSTEM)
return 0;
if (c->private_tmp) {
r = unit_require_mounts_for(u, "/tmp");
if (r < 0)
return r;
r = unit_require_mounts_for(u, "/var/tmp");
if (r < 0)
return r;
}
if (c->std_output != EXEC_OUTPUT_KMSG &&
c->std_output != EXEC_OUTPUT_SYSLOG &&
c->std_output != EXEC_OUTPUT_JOURNAL &&
c->std_output != EXEC_OUTPUT_KMSG_AND_CONSOLE &&
c->std_output != EXEC_OUTPUT_SYSLOG_AND_CONSOLE &&
c->std_output != EXEC_OUTPUT_JOURNAL_AND_CONSOLE &&
c->std_error != EXEC_OUTPUT_KMSG &&
c->std_error != EXEC_OUTPUT_SYSLOG &&
c->std_error != EXEC_OUTPUT_JOURNAL &&
c->std_error != EXEC_OUTPUT_KMSG_AND_CONSOLE &&
c->std_error != EXEC_OUTPUT_JOURNAL_AND_CONSOLE &&
c->std_error != EXEC_OUTPUT_SYSLOG_AND_CONSOLE)
return 0;
/* If syslog or kernel logging is requested, make sure our own
* logging daemon is run first. */
r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, NULL, true);
if (r < 0)
return r;
return 0;
}
const char *unit_description(Unit *u) {
assert(u);
if (u->description)
return u->description;
return strna(u->id);
}
void unit_dump(Unit *u, FILE *f, const char *prefix) {
char *t, **j;
UnitDependency d;
Iterator i;
const char *prefix2;
char
timestamp1[FORMAT_TIMESTAMP_MAX],
timestamp2[FORMAT_TIMESTAMP_MAX],
timestamp3[FORMAT_TIMESTAMP_MAX],
timestamp4[FORMAT_TIMESTAMP_MAX],
timespan[FORMAT_TIMESPAN_MAX];
Unit *following;
_cleanup_set_free_ Set *following_set = NULL;
int r;
assert(u);
assert(u->type >= 0);
prefix = strempty(prefix);
prefix2 = strjoina(prefix, "\t");
fprintf(f,
"%s-> Unit %s:\n"
"%s\tDescription: %s\n"
"%s\tInstance: %s\n"
"%s\tUnit Load State: %s\n"
"%s\tUnit Active State: %s\n"
"%s\tInactive Exit Timestamp: %s\n"
"%s\tActive Enter Timestamp: %s\n"
"%s\tActive Exit Timestamp: %s\n"
"%s\tInactive Enter Timestamp: %s\n"
"%s\tGC Check Good: %s\n"
"%s\tNeed Daemon Reload: %s\n"
"%s\tTransient: %s\n"
"%s\tSlice: %s\n"
"%s\tCGroup: %s\n"
"%s\tCGroup realized: %s\n"
"%s\tCGroup mask: 0x%x\n"
"%s\tCGroup members mask: 0x%x\n",
prefix, u->id,
prefix, unit_description(u),
prefix, strna(u->instance),
prefix, unit_load_state_to_string(u->load_state),
prefix, unit_active_state_to_string(unit_active_state(u)),
prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->inactive_exit_timestamp.realtime)),
prefix, strna(format_timestamp(timestamp2, sizeof(timestamp2), u->active_enter_timestamp.realtime)),
prefix, strna(format_timestamp(timestamp3, sizeof(timestamp3), u->active_exit_timestamp.realtime)),
prefix, strna(format_timestamp(timestamp4, sizeof(timestamp4), u->inactive_enter_timestamp.realtime)),
prefix, yes_no(unit_check_gc(u)),
prefix, yes_no(unit_need_daemon_reload(u)),
prefix, yes_no(u->transient),
prefix, strna(unit_slice_name(u)),
prefix, strna(u->cgroup_path),
prefix, yes_no(u->cgroup_realized),
prefix, u->cgroup_realized_mask,
prefix, u->cgroup_members_mask);
SET_FOREACH(t, u->names, i)
fprintf(f, "%s\tName: %s\n", prefix, t);
STRV_FOREACH(j, u->documentation)
fprintf(f, "%s\tDocumentation: %s\n", prefix, *j);
following = unit_following(u);
if (following)
fprintf(f, "%s\tFollowing: %s\n", prefix, following->id);
r = unit_following_set(u, &following_set);
if (r >= 0) {
Unit *other;
SET_FOREACH(other, following_set, i)
fprintf(f, "%s\tFollowing Set Member: %s\n", prefix, other->id);
}
if (u->fragment_path)
fprintf(f, "%s\tFragment Path: %s\n", prefix, u->fragment_path);
if (u->source_path)
fprintf(f, "%s\tSource Path: %s\n", prefix, u->source_path);
STRV_FOREACH(j, u->dropin_paths)
fprintf(f, "%s\tDropIn Path: %s\n", prefix, *j);
if (u->job_timeout > 0)
fprintf(f, "%s\tJob Timeout: %s\n", prefix, format_timespan(timespan, sizeof(timespan), u->job_timeout, 0));
if (u->job_timeout_action != FAILURE_ACTION_NONE)
fprintf(f, "%s\tJob Timeout Action: %s\n", prefix, failure_action_to_string(u->job_timeout_action));
if (u->job_timeout_reboot_arg)
fprintf(f, "%s\tJob Timeout Reboot Argument: %s\n", prefix, u->job_timeout_reboot_arg);
condition_dump_list(u->conditions, f, prefix, condition_type_to_string);
condition_dump_list(u->asserts, f, prefix, assert_type_to_string);
if (dual_timestamp_is_set(&u->condition_timestamp))
fprintf(f,
"%s\tCondition Timestamp: %s\n"
"%s\tCondition Result: %s\n",
prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->condition_timestamp.realtime)),
prefix, yes_no(u->condition_result));
if (dual_timestamp_is_set(&u->assert_timestamp))
fprintf(f,
"%s\tAssert Timestamp: %s\n"
"%s\tAssert Result: %s\n",
prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->assert_timestamp.realtime)),
prefix, yes_no(u->assert_result));
for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
Unit *other;
SET_FOREACH(other, u->dependencies[d], i)
fprintf(f, "%s\t%s: %s\n", prefix, unit_dependency_to_string(d), other->id);
}
if (!strv_isempty(u->requires_mounts_for)) {
fprintf(f,
"%s\tRequiresMountsFor:", prefix);
STRV_FOREACH(j, u->requires_mounts_for)
fprintf(f, " %s", *j);
fputs("\n", f);
}
if (u->load_state == UNIT_LOADED) {
fprintf(f,
"%s\tStopWhenUnneeded: %s\n"
"%s\tRefuseManualStart: %s\n"
"%s\tRefuseManualStop: %s\n"
"%s\tDefaultDependencies: %s\n"
"%s\tOnFailureJobMode: %s\n"
"%s\tIgnoreOnIsolate: %s\n"
"%s\tIgnoreOnSnapshot: %s\n",
prefix, yes_no(u->stop_when_unneeded),
prefix, yes_no(u->refuse_manual_start),
prefix, yes_no(u->refuse_manual_stop),
prefix, yes_no(u->default_dependencies),
prefix, job_mode_to_string(u->on_failure_job_mode),
prefix, yes_no(u->ignore_on_isolate),
prefix, yes_no(u->ignore_on_snapshot));
if (UNIT_VTABLE(u)->dump)
UNIT_VTABLE(u)->dump(u, f, prefix2);
} else if (u->load_state == UNIT_MERGED)
fprintf(f,
"%s\tMerged into: %s\n",
prefix, u->merged_into->id);
else if (u->load_state == UNIT_ERROR)
fprintf(f, "%s\tLoad Error Code: %s\n", prefix, strerror(-u->load_error));
if (u->job)
job_dump(u->job, f, prefix2);
if (u->nop_job)
job_dump(u->nop_job, f, prefix2);
}
/* Common implementation for multiple backends */
int unit_load_fragment_and_dropin(Unit *u) {
int r;
assert(u);
/* Load a .{service,socket,...} file */
r = unit_load_fragment(u);
if (r < 0)
return r;
if (u->load_state == UNIT_STUB)
return -ENOENT;
/* Load drop-in directory data */
r = unit_load_dropin(unit_follow_merge(u));
if (r < 0)
return r;
return 0;
}
/* Common implementation for multiple backends */
int unit_load_fragment_and_dropin_optional(Unit *u) {
int r;
assert(u);
/* Same as unit_load_fragment_and_dropin(), but whether
* something can be loaded or not doesn't matter. */
/* Load a .service file */
r = unit_load_fragment(u);
if (r < 0)
return r;
if (u->load_state == UNIT_STUB)
u->load_state = UNIT_LOADED;
/* Load drop-in directory data */
r = unit_load_dropin(unit_follow_merge(u));
if (r < 0)
return r;
return 0;
}
int unit_add_default_target_dependency(Unit *u, Unit *target) {
assert(u);
assert(target);
if (target->type != UNIT_TARGET)
return 0;
/* Only add the dependency if both units are loaded, so that
* that loop check below is reliable */
if (u->load_state != UNIT_LOADED ||
target->load_state != UNIT_LOADED)
return 0;
/* If either side wants no automatic dependencies, then let's
* skip this */
if (!u->default_dependencies ||
!target->default_dependencies)
return 0;
/* Don't create loops */
if (set_get(target->dependencies[UNIT_BEFORE], u))
return 0;
return unit_add_dependency(target, UNIT_AFTER, u, true);
}
static int unit_add_target_dependencies(Unit *u) {
static const UnitDependency deps[] = {
UNIT_REQUIRED_BY,
UNIT_REQUIRED_BY_OVERRIDABLE,
UNIT_REQUISITE_OF,
UNIT_REQUISITE_OF_OVERRIDABLE,
UNIT_WANTED_BY,
UNIT_BOUND_BY
};
Unit *target;
Iterator i;
unsigned k;
int r = 0;
assert(u);
for (k = 0; k < ELEMENTSOF(deps); k++)
SET_FOREACH(target, u->dependencies[deps[k]], i) {
r = unit_add_default_target_dependency(u, target);
if (r < 0)
return r;
}
return r;
}
static int unit_add_slice_dependencies(Unit *u) {
assert(u);
if (!unit_get_cgroup_context(u))
return 0;
if (UNIT_ISSET(u->slice))
return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_WANTS, UNIT_DEREF(u->slice), true);
if (streq(u->id, SPECIAL_ROOT_SLICE))
return 0;
return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, SPECIAL_ROOT_SLICE, NULL, true);
}
static int unit_add_mount_dependencies(Unit *u) {
char **i;
int r;
assert(u);
STRV_FOREACH(i, u->requires_mounts_for) {
char prefix[strlen(*i) + 1];
PATH_FOREACH_PREFIX_MORE(prefix, *i) {
Unit *m;
r = manager_get_unit_by_path(u->manager, prefix, ".mount", &m);
if (r < 0)
return r;
if (r == 0)
continue;
if (m == u)
continue;
if (m->load_state != UNIT_LOADED)
continue;
r = unit_add_dependency(u, UNIT_AFTER, m, true);
if (r < 0)
return r;
if (m->fragment_path) {
r = unit_add_dependency(u, UNIT_REQUIRES, m, true);
if (r < 0)
return r;
}
}
}
return 0;
}
static int unit_add_startup_units(Unit *u) {
CGroupContext *c;
c = unit_get_cgroup_context(u);
if (!c)
return 0;
if (c->startup_cpu_shares == (unsigned long) -1 &&
c->startup_blockio_weight == (unsigned long) -1)
return 0;
return set_put(u->manager->startup_units, u);
}
int unit_load(Unit *u) {
int r;
assert(u);
if (u->in_load_queue) {
LIST_REMOVE(load_queue, u->manager->load_queue, u);
u->in_load_queue = false;
}
if (u->type == _UNIT_TYPE_INVALID)
return -EINVAL;
if (u->load_state != UNIT_STUB)
return 0;
if (UNIT_VTABLE(u)->load) {
r = UNIT_VTABLE(u)->load(u);
if (r < 0)
goto fail;
}
if (u->load_state == UNIT_STUB) {
r = -ENOENT;
goto fail;
}
if (u->load_state == UNIT_LOADED) {
r = unit_add_target_dependencies(u);
if (r < 0)
goto fail;
r = unit_add_slice_dependencies(u);
if (r < 0)
goto fail;
r = unit_add_mount_dependencies(u);
if (r < 0)
goto fail;
r = unit_add_startup_units(u);
if (r < 0)
goto fail;
if (u->on_failure_job_mode == JOB_ISOLATE && set_size(u->dependencies[UNIT_ON_FAILURE]) > 1) {
log_unit_error(u, "More than one OnFailure= dependencies specified but OnFailureJobMode=isolate set. Refusing.");
r = -EINVAL;
goto fail;
}
unit_update_cgroup_members_masks(u);
}
assert((u->load_state != UNIT_MERGED) == !u->merged_into);
unit_add_to_dbus_queue(unit_follow_merge(u));
unit_add_to_gc_queue(u);
return 0;
fail:
u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND : UNIT_ERROR;
u->load_error = r;
unit_add_to_dbus_queue(u);
unit_add_to_gc_queue(u);
log_unit_debug_errno(u, r, "Failed to load configuration: %m");
return r;
}
static bool unit_condition_test_list(Unit *u, Condition *first, const char *(*to_string)(ConditionType t)) {
Condition *c;
int triggered = -1;
assert(u);
assert(to_string);
/* If the condition list is empty, then it is true */
if (!first)
return true;
/* Otherwise, if all of the non-trigger conditions apply and
* if any of the trigger conditions apply (unless there are
* none) we return true */
LIST_FOREACH(conditions, c, first) {
int r;
r = condition_test(c);
if (r < 0)
log_unit_warning(u,
"Couldn't determine result for %s=%s%s%s, assuming failed: %m",
to_string(c->type),
c->trigger ? "|" : "",
c->negate ? "!" : "",
c->parameter);
else
log_unit_debug(u,
"%s=%s%s%s %s.",
to_string(c->type),
c->trigger ? "|" : "",
c->negate ? "!" : "",
c->parameter,
condition_result_to_string(c->result));
if (!c->trigger && r <= 0)
return false;
if (c->trigger && triggered <= 0)
triggered = r > 0;
}
return triggered != 0;
}
static bool unit_condition_test(Unit *u) {
assert(u);
dual_timestamp_get(&u->condition_timestamp);
u->condition_result = unit_condition_test_list(u, u->conditions, condition_type_to_string);
return u->condition_result;
}
static bool unit_assert_test(Unit *u) {
assert(u);
dual_timestamp_get(&u->assert_timestamp);
u->assert_result = unit_condition_test_list(u, u->asserts, assert_type_to_string);
return u->assert_result;
}
_pure_ static const char* unit_get_status_message_format(Unit *u, JobType t) {
const char *format;
const UnitStatusMessageFormats *format_table;
assert(u);
assert(t >= 0);
assert(t < _JOB_TYPE_MAX);
if (t == JOB_START || t == JOB_STOP) {
format_table = &UNIT_VTABLE(u)->status_message_formats;
if (format_table) {
format = format_table->starting_stopping[t == JOB_STOP];
if (format)
return format;
}
}
/* Return generic strings */
if (t == JOB_START)
return "Starting %s.";
else if (t == JOB_STOP)
return "Stopping %s.";
else if (t == JOB_RELOAD)
return "Reloading %s.";
return NULL;
}
static void unit_status_print_starting_stopping(Unit *u, JobType t) {
const char *format;
assert(u);
format = unit_get_status_message_format(u, t);
if (!format)
return;
DISABLE_WARNING_FORMAT_NONLITERAL;
unit_status_printf(u, "", format);
REENABLE_WARNING;
}
static void unit_status_log_starting_stopping_reloading(Unit *u, JobType t) {
const char *format;
char buf[LINE_MAX];
sd_id128_t mid;
assert(u);
if (t != JOB_START && t != JOB_STOP && t != JOB_RELOAD)
return;
if (log_on_console())
return;
/* We log status messages for all units and all operations. */
format = unit_get_status_message_format(u, t);
if (!format)
return;
DISABLE_WARNING_FORMAT_NONLITERAL;
snprintf(buf, sizeof(buf), format, unit_description(u));
REENABLE_WARNING;
mid = t == JOB_START ? SD_MESSAGE_UNIT_STARTING :
t == JOB_STOP ? SD_MESSAGE_UNIT_STOPPING :
SD_MESSAGE_UNIT_RELOADING;
/* Note that we deliberately use LOG_MESSAGE() instead of
* LOG_UNIT_MESSAGE() here, since this is supposed to mimic
* closely what is written to screen using the status output,
* which is supposed the highest level, friendliest output
* possible, which means we should avoid the low-level unit
* name. */
log_struct(LOG_INFO,
LOG_MESSAGE_ID(mid),
LOG_UNIT_ID(u),
LOG_MESSAGE("%s", buf),
NULL);
}
void unit_status_emit_starting_stopping_reloading(Unit *u, JobType t) {
unit_status_log_starting_stopping_reloading(u, t);
/* Reload status messages have traditionally not been printed to console. */
if (t != JOB_RELOAD)
unit_status_print_starting_stopping(u, t);
}
/* Errors:
* -EBADR: This unit type does not support starting.
* -EALREADY: Unit is already started.
* -EAGAIN: An operation is already in progress. Retry later.
* -ECANCELED: Too many requests for now.
* -EPROTO: Assert failed
*/
int unit_start(Unit *u) {
UnitActiveState state;
Unit *following;
assert(u);
if (u->load_state != UNIT_LOADED)
return -EINVAL;
/* If this is already started, then this will succeed. Note
* that this will even succeed if this unit is not startable
* by the user. This is relied on to detect when we need to
* wait for units and when waiting is finished. */
state = unit_active_state(u);
if (UNIT_IS_ACTIVE_OR_RELOADING(state))
return -EALREADY;
/* If the conditions failed, don't do anything at all. If we
* already are activating this call might still be useful to
* speed up activation in case there is some hold-off time,
* but we don't want to recheck the condition in that case. */
if (state != UNIT_ACTIVATING &&
!unit_condition_test(u)) {
log_unit_debug(u, "Starting requested but condition failed. Not starting unit.");
return -EALREADY;
}
/* If the asserts failed, fail the entire job */
if (state != UNIT_ACTIVATING &&
!unit_assert_test(u)) {
log_unit_notice(u, "Starting requested but asserts failed.");
return -EPROTO;
}
/* Forward to the main object, if we aren't it. */
following = unit_following(u);
if (following) {
log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id);
return unit_start(following);
}
if (!unit_supported(u))
return -EOPNOTSUPP;
/* If it is stopped, but we cannot start it, then fail */
if (!UNIT_VTABLE(u)->start)
return -EBADR;
/* We don't suppress calls to ->start() here when we are
* already starting, to allow this request to be used as a
* "hurry up" call, for example when the unit is in some "auto
* restart" state where it waits for a holdoff timer to elapse
* before it will start again. */
unit_add_to_dbus_queue(u);
return UNIT_VTABLE(u)->start(u);
}
bool unit_can_start(Unit *u) {
assert(u);
return !!UNIT_VTABLE(u)->start;
}
bool unit_can_isolate(Unit *u) {
assert(u);
return unit_can_start(u) &&
u->allow_isolate;
}
/* Errors:
* -EBADR: This unit type does not support stopping.
* -EALREADY: Unit is already stopped.
* -EAGAIN: An operation is already in progress. Retry later.
*/
int unit_stop(Unit *u) {
UnitActiveState state;
Unit *following;
assert(u);
state = unit_active_state(u);
if (UNIT_IS_INACTIVE_OR_FAILED(state))
return -EALREADY;
following = unit_following(u);
if (following) {
log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id);
return unit_stop(following);
}
if (!UNIT_VTABLE(u)->stop)
return -EBADR;
unit_add_to_dbus_queue(u);
return UNIT_VTABLE(u)->stop(u);
}
/* Errors:
* -EBADR: This unit type does not support reloading.
* -ENOEXEC: Unit is not started.
* -EAGAIN: An operation is already in progress. Retry later.
*/
int unit_reload(Unit *u) {
UnitActiveState state;
Unit *following;
assert(u);
if (u->load_state != UNIT_LOADED)
return -EINVAL;
if (!unit_can_reload(u))
return -EBADR;
state = unit_active_state(u);
if (state == UNIT_RELOADING)
return -EALREADY;
if (state != UNIT_ACTIVE) {
log_unit_warning(u, "Unit cannot be reloaded because it is inactive.");
return -ENOEXEC;
}
following = unit_following(u);
if (following) {
log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id);
return unit_reload(following);
}
unit_add_to_dbus_queue(u);
return UNIT_VTABLE(u)->reload(u);
}
bool unit_can_reload(Unit *u) {
assert(u);
if (!UNIT_VTABLE(u)->reload)
return false;
if (!UNIT_VTABLE(u)->can_reload)
return true;
return UNIT_VTABLE(u)->can_reload(u);
}
static void unit_check_unneeded(Unit *u) {
static const UnitDependency needed_dependencies[] = {
UNIT_REQUIRED_BY,
UNIT_REQUIRED_BY_OVERRIDABLE,
UNIT_REQUISITE_OF,
UNIT_REQUISITE_OF_OVERRIDABLE,
UNIT_WANTED_BY,
UNIT_BOUND_BY,
};
Unit *other;
Iterator i;
unsigned j;
int r;
assert(u);
/* If this service shall be shut down when unneeded then do
* so. */
if (!u->stop_when_unneeded)
return;
if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
return;
for (j = 0; j < ELEMENTSOF(needed_dependencies); j++)
SET_FOREACH(other, u->dependencies[needed_dependencies[j]], i)
if (unit_active_or_pending(other))
return;
/* If stopping a unit fails continously we might enter a stop
* loop here, hence stop acting on the service being
* unnecessary after a while. */
if (!ratelimit_test(&u->auto_stop_ratelimit)) {
log_unit_warning(u, "Unit not needed anymore, but not stopping since we tried this too often recently.");
return;
}
log_unit_info(u, "Unit not needed anymore. Stopping.");
/* Ok, nobody needs us anymore. Sniff. Then let's commit suicide */
r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, true, NULL, NULL);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %m");
}
static void unit_check_binds_to(Unit *u) {
bool stop = false;
Unit *other;
Iterator i;
int r;
assert(u);
if (u->job)
return;
if (unit_active_state(u) != UNIT_ACTIVE)
return;
SET_FOREACH(other, u->dependencies[UNIT_BINDS_TO], i) {
if (other->job)
continue;
if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
continue;
stop = true;
break;
}
if (!stop)
return;
/* If stopping a unit fails continously we might enter a stop
* loop here, hence stop acting on the service being
* unnecessary after a while. */
if (!ratelimit_test(&u->auto_stop_ratelimit)) {
log_unit_warning(u, "Unit is bound to inactive unit %s, but not stopping since we tried this too often recently.", other->id);
return;
}
assert(other);
log_unit_info(u, "Unit is bound to inactive unit %s. Stopping, too.", other->id);
/* A unit we need to run is gone. Sniff. Let's stop this. */
r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, true, NULL, NULL);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %m");
}
static void retroactively_start_dependencies(Unit *u) {
Iterator i;
Unit *other;
assert(u);
assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)));
SET_FOREACH(other, u->dependencies[UNIT_REQUIRES], i)
if (!set_get(u->dependencies[UNIT_AFTER], other) &&
!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, true, NULL, NULL);
SET_FOREACH(other, u->dependencies[UNIT_BINDS_TO], i)
if (!set_get(u->dependencies[UNIT_AFTER], other) &&
!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, true, NULL, NULL);
SET_FOREACH(other, u->dependencies[UNIT_REQUIRES_OVERRIDABLE], i)
if (!set_get(u->dependencies[UNIT_AFTER], other) &&
!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_START, other, JOB_FAIL, false, NULL, NULL);
SET_FOREACH(other, u->dependencies[UNIT_WANTS], i)
if (!set_get(u->dependencies[UNIT_AFTER], other) &&
!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_START, other, JOB_FAIL, false, NULL, NULL);
SET_FOREACH(other, u->dependencies[UNIT_CONFLICTS], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, true, NULL, NULL);
SET_FOREACH(other, u->dependencies[UNIT_CONFLICTED_BY], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, true, NULL, NULL);
}
static void retroactively_stop_dependencies(Unit *u) {
Iterator i;
Unit *other;
assert(u);
assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
/* Pull down units which are bound to us recursively if enabled */
SET_FOREACH(other, u->dependencies[UNIT_BOUND_BY], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, true, NULL, NULL);
}
static void check_unneeded_dependencies(Unit *u) {
Iterator i;
Unit *other;
assert(u);
assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
/* Garbage collect services that might not be needed anymore, if enabled */
SET_FOREACH(other, u->dependencies[UNIT_REQUIRES], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_unneeded(other);
SET_FOREACH(other, u->dependencies[UNIT_REQUIRES_OVERRIDABLE], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_unneeded(other);
SET_FOREACH(other, u->dependencies[UNIT_WANTS], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_unneeded(other);
SET_FOREACH(other, u->dependencies[UNIT_REQUISITE], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_unneeded(other);
SET_FOREACH(other, u->dependencies[UNIT_REQUISITE_OVERRIDABLE], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_unneeded(other);
SET_FOREACH(other, u->dependencies[UNIT_BINDS_TO], i)
if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
unit_check_unneeded(other);
}
void unit_start_on_failure(Unit *u) {
Unit *other;
Iterator i;
assert(u);
if (set_size(u->dependencies[UNIT_ON_FAILURE]) <= 0)
return;
log_unit_info(u, "Triggering OnFailure= dependencies.");
SET_FOREACH(other, u->dependencies[UNIT_ON_FAILURE], i) {
int r;
r = manager_add_job(u->manager, JOB_START, other, u->on_failure_job_mode, true, NULL, NULL);
if (r < 0)
log_unit_error_errno(u, r, "Failed to enqueue OnFailure= job: %m");
}
}
void unit_trigger_notify(Unit *u) {
Unit *other;
Iterator i;
assert(u);
SET_FOREACH(other, u->dependencies[UNIT_TRIGGERED_BY], i)
if (UNIT_VTABLE(other)->trigger_notify)
UNIT_VTABLE(other)->trigger_notify(other, u);
}
void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, bool reload_success) {
Manager *m;
bool unexpected;
assert(u);
assert(os < _UNIT_ACTIVE_STATE_MAX);
assert(ns < _UNIT_ACTIVE_STATE_MAX);
/* Note that this is called for all low-level state changes,
* even if they might map to the same high-level
* UnitActiveState! That means that ns == os is an expected
* behavior here. For example: if a mount point is remounted
* this function will be called too! */
m = u->manager;
/* Update timestamps for state changes */
if (m->n_reloading <= 0) {
dual_timestamp ts;
dual_timestamp_get(&ts);
if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns))
u->inactive_exit_timestamp = ts;
else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns))
u->inactive_enter_timestamp = ts;
if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns))
u->active_enter_timestamp = ts;
else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns))
u->active_exit_timestamp = ts;
}
/* Keep track of failed units */
manager_update_failed_units(u->manager, u, ns == UNIT_FAILED);
/* Make sure the cgroup is always removed when we become inactive */
if (UNIT_IS_INACTIVE_OR_FAILED(ns))
unit_destroy_cgroup_if_empty(u);
/* Note that this doesn't apply to RemainAfterExit services exiting
* successfully, since there's no change of state in that case. Which is
* why it is handled in service_set_state() */
if (UNIT_IS_INACTIVE_OR_FAILED(os) != UNIT_IS_INACTIVE_OR_FAILED(ns)) {
ExecContext *ec;
ec = unit_get_exec_context(u);
if (ec && exec_context_may_touch_console(ec)) {
if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
m->n_on_console --;
if (m->n_on_console == 0)
/* unset no_console_output flag, since the console is free */
m->no_console_output = false;
} else
m->n_on_console ++;
}
}
if (u->job) {
unexpected = false;
if (u->job->state == JOB_WAITING)
/* So we reached a different state for this
* job. Let's see if we can run it now if it
* failed previously due to EAGAIN. */
job_add_to_run_queue(u->job);
/* Let's check whether this state change constitutes a
* finished job, or maybe contradicts a running job and
* hence needs to invalidate jobs. */
switch (u->job->type) {
case JOB_START:
case JOB_VERIFY_ACTIVE:
if (UNIT_IS_ACTIVE_OR_RELOADING(ns))
job_finish_and_invalidate(u->job, JOB_DONE, true);
else if (u->job->state == JOB_RUNNING && ns != UNIT_ACTIVATING) {
unexpected = true;
if (UNIT_IS_INACTIVE_OR_FAILED(ns))
job_finish_and_invalidate(u->job, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true);
}
break;
case JOB_RELOAD:
case JOB_RELOAD_OR_START:
if (u->job->state == JOB_RUNNING) {
if (ns == UNIT_ACTIVE)
job_finish_and_invalidate(u->job, reload_success ? JOB_DONE : JOB_FAILED, true);
else if (ns != UNIT_ACTIVATING && ns != UNIT_RELOADING) {
unexpected = true;
if (UNIT_IS_INACTIVE_OR_FAILED(ns))
job_finish_and_invalidate(u->job, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true);
}
}
break;
case JOB_STOP:
case JOB_RESTART:
case JOB_TRY_RESTART:
if (UNIT_IS_INACTIVE_OR_FAILED(ns))
job_finish_and_invalidate(u->job, JOB_DONE, true);
else if (u->job->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) {
unexpected = true;
job_finish_and_invalidate(u->job, JOB_FAILED, true);
}
break;
default:
assert_not_reached("Job type unknown");
}
} else
unexpected = true;
if (m->n_reloading <= 0) {
/* If this state change happened without being
* requested by a job, then let's retroactively start
* or stop dependencies. We skip that step when
* deserializing, since we don't want to create any
* additional jobs just because something is already
* activated. */
if (unexpected) {
if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns))
retroactively_start_dependencies(u);
else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
retroactively_stop_dependencies(u);
}
/* stop unneeded units regardless if going down was expected or not */
if (UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
check_unneeded_dependencies(u);
if (ns != os && ns == UNIT_FAILED) {
log_unit_notice(u, "Unit entered failed state.");
unit_start_on_failure(u);
}
}
/* Some names are special */
if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) {
if (unit_has_name(u, SPECIAL_DBUS_SERVICE))
/* The bus might have just become available,
* hence try to connect to it, if we aren't
* yet connected. */
bus_init(m, true);
if (u->type == UNIT_SERVICE &&
!UNIT_IS_ACTIVE_OR_RELOADING(os) &&
m->n_reloading <= 0) {
/* Write audit record if we have just finished starting up */
manager_send_unit_audit(m, u, AUDIT_SERVICE_START, true);
u->in_audit = true;
}
if (!UNIT_IS_ACTIVE_OR_RELOADING(os))
manager_send_unit_plymouth(m, u);
} else {
/* We don't care about D-Bus here, since we'll get an
* asynchronous notification for it anyway. */
if (u->type == UNIT_SERVICE &&
UNIT_IS_INACTIVE_OR_FAILED(ns) &&
!UNIT_IS_INACTIVE_OR_FAILED(os) &&
m->n_reloading <= 0) {
/* Hmm, if there was no start record written
* write it now, so that we always have a nice
* pair */
if (!u->in_audit) {
manager_send_unit_audit(m, u, AUDIT_SERVICE_START, ns == UNIT_INACTIVE);
if (ns == UNIT_INACTIVE)
manager_send_unit_audit(m, u, AUDIT_SERVICE_STOP, true);
} else
/* Write audit record if we have just finished shutting down */
manager_send_unit_audit(m, u, AUDIT_SERVICE_STOP, ns == UNIT_INACTIVE);
u->in_audit = false;
}
}
manager_recheck_journal(m);
unit_trigger_notify(u);
if (u->manager->n_reloading <= 0) {
/* Maybe we finished startup and are now ready for
* being stopped because unneeded? */
unit_check_unneeded(u);
/* Maybe we finished startup, but something we needed
* has vanished? Let's die then. (This happens when
* something BindsTo= to a Type=oneshot unit, as these
* units go directly from starting to inactive,
* without ever entering started.) */
unit_check_binds_to(u);
}
unit_add_to_dbus_queue(u);
unit_add_to_gc_queue(u);
}
int unit_watch_pid(Unit *u, pid_t pid) {
int q, r;
assert(u);
assert(pid >= 1);
/* Watch a specific PID. We only support one or two units
* watching each PID for now, not more. */
r = set_ensure_allocated(&u->pids, NULL);
if (r < 0)
return r;
r = hashmap_ensure_allocated(&u->manager->watch_pids1, NULL);
if (r < 0)
return r;
r = hashmap_put(u->manager->watch_pids1, LONG_TO_PTR(pid), u);
if (r == -EEXIST) {
r = hashmap_ensure_allocated(&u->manager->watch_pids2, NULL);
if (r < 0)
return r;
r = hashmap_put(u->manager->watch_pids2, LONG_TO_PTR(pid), u);
}
q = set_put(u->pids, LONG_TO_PTR(pid));
if (q < 0)
return q;
return r;
}
void unit_unwatch_pid(Unit *u, pid_t pid) {
assert(u);
assert(pid >= 1);
hashmap_remove_value(u->manager->watch_pids1, LONG_TO_PTR(pid), u);
hashmap_remove_value(u->manager->watch_pids2, LONG_TO_PTR(pid), u);
set_remove(u->pids, LONG_TO_PTR(pid));
}
void unit_unwatch_all_pids(Unit *u) {
assert(u);
while (!set_isempty(u->pids))
unit_unwatch_pid(u, PTR_TO_LONG(set_first(u->pids)));
set_free(u->pids);
u->pids = NULL;
}
static int unit_watch_pids_in_path(Unit *u, const char *path) {
_cleanup_closedir_ DIR *d = NULL;
_cleanup_fclose_ FILE *f = NULL;
int ret = 0, r;
assert(u);
assert(path);
/* Adds all PIDs from a specific cgroup path to the set of PIDs we watch. */
r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
if (r >= 0) {
pid_t pid;
while ((r = cg_read_pid(f, &pid)) > 0) {
r = unit_watch_pid(u, pid);
if (r < 0 && ret >= 0)
ret = r;
}
if (r < 0 && ret >= 0)
ret = r;
} else if (ret >= 0)
ret = r;
r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
if (r >= 0) {
char *fn;
while ((r = cg_read_subgroup(d, &fn)) > 0) {
_cleanup_free_ char *p = NULL;
p = strjoin(path, "/", fn, NULL);
free(fn);
if (!p)
return -ENOMEM;
r = unit_watch_pids_in_path(u, p);
if (r < 0 && ret >= 0)
ret = r;
}
if (r < 0 && ret >= 0)
ret = r;
} else if (ret >= 0)
ret = r;
return ret;
}
int unit_watch_all_pids(Unit *u) {
assert(u);
/* Adds all PIDs from our cgroup to the set of PIDs we watch */
if (!u->cgroup_path)
return -ENOENT;
return unit_watch_pids_in_path(u, u->cgroup_path);
}
void unit_tidy_watch_pids(Unit *u, pid_t except1, pid_t except2) {
Iterator i;
void *e;
assert(u);
/* Cleans dead PIDs from our list */
SET_FOREACH(e, u->pids, i) {
pid_t pid = PTR_TO_LONG(e);
if (pid == except1 || pid == except2)
continue;
if (!pid_is_unwaited(pid))
unit_unwatch_pid(u, pid);
}
}
bool unit_job_is_applicable(Unit *u, JobType j) {
assert(u);
assert(j >= 0 && j < _JOB_TYPE_MAX);
switch (j) {
case JOB_VERIFY_ACTIVE:
case JOB_START:
case JOB_STOP:
case JOB_NOP:
return true;
case JOB_RESTART:
case JOB_TRY_RESTART:
return unit_can_start(u);
case JOB_RELOAD:
return unit_can_reload(u);
case JOB_RELOAD_OR_START:
return unit_can_reload(u) && unit_can_start(u);
default:
assert_not_reached("Invalid job type");
}
}
static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency) {
assert(u);
/* Only warn about some unit types */
if (!IN_SET(dependency, UNIT_CONFLICTS, UNIT_CONFLICTED_BY, UNIT_BEFORE, UNIT_AFTER, UNIT_ON_FAILURE, UNIT_TRIGGERS, UNIT_TRIGGERED_BY))
return;
if (streq_ptr(u->id, other))
log_unit_warning(u, "Dependency %s=%s dropped", unit_dependency_to_string(dependency), u->id);
else
log_unit_warning(u, "Dependency %s=%s dropped, merged into %s", unit_dependency_to_string(dependency), strna(other), u->id);
}
int unit_add_dependency(Unit *u, UnitDependency d, Unit *other, bool add_reference) {
static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = {
[UNIT_REQUIRES] = UNIT_REQUIRED_BY,
[UNIT_REQUIRES_OVERRIDABLE] = UNIT_REQUIRED_BY_OVERRIDABLE,
[UNIT_WANTS] = UNIT_WANTED_BY,
[UNIT_REQUISITE] = UNIT_REQUISITE_OF,
[UNIT_REQUISITE_OVERRIDABLE] = UNIT_REQUISITE_OF_OVERRIDABLE,
[UNIT_BINDS_TO] = UNIT_BOUND_BY,
[UNIT_PART_OF] = UNIT_CONSISTS_OF,
[UNIT_REQUIRED_BY] = UNIT_REQUIRES,
[UNIT_REQUIRED_BY_OVERRIDABLE] = UNIT_REQUIRES_OVERRIDABLE,
[UNIT_REQUISITE_OF] = UNIT_REQUISITE,
[UNIT_REQUISITE_OF_OVERRIDABLE] = UNIT_REQUISITE_OVERRIDABLE,
[UNIT_WANTED_BY] = UNIT_WANTS,
[UNIT_BOUND_BY] = UNIT_BINDS_TO,
[UNIT_CONSISTS_OF] = UNIT_PART_OF,
[UNIT_CONFLICTS] = UNIT_CONFLICTED_BY,
[UNIT_CONFLICTED_BY] = UNIT_CONFLICTS,
[UNIT_BEFORE] = UNIT_AFTER,
[UNIT_AFTER] = UNIT_BEFORE,
[UNIT_ON_FAILURE] = _UNIT_DEPENDENCY_INVALID,
[UNIT_REFERENCES] = UNIT_REFERENCED_BY,
[UNIT_REFERENCED_BY] = UNIT_REFERENCES,
[UNIT_TRIGGERS] = UNIT_TRIGGERED_BY,
[UNIT_TRIGGERED_BY] = UNIT_TRIGGERS,
[UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM,
[UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO,
[UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF,
};
int r, q = 0, v = 0, w = 0;
Unit *orig_u = u, *orig_other = other;
assert(u);
assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
assert(other);
u = unit_follow_merge(u);
other = unit_follow_merge(other);
/* We won't allow dependencies on ourselves. We will not
* consider them an error however. */
if (u == other) {
maybe_warn_about_dependency(orig_u, orig_other->id, d);
return 0;
}
r = set_ensure_allocated(&u->dependencies[d], NULL);
if (r < 0)
return r;
if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID) {
r = set_ensure_allocated(&other->dependencies[inverse_table[d]], NULL);
if (r < 0)
return r;
}
if (add_reference) {
r = set_ensure_allocated(&u->dependencies[UNIT_REFERENCES], NULL);
if (r < 0)
return r;
r = set_ensure_allocated(&other->dependencies[UNIT_REFERENCED_BY], NULL);
if (r < 0)
return r;
}
q = set_put(u->dependencies[d], other);
if (q < 0)
return q;
if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID && inverse_table[d] != d) {
v = set_put(other->dependencies[inverse_table[d]], u);
if (v < 0) {
r = v;
goto fail;
}
}
if (add_reference) {
w = set_put(u->dependencies[UNIT_REFERENCES], other);
if (w < 0) {
r = w;
goto fail;
}
r = set_put(other->dependencies[UNIT_REFERENCED_BY], u);
if (r < 0)
goto fail;
}
unit_add_to_dbus_queue(u);
return 0;
fail:
if (q > 0)
set_remove(u->dependencies[d], other);
if (v > 0)
set_remove(other->dependencies[inverse_table[d]], u);
if (w > 0)
set_remove(u->dependencies[UNIT_REFERENCES], other);
return r;
}
int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference) {
int r;
assert(u);
r = unit_add_dependency(u, d, other, add_reference);
if (r < 0)
return r;
return unit_add_dependency(u, e, other, add_reference);
}
static int resolve_template(Unit *u, const char *name, const char*path, char **buf, const char **ret) {
int r;
assert(u);
assert(name || path);
assert(buf);
assert(ret);
if (!name)
name = basename(path);
if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
*buf = NULL;
*ret = name;
return 0;
}
if (u->instance)
r = unit_name_replace_instance(name, u->instance, buf);
else {
_cleanup_free_ char *i = NULL;
r = unit_name_to_prefix(u->id, &i);
if (r < 0)
return r;
r = unit_name_replace_instance(name, i, buf);
}
if (r < 0)
return r;
*ret = *buf;
return 0;
}
int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, const char *path, bool add_reference) {
_cleanup_free_ char *buf = NULL;
Unit *other;
int r;
assert(u);
assert(name || path);
r = resolve_template(u, name, path, &buf, &name);
if (r < 0)
return r;
r = manager_load_unit(u->manager, name, path, NULL, &other);
if (r < 0)
return r;
return unit_add_dependency(u, d, other, add_reference);
}
int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, const char *path, bool add_reference) {
_cleanup_free_ char *buf = NULL;
Unit *other;
int r;
assert(u);
assert(name || path);
r = resolve_template(u, name, path, &buf, &name);
if (r < 0)
return r;
r = manager_load_unit(u->manager, name, path, NULL, &other);
if (r < 0)
return r;
return unit_add_two_dependencies(u, d, e, other, add_reference);
}
int unit_add_dependency_by_name_inverse(Unit *u, UnitDependency d, const char *name, const char *path, bool add_reference) {
_cleanup_free_ char *buf = NULL;
Unit *other;
int r;
assert(u);
assert(name || path);
r = resolve_template(u, name, path, &buf, &name);
if (r < 0)
return r;
r = manager_load_unit(u->manager, name, path, NULL, &other);
if (r < 0)
return r;
return unit_add_dependency(other, d, u, add_reference);
}
int unit_add_two_dependencies_by_name_inverse(Unit *u, UnitDependency d, UnitDependency e, const char *name, const char *path, bool add_reference) {
_cleanup_free_ char *buf = NULL;
Unit *other;
int r;
assert(u);
assert(name || path);
r = resolve_template(u, name, path, &buf, &name);
if (r < 0)
return r;
r = manager_load_unit(u->manager, name, path, NULL, &other);
if (r < 0)
return r;
return unit_add_two_dependencies(other, d, e, u, add_reference);
}
int set_unit_path(const char *p) {
/* This is mostly for debug purposes */
if (setenv("SYSTEMD_UNIT_PATH", p, 0) < 0)
return -errno;
return 0;
}
char *unit_dbus_path(Unit *u) {
assert(u);
if (!u->id)
return NULL;
return unit_dbus_path_from_name(u->id);
}
char *unit_default_cgroup_path(Unit *u) {
_cleanup_free_ char *escaped = NULL, *slice = NULL;
int r;
assert(u);
if (unit_has_name(u, SPECIAL_ROOT_SLICE))
return strdup(u->manager->cgroup_root);
if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) {
r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice);
if (r < 0)
return NULL;
}
escaped = cg_escape(u->id);
if (!escaped)
return NULL;
if (slice)
return strjoin(u->manager->cgroup_root, "/", slice, "/", escaped, NULL);
else
return strjoin(u->manager->cgroup_root, "/", escaped, NULL);
}
int unit_add_default_slice(Unit *u, CGroupContext *c) {
_cleanup_free_ char *b = NULL;
const char *slice_name;
Unit *slice;
int r;
assert(u);
assert(c);
if (UNIT_ISSET(u->slice))
return 0;
if (u->instance) {
_cleanup_free_ char *prefix = NULL, *escaped = NULL;
/* Implicitly place all instantiated units in their
* own per-template slice */
r = unit_name_to_prefix(u->id, &prefix);
if (r < 0)
return r;
/* The prefix is already escaped, but it might include
* "-" which has a special meaning for slice units,
* hence escape it here extra. */
escaped = unit_name_escape(prefix);
if (!escaped)
return -ENOMEM;
if (u->manager->running_as == MANAGER_SYSTEM)
b = strjoin("system-", escaped, ".slice", NULL);
else
b = strappend(escaped, ".slice");
if (!b)
return -ENOMEM;
slice_name = b;
} else
slice_name =
u->manager->running_as == MANAGER_SYSTEM
? SPECIAL_SYSTEM_SLICE
: SPECIAL_ROOT_SLICE;
r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice);
if (r < 0)
return r;
unit_ref_set(&u->slice, slice);
return 0;
}
const char *unit_slice_name(Unit *u) {
assert(u);
if (!UNIT_ISSET(u->slice))
return NULL;
return UNIT_DEREF(u->slice)->id;
}
int unit_load_related_unit(Unit *u, const char *type, Unit **_found) {
_cleanup_free_ char *t = NULL;
int r;
assert(u);
assert(type);
assert(_found);
r = unit_name_change_suffix(u->id, type, &t);
if (r < 0)
return r;
if (unit_has_name(u, t))
return -EINVAL;
r = manager_load_unit(u->manager, t, NULL, NULL, _found);
assert(r < 0 || *_found != u);
return r;
}
int unit_watch_bus_name(Unit *u, const char *name) {
assert(u);
assert(name);
/* Watch a specific name on the bus. We only support one unit
* watching each name for now. */
return hashmap_put(u->manager->watch_bus, name, u);
}
void unit_unwatch_bus_name(Unit *u, const char *name) {
assert(u);
assert(name);
hashmap_remove_value(u->manager->watch_bus, name, u);
}
bool unit_can_serialize(Unit *u) {
assert(u);
return UNIT_VTABLE(u)->serialize && UNIT_VTABLE(u)->deserialize_item;
}
int unit_serialize(Unit *u, FILE *f, FDSet *fds, bool serialize_jobs) {
int r;
assert(u);
assert(f);
assert(fds);
if (unit_can_serialize(u)) {
ExecRuntime *rt;
r = UNIT_VTABLE(u)->serialize(u, f, fds);
if (r < 0)
return r;
rt = unit_get_exec_runtime(u);
if (rt) {
r = exec_runtime_serialize(u, rt, f, fds);
if (r < 0)
return r;
}
}
dual_timestamp_serialize(f, "inactive-exit-timestamp", &u->inactive_exit_timestamp);
dual_timestamp_serialize(f, "active-enter-timestamp", &u->active_enter_timestamp);
dual_timestamp_serialize(f, "active-exit-timestamp", &u->active_exit_timestamp);
dual_timestamp_serialize(f, "inactive-enter-timestamp", &u->inactive_enter_timestamp);
dual_timestamp_serialize(f, "condition-timestamp", &u->condition_timestamp);
dual_timestamp_serialize(f, "assert-timestamp", &u->assert_timestamp);
if (dual_timestamp_is_set(&u->condition_timestamp))
unit_serialize_item(u, f, "condition-result", yes_no(u->condition_result));
if (dual_timestamp_is_set(&u->assert_timestamp))
unit_serialize_item(u, f, "assert-result", yes_no(u->assert_result));
unit_serialize_item(u, f, "transient", yes_no(u->transient));
unit_serialize_item_format(u, f, "cpuacct-usage-base", "%" PRIu64, u->cpuacct_usage_base);
if (u->cgroup_path)
unit_serialize_item(u, f, "cgroup", u->cgroup_path);
unit_serialize_item(u, f, "cgroup-realized", yes_no(u->cgroup_realized));
if (serialize_jobs) {
if (u->job) {
fprintf(f, "job\n");
job_serialize(u->job, f, fds);
}
if (u->nop_job) {
fprintf(f, "job\n");
job_serialize(u->nop_job, f, fds);
}
}
/* End marker */
fputc('\n', f);
return 0;
}
void unit_serialize_item_format(Unit *u, FILE *f, const char *key, const char *format, ...) {
va_list ap;
assert(u);
assert(f);
assert(key);
assert(format);
fputs(key, f);
fputc('=', f);
va_start(ap, format);
vfprintf(f, format, ap);
va_end(ap);
fputc('\n', f);
}
void unit_serialize_item(Unit *u, FILE *f, const char *key, const char *value) {
assert(u);
assert(f);
assert(key);
assert(value);
fprintf(f, "%s=%s\n", key, value);
}
static int unit_set_cgroup_path(Unit *u, const char *path) {
_cleanup_free_ char *p = NULL;
int r;
assert(u);
if (path) {
p = strdup(path);
if (!p)
return -ENOMEM;
} else
p = NULL;
if (streq_ptr(u->cgroup_path, p))
return 0;
if (p) {
r = hashmap_put(u->manager->cgroup_unit, p, u);
if (r < 0)
return r;
}
if (u->cgroup_path) {
log_unit_debug(u, "Changing cgroup path from %s to %s.", u->cgroup_path, strna(p));
hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
free(u->cgroup_path);
}
u->cgroup_path = p;
p = NULL;
return 0;
}
int unit_deserialize(Unit *u, FILE *f, FDSet *fds) {
ExecRuntime **rt = NULL;
size_t offset;
int r;
assert(u);
assert(f);
assert(fds);
offset = UNIT_VTABLE(u)->exec_runtime_offset;
if (offset > 0)
rt = (ExecRuntime**) ((uint8_t*) u + offset);
for (;;) {
char line[LINE_MAX], *l, *v;
size_t k;
if (!fgets(line, sizeof(line), f)) {
if (feof(f))
return 0;
return -errno;
}
char_array_0(line);
l = strstrip(line);
/* End marker */
if (isempty(l))
return 0;
k = strcspn(l, "=");
if (l[k] == '=') {
l[k] = 0;
v = l+k+1;
} else
v = l+k;
if (streq(l, "job")) {
if (v[0] == '\0') {
/* new-style serialized job */
Job *j;
j = job_new_raw(u);
if (!j)
return log_oom();
r = job_deserialize(j, f, fds);
if (r < 0) {
job_free(j);
return r;
}
r = hashmap_put(u->manager->jobs, UINT32_TO_PTR(j->id), j);
if (r < 0) {
job_free(j);
return r;
}
r = job_install_deserialized(j);
if (r < 0) {
hashmap_remove(u->manager->jobs, UINT32_TO_PTR(j->id));
job_free(j);
return r;
}
} else /* legacy for pre-44 */
log_unit_warning(u, "Update from too old systemd versions are unsupported, cannot deserialize job: %s", v);
continue;
} else if (streq(l, "inactive-exit-timestamp")) {
dual_timestamp_deserialize(v, &u->inactive_exit_timestamp);
continue;
} else if (streq(l, "active-enter-timestamp")) {
dual_timestamp_deserialize(v, &u->active_enter_timestamp);
continue;
} else if (streq(l, "active-exit-timestamp")) {
dual_timestamp_deserialize(v, &u->active_exit_timestamp);
continue;
} else if (streq(l, "inactive-enter-timestamp")) {
dual_timestamp_deserialize(v, &u->inactive_enter_timestamp);
continue;
} else if (streq(l, "condition-timestamp")) {
dual_timestamp_deserialize(v, &u->condition_timestamp);
continue;
} else if (streq(l, "assert-timestamp")) {
dual_timestamp_deserialize(v, &u->assert_timestamp);
continue;
} else if (streq(l, "condition-result")) {
r = parse_boolean(v);
if (r < 0)
log_unit_debug(u, "Failed to parse condition result value %s, ignoring.", v);
else
u->condition_result = r;
continue;
} else if (streq(l, "assert-result")) {
r = parse_boolean(v);
if (r < 0)
log_unit_debug(u, "Failed to parse assert result value %s, ignoring.", v);
else
u->assert_result = r;
continue;
} else if (streq(l, "transient")) {
r = parse_boolean(v);
if (r < 0)
log_unit_debug(u, "Failed to parse transient bool %s, ignoring.", v);
else
u->transient = r;
continue;
} else if (streq(l, "cpuacct-usage-base")) {
r = safe_atou64(v, &u->cpuacct_usage_base);
if (r < 0)
log_unit_debug(u, "Failed to parse CPU usage %s, ignoring.", v);
continue;
} else if (streq(l, "cgroup")) {
r = unit_set_cgroup_path(u, v);
if (r < 0)
log_unit_debug_errno(u, r, "Failed to set cgroup path %s, ignoring: %m", v);
continue;
} else if (streq(l, "cgroup-realized")) {
int b;
b = parse_boolean(v);
if (b < 0)
log_unit_debug(u, "Failed to parse cgroup-realized bool %s, ignoring.", v);
else
u->cgroup_realized = b;
continue;
}
if (unit_can_serialize(u)) {
if (rt) {
r = exec_runtime_deserialize_item(u, rt, l, v, fds);
if (r < 0) {
log_unit_warning(u, "Failed to deserialize runtime parameter '%s', ignoring.", l);
continue;
}
/* Returns positive if key was handled by the call */
if (r > 0)
continue;
}
r = UNIT_VTABLE(u)->deserialize_item(u, l, v, fds);
if (r < 0)
log_unit_warning(u, "Failed to deserialize unit parameter '%s', ignoring.", l);
}
}
}
int unit_add_node_link(Unit *u, const char *what, bool wants) {
Unit *device;
_cleanup_free_ char *e = NULL;
int r;
assert(u);
/* Adds in links to the device node that this unit is based on */
if (isempty(what))
return 0;
if (!is_device_path(what))
return 0;
/* When device units aren't supported (such as in a
* container), don't create dependencies on them. */
if (!unit_type_supported(UNIT_DEVICE))
return 0;
r = unit_name_from_path(what, ".device", &e);
if (r < 0)
return r;
r = manager_load_unit(u->manager, e, NULL, NULL, &device);
if (r < 0)
return r;
r = unit_add_two_dependencies(u, UNIT_AFTER, u->manager->running_as == MANAGER_SYSTEM ? UNIT_BINDS_TO : UNIT_WANTS, device, true);
if (r < 0)
return r;
if (wants) {
r = unit_add_dependency(device, UNIT_WANTS, u, false);
if (r < 0)
return r;
}
return 0;
}
int unit_coldplug(Unit *u) {
int r;
assert(u);
/* Make sure we don't enter a loop, when coldplugging
* recursively. */
if (u->coldplugged)
return 0;
u->coldplugged = true;
if (UNIT_VTABLE(u)->coldplug) {
r = UNIT_VTABLE(u)->coldplug(u);
if (r < 0)
return r;
}
if (u->job) {
r = job_coldplug(u->job);
if (r < 0)
return r;
}
return 0;
}
void unit_status_printf(Unit *u, const char *status, const char *unit_status_msg_format) {
DISABLE_WARNING_FORMAT_NONLITERAL;
manager_status_printf(u->manager, STATUS_TYPE_NORMAL,
status, unit_status_msg_format, unit_description(u));
REENABLE_WARNING;
}
bool unit_need_daemon_reload(Unit *u) {
_cleanup_strv_free_ char **t = NULL;
char **path;
struct stat st;
unsigned loaded_cnt, current_cnt;
assert(u);
if (u->fragment_path) {
zero(st);
if (stat(u->fragment_path, &st) < 0)
/* What, cannot access this anymore? */
return true;
if (u->fragment_mtime > 0 &&
timespec_load(&st.st_mtim) != u->fragment_mtime)
return true;
}
if (u->source_path) {
zero(st);
if (stat(u->source_path, &st) < 0)
return true;
if (u->source_mtime > 0 &&
timespec_load(&st.st_mtim) != u->source_mtime)
return true;
}
(void) unit_find_dropin_paths(u, &t);
loaded_cnt = strv_length(t);
current_cnt = strv_length(u->dropin_paths);
if (loaded_cnt == current_cnt) {
if (loaded_cnt == 0)
return false;
if (strv_overlap(u->dropin_paths, t)) {
STRV_FOREACH(path, u->dropin_paths) {
zero(st);
if (stat(*path, &st) < 0)
return true;
if (u->dropin_mtime > 0 &&
timespec_load(&st.st_mtim) > u->dropin_mtime)
return true;
}
return false;
} else
return true;
} else
return true;
}
void unit_reset_failed(Unit *u) {
assert(u);
if (UNIT_VTABLE(u)->reset_failed)
UNIT_VTABLE(u)->reset_failed(u);
}
Unit *unit_following(Unit *u) {
assert(u);
if (UNIT_VTABLE(u)->following)
return UNIT_VTABLE(u)->following(u);
return NULL;
}
bool unit_stop_pending(Unit *u) {
assert(u);
/* This call does check the current state of the unit. It's
* hence useful to be called from state change calls of the
* unit itself, where the state isn't updated yet. This is
* different from unit_inactive_or_pending() which checks both
* the current state and for a queued job. */
return u->job && u->job->type == JOB_STOP;
}
bool unit_inactive_or_pending(Unit *u) {
assert(u);
/* Returns true if the unit is inactive or going down */
if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)))
return true;
if (unit_stop_pending(u))
return true;
return false;
}
bool unit_active_or_pending(Unit *u) {
assert(u);
/* Returns true if the unit is active or going up */
if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
return true;
if (u->job &&
(u->job->type == JOB_START ||
u->job->type == JOB_RELOAD_OR_START ||
u->job->type == JOB_RESTART))
return true;
return false;
}
int unit_kill(Unit *u, KillWho w, int signo, sd_bus_error *error) {
assert(u);
assert(w >= 0 && w < _KILL_WHO_MAX);
assert(signo > 0);
assert(signo < _NSIG);
if (!UNIT_VTABLE(u)->kill)
return -EOPNOTSUPP;
return UNIT_VTABLE(u)->kill(u, w, signo, error);
}
static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) {
Set *pid_set;
int r;
pid_set = set_new(NULL);
if (!pid_set)
return NULL;
/* Exclude the main/control pids from being killed via the cgroup */
if (main_pid > 0) {
r = set_put(pid_set, LONG_TO_PTR(main_pid));
if (r < 0)
goto fail;
}
if (control_pid > 0) {
r = set_put(pid_set, LONG_TO_PTR(control_pid));
if (r < 0)
goto fail;
}
return pid_set;
fail:
set_free(pid_set);
return NULL;
}
int unit_kill_common(
Unit *u,
KillWho who,
int signo,
pid_t main_pid,
pid_t control_pid,
sd_bus_error *error) {
int r = 0;
if (who == KILL_MAIN && main_pid <= 0) {
if (main_pid < 0)
return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type));
else
return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill");
}
if (who == KILL_CONTROL && control_pid <= 0) {
if (control_pid < 0)
return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type));
else
return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill");
}
if (who == KILL_CONTROL || who == KILL_ALL)
if (control_pid > 0)
if (kill(control_pid, signo) < 0)
r = -errno;
if (who == KILL_MAIN || who == KILL_ALL)
if (main_pid > 0)
if (kill(main_pid, signo) < 0)
r = -errno;
if (who == KILL_ALL && u->cgroup_path) {
_cleanup_set_free_ Set *pid_set = NULL;
int q;
/* Exclude the main/control pids from being killed via the cgroup */
pid_set = unit_pid_set(main_pid, control_pid);
if (!pid_set)
return -ENOMEM;
q = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, false, true, false, pid_set);
if (q < 0 && q != -EAGAIN && q != -ESRCH && q != -ENOENT)
r = q;
}
return r;
}
int unit_following_set(Unit *u, Set **s) {
assert(u);
assert(s);
if (UNIT_VTABLE(u)->following_set)
return UNIT_VTABLE(u)->following_set(u, s);
*s = NULL;
return 0;
}
UnitFileState unit_get_unit_file_state(Unit *u) {
assert(u);
if (u->unit_file_state < 0 && u->fragment_path)
u->unit_file_state = unit_file_get_state(
u->manager->running_as == MANAGER_SYSTEM ? UNIT_FILE_SYSTEM : UNIT_FILE_USER,
NULL, basename(u->fragment_path));
return u->unit_file_state;
}
int unit_get_unit_file_preset(Unit *u) {
assert(u);
if (u->unit_file_preset < 0 && u->fragment_path)
u->unit_file_preset = unit_file_query_preset(
u->manager->running_as == MANAGER_SYSTEM ? UNIT_FILE_SYSTEM : UNIT_FILE_USER,
NULL, basename(u->fragment_path));
return u->unit_file_preset;
}
Unit* unit_ref_set(UnitRef *ref, Unit *u) {
assert(ref);
assert(u);
if (ref->unit)
unit_ref_unset(ref);
ref->unit = u;
LIST_PREPEND(refs, u->refs, ref);
return u;
}
void unit_ref_unset(UnitRef *ref) {
assert(ref);
if (!ref->unit)
return;
LIST_REMOVE(refs, ref->unit->refs, ref);
ref->unit = NULL;
}
int unit_patch_contexts(Unit *u) {
CGroupContext *cc;
ExecContext *ec;
unsigned i;
int r;
assert(u);
/* Patch in the manager defaults into the exec and cgroup
* contexts, _after_ the rest of the settings have been
* initialized */
ec = unit_get_exec_context(u);
if (ec) {
/* This only copies in the ones that need memory */
for (i = 0; i < _RLIMIT_MAX; i++)
if (u->manager->rlimit[i] && !ec->rlimit[i]) {
ec->rlimit[i] = newdup(struct rlimit, u->manager->rlimit[i], 1);
if (!ec->rlimit[i])
return -ENOMEM;
}
if (u->manager->running_as == MANAGER_USER &&
!ec->working_directory) {
r = get_home_dir(&ec->working_directory);
if (r < 0)
return r;
/* Allow user services to run, even if the
* home directory is missing */
ec->working_directory_missing_ok = true;
}
if (u->manager->running_as == MANAGER_USER &&
(ec->syscall_whitelist ||
!set_isempty(ec->syscall_filter) ||
!set_isempty(ec->syscall_archs) ||
ec->address_families_whitelist ||
!set_isempty(ec->address_families)))
ec->no_new_privileges = true;
if (ec->private_devices)
ec->capability_bounding_set_drop |= (uint64_t) 1ULL << (uint64_t) CAP_MKNOD;
}
cc = unit_get_cgroup_context(u);
if (cc) {
if (ec &&
ec->private_devices &&
cc->device_policy == CGROUP_AUTO)
cc->device_policy = CGROUP_CLOSED;
}
return 0;
}
ExecContext *unit_get_exec_context(Unit *u) {
size_t offset;
assert(u);
if (u->type < 0)
return NULL;
offset = UNIT_VTABLE(u)->exec_context_offset;
if (offset <= 0)
return NULL;
return (ExecContext*) ((uint8_t*) u + offset);
}
KillContext *unit_get_kill_context(Unit *u) {
size_t offset;
assert(u);
if (u->type < 0)
return NULL;
offset = UNIT_VTABLE(u)->kill_context_offset;
if (offset <= 0)
return NULL;
return (KillContext*) ((uint8_t*) u + offset);
}
CGroupContext *unit_get_cgroup_context(Unit *u) {
size_t offset;
if (u->type < 0)
return NULL;
offset = UNIT_VTABLE(u)->cgroup_context_offset;
if (offset <= 0)
return NULL;
return (CGroupContext*) ((uint8_t*) u + offset);
}
ExecRuntime *unit_get_exec_runtime(Unit *u) {
size_t offset;
if (u->type < 0)
return NULL;
offset = UNIT_VTABLE(u)->exec_runtime_offset;
if (offset <= 0)
return NULL;
return *(ExecRuntime**) ((uint8_t*) u + offset);
}
static int unit_drop_in_dir(Unit *u, UnitSetPropertiesMode mode, bool transient, char **dir) {
if (u->manager->running_as == MANAGER_USER) {
int r;
if (mode == UNIT_PERSISTENT && !transient)
r = user_config_home(dir);
else
r = user_runtime_dir(dir);
if (r == 0)
return -ENOENT;
return r;
}
if (mode == UNIT_PERSISTENT && !transient)
*dir = strdup("/etc/systemd/system");
else
*dir = strdup("/run/systemd/system");
if (!*dir)
return -ENOMEM;
return 0;
}
static int unit_drop_in_file(Unit *u,
UnitSetPropertiesMode mode, const char *name, char **p, char **q) {
_cleanup_free_ char *dir = NULL;
int r;
assert(u);
r = unit_drop_in_dir(u, mode, u->transient, &dir);
if (r < 0)
return r;
return drop_in_file(dir, u->id, 50, name, p, q);
}
int unit_write_drop_in(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *data) {
_cleanup_free_ char *dir = NULL, *p = NULL, *q = NULL;
int r;
assert(u);
if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME))
return 0;
r = unit_drop_in_dir(u, mode, u->transient, &dir);
if (r < 0)
return r;
r = write_drop_in(dir, u->id, 50, name, data);
if (r < 0)
return r;
r = drop_in_file(dir, u->id, 50, name, &p, &q);
if (r < 0)
return r;
r = strv_extend(&u->dropin_paths, q);
if (r < 0)
return r;
strv_sort(u->dropin_paths);
strv_uniq(u->dropin_paths);
u->dropin_mtime = now(CLOCK_REALTIME);
return 0;
}
int unit_write_drop_in_format(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *format, ...) {
_cleanup_free_ char *p = NULL;
va_list ap;
int r;
assert(u);
assert(name);
assert(format);
if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME))
return 0;
va_start(ap, format);
r = vasprintf(&p, format, ap);
va_end(ap);
if (r < 0)
return -ENOMEM;
return unit_write_drop_in(u, mode, name, p);
}
int unit_write_drop_in_private(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *data) {
_cleanup_free_ char *ndata = NULL;
assert(u);
assert(name);
assert(data);
if (!UNIT_VTABLE(u)->private_section)
return -EINVAL;
if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME))
return 0;
ndata = strjoin("[", UNIT_VTABLE(u)->private_section, "]\n", data, NULL);
if (!ndata)
return -ENOMEM;
return unit_write_drop_in(u, mode, name, ndata);
}
int unit_write_drop_in_private_format(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *format, ...) {
_cleanup_free_ char *p = NULL;
va_list ap;
int r;
assert(u);
assert(name);
assert(format);
if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME))
return 0;
va_start(ap, format);
r = vasprintf(&p, format, ap);
va_end(ap);
if (r < 0)
return -ENOMEM;
return unit_write_drop_in_private(u, mode, name, p);
}
int unit_remove_drop_in(Unit *u, UnitSetPropertiesMode mode, const char *name) {
_cleanup_free_ char *p = NULL, *q = NULL;
int r;
assert(u);
if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME))
return 0;
r = unit_drop_in_file(u, mode, name, &p, &q);
if (r < 0)
return r;
if (unlink(q) < 0)
r = errno == ENOENT ? 0 : -errno;
else
r = 1;
rmdir(p);
return r;
}
int unit_make_transient(Unit *u) {
int r;
assert(u);
u->load_state = UNIT_STUB;
u->load_error = 0;
u->transient = true;
free(u->fragment_path);
u->fragment_path = NULL;
if (u->manager->running_as == MANAGER_USER) {
_cleanup_free_ char *c = NULL;
r = user_runtime_dir(&c);
if (r < 0)
return r;
if (r == 0)
return -ENOENT;
u->fragment_path = strjoin(c, "/", u->id, NULL);
if (!u->fragment_path)
return -ENOMEM;
mkdir_p(c, 0755);
} else {
u->fragment_path = strappend("/run/systemd/system/", u->id);
if (!u->fragment_path)
return -ENOMEM;
mkdir_p("/run/systemd/system", 0755);
}
return write_string_file_atomic_label(u->fragment_path, "# Transient stub");
}
int unit_kill_context(
Unit *u,
KillContext *c,
KillOperation k,
pid_t main_pid,
pid_t control_pid,
bool main_pid_alien) {
int sig, wait_for_exit = false, r;
assert(u);
assert(c);
if (c->kill_mode == KILL_NONE)
return 0;
switch (k) {
case KILL_KILL:
sig = SIGKILL;
break;
case KILL_ABORT:
sig = SIGABRT;
break;
case KILL_TERMINATE:
sig = c->kill_signal;
break;
default:
assert_not_reached("KillOperation unknown");
}
if (main_pid > 0) {
r = kill_and_sigcont(main_pid, sig);
if (r < 0 && r != -ESRCH) {
_cleanup_free_ char *comm = NULL;
get_process_comm(main_pid, &comm);
log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s): %m", main_pid, strna(comm));
} else {
if (!main_pid_alien)
wait_for_exit = true;
if (c->send_sighup && k != KILL_KILL)
kill(main_pid, SIGHUP);
}
}
if (control_pid > 0) {
r = kill_and_sigcont(control_pid, sig);
if (r < 0 && r != -ESRCH) {
_cleanup_free_ char *comm = NULL;
get_process_comm(control_pid, &comm);
log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s): %m", control_pid, strna(comm));
} else {
wait_for_exit = true;
if (c->send_sighup && k != KILL_KILL)
kill(control_pid, SIGHUP);
}
}
if ((c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL)) && u->cgroup_path) {
_cleanup_set_free_ Set *pid_set = NULL;
/* Exclude the main/control pids from being killed via the cgroup */
pid_set = unit_pid_set(main_pid, control_pid);
if (!pid_set)
return -ENOMEM;
r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, sig, true, true, false, pid_set);
if (r < 0) {
if (r != -EAGAIN && r != -ESRCH && r != -ENOENT)
log_unit_warning_errno(u, r, "Failed to kill control group: %m");
} else if (r > 0) {
/* FIXME: For now, we will not wait for the
* cgroup members to die, simply because
* cgroup notification is unreliable. It
* doesn't work at all in containers, and
* outside of containers it can be confused
* easily by leaving directories in the
* cgroup. */
/* wait_for_exit = true; */
if (c->send_sighup && k != KILL_KILL) {
set_free(pid_set);
pid_set = unit_pid_set(main_pid, control_pid);
if (!pid_set)
return -ENOMEM;
cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, SIGHUP, false, true, false, pid_set);
}
}
}
return wait_for_exit;
}
int unit_require_mounts_for(Unit *u, const char *path) {
char prefix[strlen(path) + 1], *p;
int r;
assert(u);
assert(path);
/* Registers a unit for requiring a certain path and all its
* prefixes. We keep a simple array of these paths in the
* unit, since its usually short. However, we build a prefix
* table for all possible prefixes so that new appearing mount
* units can easily determine which units to make themselves a
* dependency of. */
if (!path_is_absolute(path))
return -EINVAL;
p = strdup(path);
if (!p)
return -ENOMEM;
path_kill_slashes(p);
if (!path_is_safe(p)) {
free(p);
return -EPERM;
}
if (strv_contains(u->requires_mounts_for, p)) {
free(p);
return 0;
}
r = strv_consume(&u->requires_mounts_for, p);
if (r < 0)
return r;
PATH_FOREACH_PREFIX_MORE(prefix, p) {
Set *x;
x = hashmap_get(u->manager->units_requiring_mounts_for, prefix);
if (!x) {
char *q;
r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &string_hash_ops);
if (r < 0)
return r;
q = strdup(prefix);
if (!q)
return -ENOMEM;
x = set_new(NULL);
if (!x) {
free(q);
return -ENOMEM;
}
r = hashmap_put(u->manager->units_requiring_mounts_for, q, x);
if (r < 0) {
free(q);
set_free(x);
return r;
}
}
r = set_put(x, u);
if (r < 0)
return r;
}
return 0;
}
int unit_setup_exec_runtime(Unit *u) {
ExecRuntime **rt;
size_t offset;
Iterator i;
Unit *other;
offset = UNIT_VTABLE(u)->exec_runtime_offset;
assert(offset > 0);
/* Check if there already is an ExecRuntime for this unit? */
rt = (ExecRuntime**) ((uint8_t*) u + offset);
if (*rt)
return 0;
/* Try to get it from somebody else */
SET_FOREACH(other, u->dependencies[UNIT_JOINS_NAMESPACE_OF], i) {
*rt = unit_get_exec_runtime(other);
if (*rt) {
exec_runtime_ref(*rt);
return 0;
}
}
return exec_runtime_make(rt, unit_get_exec_context(u), u->id);
}
bool unit_type_supported(UnitType t) {
if (_unlikely_(t < 0))
return false;
if (_unlikely_(t >= _UNIT_TYPE_MAX))
return false;
if (!unit_vtable[t]->supported)
return true;
return unit_vtable[t]->supported();
}
void unit_warn_if_dir_nonempty(Unit *u, const char* where) {
int r;
assert(u);
assert(where);
r = dir_is_empty(where);
if (r > 0)
return;
if (r < 0) {
log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where);
return;
}
log_struct(LOG_NOTICE,
LOG_MESSAGE_ID(SD_MESSAGE_OVERMOUNTING),
LOG_UNIT_ID(u),
LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where),
"WHERE=%s", where,
NULL);
}
int unit_fail_if_symlink(Unit *u, const char* where) {
int r;
assert(u);
assert(where);
r = is_symlink(where);
if (r < 0) {
log_unit_debug_errno(u, r, "Failed to check symlink %s, ignoring: %m", where);
return 0;
}
if (r == 0)
return 0;
log_struct(LOG_ERR,
LOG_MESSAGE_ID(SD_MESSAGE_OVERMOUNTING),
LOG_UNIT_ID(u),
LOG_UNIT_MESSAGE(u, "Mount on symlink %s not allowed.", where),
"WHERE=%s", where,
NULL);
return -ELOOP;
}
static const char* const unit_active_state_table[_UNIT_ACTIVE_STATE_MAX] = {
[UNIT_ACTIVE] = "active",
[UNIT_RELOADING] = "reloading",
[UNIT_INACTIVE] = "inactive",
[UNIT_FAILED] = "failed",
[UNIT_ACTIVATING] = "activating",
[UNIT_DEACTIVATING] = "deactivating"
};
DEFINE_STRING_TABLE_LOOKUP(unit_active_state, UnitActiveState);