/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/ /*** This file is part of systemd. Copyright 2010 Lennart Poettering systemd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with systemd; If not, see . ***/ #include #include #include #include #include #include #include #include #include #include "sd-id128.h" #include "sd-messages.h" #include "set.h" #include "unit.h" #include "macro.h" #include "strv.h" #include "path-util.h" #include "load-fragment.h" #include "load-dropin.h" #include "log.h" #include "unit-name.h" #include "dbus-unit.h" #include "special.h" #include "cgroup-util.h" #include "missing.h" #include "mkdir.h" #include "label.h" #include "fileio-label.h" #include "bus-errors.h" #include "dbus.h" #include "execute.h" #include "virt.h" const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = { [UNIT_SERVICE] = &service_vtable, [UNIT_SOCKET] = &socket_vtable, [UNIT_BUSNAME] = &busname_vtable, [UNIT_TARGET] = &target_vtable, [UNIT_SNAPSHOT] = &snapshot_vtable, [UNIT_DEVICE] = &device_vtable, [UNIT_MOUNT] = &mount_vtable, [UNIT_AUTOMOUNT] = &automount_vtable, [UNIT_SWAP] = &swap_vtable, [UNIT_TIMER] = &timer_vtable, [UNIT_PATH] = &path_vtable, [UNIT_SLICE] = &slice_vtable, [UNIT_SCOPE] = &scope_vtable }; Unit *unit_new(Manager *m, size_t size) { Unit *u; assert(m); assert(size >= sizeof(Unit)); u = malloc0(size); if (!u) return NULL; u->names = set_new(string_hash_func, string_compare_func); if (!u->names) { free(u); return NULL; } u->manager = m; u->type = _UNIT_TYPE_INVALID; u->deserialized_job = _JOB_TYPE_INVALID; u->default_dependencies = true; u->unit_file_state = _UNIT_FILE_STATE_INVALID; u->on_failure_job_mode = JOB_REPLACE; return u; } bool unit_has_name(Unit *u, const char *name) { assert(u); assert(name); return !!set_get(u->names, (char*) name); } int unit_add_name(Unit *u, const char *text) { UnitType t; char *s, *i = NULL; int r; assert(u); assert(text); if (unit_name_is_template(text)) { if (!u->instance) return -EINVAL; s = unit_name_replace_instance(text, u->instance); } else s = strdup(text); if (!s) return -ENOMEM; if (!unit_name_is_valid(s, TEMPLATE_INVALID)) { r = -EINVAL; goto fail; } assert_se((t = unit_name_to_type(s)) >= 0); if (u->type != _UNIT_TYPE_INVALID && t != u->type) { r = -EINVAL; goto fail; } r = unit_name_to_instance(s, &i); if (r < 0) goto fail; if (i && unit_vtable[t]->no_instances) { r = -EINVAL; goto fail; } /* Ensure that this unit is either instanced or not instanced, * but not both. */ if (u->type != _UNIT_TYPE_INVALID && !u->instance != !i) { r = -EINVAL; goto fail; } if (unit_vtable[t]->no_alias && !set_isempty(u->names) && !set_get(u->names, s)) { r = -EEXIST; goto fail; } if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES) { r = -E2BIG; goto fail; } r = set_put(u->names, s); if (r < 0) { if (r == -EEXIST) r = 0; goto fail; } r = hashmap_put(u->manager->units, s, u); if (r < 0) { set_remove(u->names, s); goto fail; } if (u->type == _UNIT_TYPE_INVALID) { u->type = t; u->id = s; u->instance = i; LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u); if (UNIT_VTABLE(u)->init) UNIT_VTABLE(u)->init(u); } else free(i); unit_add_to_dbus_queue(u); return 0; fail: free(s); free(i); return r; } int unit_choose_id(Unit *u, const char *name) { char *s, *i; _cleanup_free_ char *t = NULL; int r; assert(u); assert(name); if (unit_name_is_template(name)) { if (!u->instance) return -EINVAL; t = unit_name_replace_instance(name, u->instance); if (!t) return -ENOMEM; name = t; } /* Selects one of the names of this unit as the id */ s = set_get(u->names, (char*) name); if (!s) return -ENOENT; r = unit_name_to_instance(s, &i); if (r < 0) return r; u->id = s; free(u->instance); u->instance = i; unit_add_to_dbus_queue(u); return 0; } int unit_set_description(Unit *u, const char *description) { char *s; assert(u); if (isempty(description)) s = NULL; else { s = strdup(description); if (!s) return -ENOMEM; } free(u->description); u->description = s; unit_add_to_dbus_queue(u); return 0; } bool unit_check_gc(Unit *u) { assert(u); if (UNIT_VTABLE(u)->no_gc) return true; if (u->no_gc) return true; if (u->job) return true; if (u->nop_job) return true; if (unit_active_state(u) != UNIT_INACTIVE) return true; if (u->refs) return true; if (UNIT_VTABLE(u)->check_gc) if (UNIT_VTABLE(u)->check_gc(u)) return true; return false; } void unit_add_to_load_queue(Unit *u) { assert(u); assert(u->type != _UNIT_TYPE_INVALID); if (u->load_state != UNIT_STUB || u->in_load_queue) return; LIST_PREPEND(load_queue, u->manager->load_queue, u); u->in_load_queue = true; } void unit_add_to_cleanup_queue(Unit *u) { assert(u); if (u->in_cleanup_queue) return; LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u); u->in_cleanup_queue = true; } void unit_add_to_gc_queue(Unit *u) { assert(u); if (u->in_gc_queue || u->in_cleanup_queue) return; if (unit_check_gc(u)) return; LIST_PREPEND(gc_queue, u->manager->gc_queue, u); u->in_gc_queue = true; u->manager->n_in_gc_queue ++; } void unit_add_to_dbus_queue(Unit *u) { assert(u); assert(u->type != _UNIT_TYPE_INVALID); if (u->load_state == UNIT_STUB || u->in_dbus_queue) return; /* Shortcut things if nobody cares */ if (sd_bus_track_count(u->manager->subscribed) <= 0 && set_isempty(u->manager->private_buses)) { u->sent_dbus_new_signal = true; return; } LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u); u->in_dbus_queue = true; } static void bidi_set_free(Unit *u, Set *s) { Iterator i; Unit *other; assert(u); /* Frees the set and makes sure we are dropped from the * inverse pointers */ SET_FOREACH(other, s, i) { UnitDependency d; for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) set_remove(other->dependencies[d], u); unit_add_to_gc_queue(other); } set_free(s); } static void unit_remove_transient(Unit *u) { char **i; assert(u); if (!u->transient) return; if (u->fragment_path) unlink(u->fragment_path); STRV_FOREACH(i, u->dropin_paths) { _cleanup_free_ char *p = NULL; int r; unlink(*i); r = path_get_parent(*i, &p); if (r >= 0) rmdir(p); } } static void unit_free_requires_mounts_for(Unit *u) { char **j; STRV_FOREACH(j, u->requires_mounts_for) { char s[strlen(*j) + 1]; PATH_FOREACH_PREFIX_MORE(s, *j) { char *y; Set *x; x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y); if (!x) continue; set_remove(x, u); if (set_isempty(x)) { hashmap_remove(u->manager->units_requiring_mounts_for, y); free(y); set_free(x); } } } strv_free(u->requires_mounts_for); u->requires_mounts_for = NULL; } void unit_free(Unit *u) { UnitDependency d; Iterator i; char *t; assert(u); if (u->manager->n_reloading <= 0) unit_remove_transient(u); bus_unit_send_removed_signal(u); if (u->load_state != UNIT_STUB) if (UNIT_VTABLE(u)->done) UNIT_VTABLE(u)->done(u); unit_free_requires_mounts_for(u); SET_FOREACH(t, u->names, i) hashmap_remove_value(u->manager->units, t, u); if (u->job) { Job *j = u->job; job_uninstall(j); job_free(j); } if (u->nop_job) { Job *j = u->nop_job; job_uninstall(j); job_free(j); } for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) bidi_set_free(u, u->dependencies[d]); if (u->type != _UNIT_TYPE_INVALID) LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u); if (u->in_load_queue) LIST_REMOVE(load_queue, u->manager->load_queue, u); if (u->in_dbus_queue) LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u); if (u->in_cleanup_queue) LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u); if (u->in_gc_queue) { LIST_REMOVE(gc_queue, u->manager->gc_queue, u); u->manager->n_in_gc_queue--; } if (u->in_cgroup_queue) LIST_REMOVE(cgroup_queue, u->manager->cgroup_queue, u); if (u->cgroup_path) { hashmap_remove(u->manager->cgroup_unit, u->cgroup_path); free(u->cgroup_path); } set_remove(u->manager->failed_units, u); free(u->description); strv_free(u->documentation); free(u->fragment_path); free(u->source_path); strv_free(u->dropin_paths); free(u->instance); set_free_free(u->names); unit_unwatch_all_pids(u); condition_free_list(u->conditions); unit_ref_unset(&u->slice); while (u->refs) unit_ref_unset(u->refs); free(u); } UnitActiveState unit_active_state(Unit *u) { assert(u); if (u->load_state == UNIT_MERGED) return unit_active_state(unit_follow_merge(u)); /* After a reload it might happen that a unit is not correctly * loaded but still has a process around. That's why we won't * shortcut failed loading to UNIT_INACTIVE_FAILED. */ return UNIT_VTABLE(u)->active_state(u); } const char* unit_sub_state_to_string(Unit *u) { assert(u); return UNIT_VTABLE(u)->sub_state_to_string(u); } static void complete_move(Set **s, Set **other) { assert(s); assert(other); if (!*other) return; if (*s) set_move(*s, *other); else { *s = *other; *other = NULL; } } static void merge_names(Unit *u, Unit *other) { char *t; Iterator i; assert(u); assert(other); complete_move(&u->names, &other->names); set_free_free(other->names); other->names = NULL; other->id = NULL; SET_FOREACH(t, u->names, i) assert_se(hashmap_replace(u->manager->units, t, u) == 0); } static void merge_dependencies(Unit *u, Unit *other, UnitDependency d) { Iterator i; Unit *back; int r; assert(u); assert(other); assert(d < _UNIT_DEPENDENCY_MAX); /* Fix backwards pointers */ SET_FOREACH(back, other->dependencies[d], i) { UnitDependency k; for (k = 0; k < _UNIT_DEPENDENCY_MAX; k++) { r = set_remove_and_put(back->dependencies[k], other, u); if (r == -EEXIST) set_remove(back->dependencies[k], other); else assert(r >= 0 || r == -ENOENT); } } complete_move(&u->dependencies[d], &other->dependencies[d]); set_free(other->dependencies[d]); other->dependencies[d] = NULL; } int unit_merge(Unit *u, Unit *other) { UnitDependency d; assert(u); assert(other); assert(u->manager == other->manager); assert(u->type != _UNIT_TYPE_INVALID); other = unit_follow_merge(other); if (other == u) return 0; if (u->type != other->type) return -EINVAL; if (!u->instance != !other->instance) return -EINVAL; if (other->load_state != UNIT_STUB && other->load_state != UNIT_NOT_FOUND) return -EEXIST; if (other->job) return -EEXIST; if (other->nop_job) return -EEXIST; if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other))) return -EEXIST; /* Merge names */ merge_names(u, other); /* Redirect all references */ while (other->refs) unit_ref_set(other->refs, u); /* Merge dependencies */ for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) merge_dependencies(u, other, d); other->load_state = UNIT_MERGED; other->merged_into = u; /* If there is still some data attached to the other node, we * don't need it anymore, and can free it. */ if (other->load_state != UNIT_STUB) if (UNIT_VTABLE(other)->done) UNIT_VTABLE(other)->done(other); unit_add_to_dbus_queue(u); unit_add_to_cleanup_queue(other); return 0; } int unit_merge_by_name(Unit *u, const char *name) { Unit *other; int r; _cleanup_free_ char *s = NULL; assert(u); assert(name); if (unit_name_is_template(name)) { if (!u->instance) return -EINVAL; s = unit_name_replace_instance(name, u->instance); if (!s) return -ENOMEM; name = s; } other = manager_get_unit(u->manager, name); if (!other) r = unit_add_name(u, name); else r = unit_merge(u, other); return r; } Unit* unit_follow_merge(Unit *u) { assert(u); while (u->load_state == UNIT_MERGED) assert_se(u = u->merged_into); return u; } int unit_add_exec_dependencies(Unit *u, ExecContext *c) { int r; assert(u); assert(c); if (c->working_directory) { r = unit_require_mounts_for(u, c->working_directory); if (r < 0) return r; } if (c->root_directory) { r = unit_require_mounts_for(u, c->root_directory); if (r < 0) return r; } if (c->std_output != EXEC_OUTPUT_KMSG && c->std_output != EXEC_OUTPUT_SYSLOG && c->std_output != EXEC_OUTPUT_JOURNAL && c->std_output != EXEC_OUTPUT_KMSG_AND_CONSOLE && c->std_output != EXEC_OUTPUT_SYSLOG_AND_CONSOLE && c->std_output != EXEC_OUTPUT_JOURNAL_AND_CONSOLE && c->std_error != EXEC_OUTPUT_KMSG && c->std_error != EXEC_OUTPUT_SYSLOG && c->std_error != EXEC_OUTPUT_JOURNAL && c->std_error != EXEC_OUTPUT_KMSG_AND_CONSOLE && c->std_error != EXEC_OUTPUT_JOURNAL_AND_CONSOLE && c->std_error != EXEC_OUTPUT_SYSLOG_AND_CONSOLE) return 0; /* If syslog or kernel logging is requested, make sure our own * logging daemon is run first. */ if (u->manager->running_as == SYSTEMD_SYSTEM) { r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, NULL, true); if (r < 0) return r; } return 0; } const char *unit_description(Unit *u) { assert(u); if (u->description) return u->description; return strna(u->id); } void unit_dump(Unit *u, FILE *f, const char *prefix) { char *t, **j; UnitDependency d; Iterator i; _cleanup_free_ char *p2 = NULL; const char *prefix2; char timestamp1[FORMAT_TIMESTAMP_MAX], timestamp2[FORMAT_TIMESTAMP_MAX], timestamp3[FORMAT_TIMESTAMP_MAX], timestamp4[FORMAT_TIMESTAMP_MAX], timespan[FORMAT_TIMESPAN_MAX]; Unit *following; _cleanup_set_free_ Set *following_set = NULL; int r; assert(u); assert(u->type >= 0); if (!prefix) prefix = ""; p2 = strappend(prefix, "\t"); prefix2 = p2 ? p2 : prefix; fprintf(f, "%s-> Unit %s:\n" "%s\tDescription: %s\n" "%s\tInstance: %s\n" "%s\tUnit Load State: %s\n" "%s\tUnit Active State: %s\n" "%s\tInactive Exit Timestamp: %s\n" "%s\tActive Enter Timestamp: %s\n" "%s\tActive Exit Timestamp: %s\n" "%s\tInactive Enter Timestamp: %s\n" "%s\tGC Check Good: %s\n" "%s\tNeed Daemon Reload: %s\n" "%s\tTransient: %s\n" "%s\tSlice: %s\n" "%s\tCGroup: %s\n" "%s\tCGroup realized: %s\n" "%s\tCGroup mask: 0x%x\n" "%s\tCGroup members mask: 0x%x\n", prefix, u->id, prefix, unit_description(u), prefix, strna(u->instance), prefix, unit_load_state_to_string(u->load_state), prefix, unit_active_state_to_string(unit_active_state(u)), prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->inactive_exit_timestamp.realtime)), prefix, strna(format_timestamp(timestamp2, sizeof(timestamp2), u->active_enter_timestamp.realtime)), prefix, strna(format_timestamp(timestamp3, sizeof(timestamp3), u->active_exit_timestamp.realtime)), prefix, strna(format_timestamp(timestamp4, sizeof(timestamp4), u->inactive_enter_timestamp.realtime)), prefix, yes_no(unit_check_gc(u)), prefix, yes_no(unit_need_daemon_reload(u)), prefix, yes_no(u->transient), prefix, strna(unit_slice_name(u)), prefix, strna(u->cgroup_path), prefix, yes_no(u->cgroup_realized), prefix, u->cgroup_realized_mask, prefix, u->cgroup_members_mask); SET_FOREACH(t, u->names, i) fprintf(f, "%s\tName: %s\n", prefix, t); STRV_FOREACH(j, u->documentation) fprintf(f, "%s\tDocumentation: %s\n", prefix, *j); following = unit_following(u); if (following) fprintf(f, "%s\tFollowing: %s\n", prefix, following->id); r = unit_following_set(u, &following_set); if (r >= 0) { Unit *other; SET_FOREACH(other, following_set, i) fprintf(f, "%s\tFollowing Set Member: %s\n", prefix, other->id); } if (u->fragment_path) fprintf(f, "%s\tFragment Path: %s\n", prefix, u->fragment_path); if (u->source_path) fprintf(f, "%s\tSource Path: %s\n", prefix, u->source_path); STRV_FOREACH(j, u->dropin_paths) fprintf(f, "%s\tDropIn Path: %s\n", prefix, *j); if (u->job_timeout > 0) fprintf(f, "%s\tJob Timeout: %s\n", prefix, format_timespan(timespan, sizeof(timespan), u->job_timeout, 0)); condition_dump_list(u->conditions, f, prefix); if (dual_timestamp_is_set(&u->condition_timestamp)) fprintf(f, "%s\tCondition Timestamp: %s\n" "%s\tCondition Result: %s\n", prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->condition_timestamp.realtime)), prefix, yes_no(u->condition_result)); for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) { Unit *other; SET_FOREACH(other, u->dependencies[d], i) fprintf(f, "%s\t%s: %s\n", prefix, unit_dependency_to_string(d), other->id); } if (!strv_isempty(u->requires_mounts_for)) { fprintf(f, "%s\tRequiresMountsFor:", prefix); STRV_FOREACH(j, u->requires_mounts_for) fprintf(f, " %s", *j); fputs("\n", f); } if (u->load_state == UNIT_LOADED) { fprintf(f, "%s\tStopWhenUnneeded: %s\n" "%s\tRefuseManualStart: %s\n" "%s\tRefuseManualStop: %s\n" "%s\tDefaultDependencies: %s\n" "%s\tOnFailureJobMode: %s\n" "%s\tIgnoreOnIsolate: %s\n" "%s\tIgnoreOnSnapshot: %s\n", prefix, yes_no(u->stop_when_unneeded), prefix, yes_no(u->refuse_manual_start), prefix, yes_no(u->refuse_manual_stop), prefix, yes_no(u->default_dependencies), prefix, job_mode_to_string(u->on_failure_job_mode), prefix, yes_no(u->ignore_on_isolate), prefix, yes_no(u->ignore_on_snapshot)); if (UNIT_VTABLE(u)->dump) UNIT_VTABLE(u)->dump(u, f, prefix2); } else if (u->load_state == UNIT_MERGED) fprintf(f, "%s\tMerged into: %s\n", prefix, u->merged_into->id); else if (u->load_state == UNIT_ERROR) fprintf(f, "%s\tLoad Error Code: %s\n", prefix, strerror(-u->load_error)); if (u->job) job_dump(u->job, f, prefix2); if (u->nop_job) job_dump(u->nop_job, f, prefix2); } /* Common implementation for multiple backends */ int unit_load_fragment_and_dropin(Unit *u) { int r; assert(u); /* Load a .{service,socket,...} file */ r = unit_load_fragment(u); if (r < 0) return r; if (u->load_state == UNIT_STUB) return -ENOENT; /* Load drop-in directory data */ r = unit_load_dropin(unit_follow_merge(u)); if (r < 0) return r; return 0; } /* Common implementation for multiple backends */ int unit_load_fragment_and_dropin_optional(Unit *u) { int r; assert(u); /* Same as unit_load_fragment_and_dropin(), but whether * something can be loaded or not doesn't matter. */ /* Load a .service file */ r = unit_load_fragment(u); if (r < 0) return r; if (u->load_state == UNIT_STUB) u->load_state = UNIT_LOADED; /* Load drop-in directory data */ r = unit_load_dropin(unit_follow_merge(u)); if (r < 0) return r; return 0; } int unit_add_default_target_dependency(Unit *u, Unit *target) { assert(u); assert(target); if (target->type != UNIT_TARGET) return 0; /* Only add the dependency if both units are loaded, so that * that loop check below is reliable */ if (u->load_state != UNIT_LOADED || target->load_state != UNIT_LOADED) return 0; /* If either side wants no automatic dependencies, then let's * skip this */ if (!u->default_dependencies || !target->default_dependencies) return 0; /* Don't create loops */ if (set_get(target->dependencies[UNIT_BEFORE], u)) return 0; return unit_add_dependency(target, UNIT_AFTER, u, true); } static int unit_add_target_dependencies(Unit *u) { static const UnitDependency deps[] = { UNIT_REQUIRED_BY, UNIT_REQUIRED_BY_OVERRIDABLE, UNIT_WANTED_BY, UNIT_BOUND_BY }; Unit *target; Iterator i; unsigned k; int r = 0; assert(u); for (k = 0; k < ELEMENTSOF(deps); k++) SET_FOREACH(target, u->dependencies[deps[k]], i) { r = unit_add_default_target_dependency(u, target); if (r < 0) return r; } return r; } static int unit_add_slice_dependencies(Unit *u) { assert(u); if (!unit_get_cgroup_context(u)) return 0; if (UNIT_ISSET(u->slice)) return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_WANTS, UNIT_DEREF(u->slice), true); return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_WANTS, SPECIAL_ROOT_SLICE, NULL, true); } static int unit_add_mount_dependencies(Unit *u) { char **i; int r; assert(u); STRV_FOREACH(i, u->requires_mounts_for) { char prefix[strlen(*i) + 1]; PATH_FOREACH_PREFIX_MORE(prefix, *i) { Unit *m; r = manager_get_unit_by_path(u->manager, prefix, ".mount", &m); if (r < 0) return r; if (r == 0) continue; if (m == u) continue; if (m->load_state != UNIT_LOADED) continue; r = unit_add_dependency(u, UNIT_AFTER, m, true); if (r < 0) return r; if (m->fragment_path) { r = unit_add_dependency(u, UNIT_REQUIRES, m, true); if (r < 0) return r; } } } return 0; } int unit_load(Unit *u) { int r; assert(u); if (u->in_load_queue) { LIST_REMOVE(load_queue, u->manager->load_queue, u); u->in_load_queue = false; } if (u->type == _UNIT_TYPE_INVALID) return -EINVAL; if (u->load_state != UNIT_STUB) return 0; if (UNIT_VTABLE(u)->load) { r = UNIT_VTABLE(u)->load(u); if (r < 0) goto fail; } if (u->load_state == UNIT_STUB) { r = -ENOENT; goto fail; } if (u->load_state == UNIT_LOADED) { r = unit_add_target_dependencies(u); if (r < 0) goto fail; r = unit_add_slice_dependencies(u); if (r < 0) goto fail; r = unit_add_mount_dependencies(u); if (r < 0) goto fail; if (u->on_failure_job_mode == JOB_ISOLATE && set_size(u->dependencies[UNIT_ON_FAILURE]) > 1) { log_error_unit(u->id, "More than one OnFailure= dependencies specified for %s but OnFailureJobMode=isolate set. Refusing.", u->id); r = -EINVAL; goto fail; } unit_update_cgroup_members_masks(u); } assert((u->load_state != UNIT_MERGED) == !u->merged_into); unit_add_to_dbus_queue(unit_follow_merge(u)); unit_add_to_gc_queue(u); return 0; fail: u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND : UNIT_ERROR; u->load_error = r; unit_add_to_dbus_queue(u); unit_add_to_gc_queue(u); log_debug_unit(u->id, "Failed to load configuration for %s: %s", u->id, strerror(-r)); return r; } static bool unit_condition_test(Unit *u) { assert(u); dual_timestamp_get(&u->condition_timestamp); u->condition_result = condition_test_list(u->id, u->conditions); return u->condition_result; } _pure_ static const char* unit_get_status_message_format(Unit *u, JobType t) { const UnitStatusMessageFormats *format_table; assert(u); assert(t >= 0); assert(t < _JOB_TYPE_MAX); if (t != JOB_START && t != JOB_STOP) return NULL; format_table = &UNIT_VTABLE(u)->status_message_formats; if (!format_table) return NULL; return format_table->starting_stopping[t == JOB_STOP]; } _pure_ static const char *unit_get_status_message_format_try_harder(Unit *u, JobType t) { const char *format; assert(u); assert(t >= 0); assert(t < _JOB_TYPE_MAX); format = unit_get_status_message_format(u, t); if (format) return format; /* Return generic strings */ if (t == JOB_START) return "Starting %s."; else if (t == JOB_STOP) return "Stopping %s."; else if (t == JOB_RELOAD) return "Reloading %s."; return NULL; } static void unit_status_print_starting_stopping(Unit *u, JobType t) { const char *format; assert(u); /* We only print status messages for selected units on * selected operations. */ format = unit_get_status_message_format(u, t); if (!format) return; DISABLE_WARNING_FORMAT_NONLITERAL; unit_status_printf(u, "", format); REENABLE_WARNING; } static void unit_status_log_starting_stopping_reloading(Unit *u, JobType t) { const char *format; char buf[LINE_MAX]; sd_id128_t mid; assert(u); if (t != JOB_START && t != JOB_STOP && t != JOB_RELOAD) return; if (log_on_console()) return; /* We log status messages for all units and all operations. */ format = unit_get_status_message_format_try_harder(u, t); if (!format) return; DISABLE_WARNING_FORMAT_NONLITERAL; snprintf(buf, sizeof(buf), format, unit_description(u)); char_array_0(buf); REENABLE_WARNING; mid = t == JOB_START ? SD_MESSAGE_UNIT_STARTING : t == JOB_STOP ? SD_MESSAGE_UNIT_STOPPING : SD_MESSAGE_UNIT_RELOADING; log_struct_unit(LOG_INFO, u->id, MESSAGE_ID(mid), "MESSAGE=%s", buf, NULL); } /* Errors: * -EBADR: This unit type does not support starting. * -EALREADY: Unit is already started. * -EAGAIN: An operation is already in progress. Retry later. * -ECANCELED: Too many requests for now. */ int unit_start(Unit *u) { UnitActiveState state; Unit *following; assert(u); if (u->load_state != UNIT_LOADED) return -EINVAL; /* If this is already started, then this will succeed. Note * that this will even succeed if this unit is not startable * by the user. This is relied on to detect when we need to * wait for units and when waiting is finished. */ state = unit_active_state(u); if (UNIT_IS_ACTIVE_OR_RELOADING(state)) return -EALREADY; /* If the conditions failed, don't do anything at all. If we * already are activating this call might still be useful to * speed up activation in case there is some hold-off time, * but we don't want to recheck the condition in that case. */ if (state != UNIT_ACTIVATING && !unit_condition_test(u)) { log_debug_unit(u->id, "Starting of %s requested but condition failed. Ignoring.", u->id); return -EALREADY; } /* Forward to the main object, if we aren't it. */ following = unit_following(u); if (following) { log_debug_unit(u->id, "Redirecting start request from %s to %s.", u->id, following->id); return unit_start(following); } unit_status_log_starting_stopping_reloading(u, JOB_START); unit_status_print_starting_stopping(u, JOB_START); /* If it is stopped, but we cannot start it, then fail */ if (!UNIT_VTABLE(u)->start) return -EBADR; /* We don't suppress calls to ->start() here when we are * already starting, to allow this request to be used as a * "hurry up" call, for example when the unit is in some "auto * restart" state where it waits for a holdoff timer to elapse * before it will start again. */ unit_add_to_dbus_queue(u); return UNIT_VTABLE(u)->start(u); } bool unit_can_start(Unit *u) { assert(u); return !!UNIT_VTABLE(u)->start; } bool unit_can_isolate(Unit *u) { assert(u); return unit_can_start(u) && u->allow_isolate; } /* Errors: * -EBADR: This unit type does not support stopping. * -EALREADY: Unit is already stopped. * -EAGAIN: An operation is already in progress. Retry later. */ int unit_stop(Unit *u) { UnitActiveState state; Unit *following; assert(u); state = unit_active_state(u); if (UNIT_IS_INACTIVE_OR_FAILED(state)) return -EALREADY; if ((following = unit_following(u))) { log_debug_unit(u->id, "Redirecting stop request from %s to %s.", u->id, following->id); return unit_stop(following); } unit_status_log_starting_stopping_reloading(u, JOB_STOP); unit_status_print_starting_stopping(u, JOB_STOP); if (!UNIT_VTABLE(u)->stop) return -EBADR; unit_add_to_dbus_queue(u); return UNIT_VTABLE(u)->stop(u); } /* Errors: * -EBADR: This unit type does not support reloading. * -ENOEXEC: Unit is not started. * -EAGAIN: An operation is already in progress. Retry later. */ int unit_reload(Unit *u) { UnitActiveState state; Unit *following; assert(u); if (u->load_state != UNIT_LOADED) return -EINVAL; if (!unit_can_reload(u)) return -EBADR; state = unit_active_state(u); if (state == UNIT_RELOADING) return -EALREADY; if (state != UNIT_ACTIVE) { log_warning_unit(u->id, "Unit %s cannot be reloaded because it is inactive.", u->id); return -ENOEXEC; } following = unit_following(u); if (following) { log_debug_unit(u->id, "Redirecting reload request from %s to %s.", u->id, following->id); return unit_reload(following); } unit_status_log_starting_stopping_reloading(u, JOB_RELOAD); unit_add_to_dbus_queue(u); return UNIT_VTABLE(u)->reload(u); } bool unit_can_reload(Unit *u) { assert(u); if (!UNIT_VTABLE(u)->reload) return false; if (!UNIT_VTABLE(u)->can_reload) return true; return UNIT_VTABLE(u)->can_reload(u); } static void unit_check_unneeded(Unit *u) { Iterator i; Unit *other; assert(u); /* If this service shall be shut down when unneeded then do * so. */ if (!u->stop_when_unneeded) return; if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))) return; SET_FOREACH(other, u->dependencies[UNIT_REQUIRED_BY], i) if (unit_active_or_pending(other)) return; SET_FOREACH(other, u->dependencies[UNIT_REQUIRED_BY_OVERRIDABLE], i) if (unit_active_or_pending(other)) return; SET_FOREACH(other, u->dependencies[UNIT_WANTED_BY], i) if (unit_active_or_pending(other)) return; SET_FOREACH(other, u->dependencies[UNIT_BOUND_BY], i) if (unit_active_or_pending(other)) return; log_info_unit(u->id, "Service %s is not needed anymore. Stopping.", u->id); /* Ok, nobody needs us anymore. Sniff. Then let's commit suicide */ manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, true, NULL, NULL); } static void retroactively_start_dependencies(Unit *u) { Iterator i; Unit *other; assert(u); assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))); SET_FOREACH(other, u->dependencies[UNIT_REQUIRES], i) if (!set_get(u->dependencies[UNIT_AFTER], other) && !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, true, NULL, NULL); SET_FOREACH(other, u->dependencies[UNIT_BINDS_TO], i) if (!set_get(u->dependencies[UNIT_AFTER], other) && !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, true, NULL, NULL); SET_FOREACH(other, u->dependencies[UNIT_REQUIRES_OVERRIDABLE], i) if (!set_get(u->dependencies[UNIT_AFTER], other) && !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_START, other, JOB_FAIL, false, NULL, NULL); SET_FOREACH(other, u->dependencies[UNIT_WANTS], i) if (!set_get(u->dependencies[UNIT_AFTER], other) && !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_START, other, JOB_FAIL, false, NULL, NULL); SET_FOREACH(other, u->dependencies[UNIT_CONFLICTS], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, true, NULL, NULL); SET_FOREACH(other, u->dependencies[UNIT_CONFLICTED_BY], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, true, NULL, NULL); } static void retroactively_stop_dependencies(Unit *u) { Iterator i; Unit *other; assert(u); assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u))); /* Pull down units which are bound to us recursively if enabled */ SET_FOREACH(other, u->dependencies[UNIT_BOUND_BY], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, true, NULL, NULL); } static void check_unneeded_dependencies(Unit *u) { Iterator i; Unit *other; assert(u); assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u))); /* Garbage collect services that might not be needed anymore, if enabled */ SET_FOREACH(other, u->dependencies[UNIT_REQUIRES], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_unneeded(other); SET_FOREACH(other, u->dependencies[UNIT_REQUIRES_OVERRIDABLE], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_unneeded(other); SET_FOREACH(other, u->dependencies[UNIT_WANTS], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_unneeded(other); SET_FOREACH(other, u->dependencies[UNIT_REQUISITE], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_unneeded(other); SET_FOREACH(other, u->dependencies[UNIT_REQUISITE_OVERRIDABLE], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_unneeded(other); SET_FOREACH(other, u->dependencies[UNIT_BINDS_TO], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_unneeded(other); } void unit_start_on_failure(Unit *u) { Unit *other; Iterator i; assert(u); if (set_size(u->dependencies[UNIT_ON_FAILURE]) <= 0) return; log_info_unit(u->id, "Triggering OnFailure= dependencies of %s.", u->id); SET_FOREACH(other, u->dependencies[UNIT_ON_FAILURE], i) { int r; r = manager_add_job(u->manager, JOB_START, other, u->on_failure_job_mode, true, NULL, NULL); if (r < 0) log_error_unit(u->id, "Failed to enqueue OnFailure= job: %s", strerror(-r)); } } void unit_trigger_notify(Unit *u) { Unit *other; Iterator i; assert(u); SET_FOREACH(other, u->dependencies[UNIT_TRIGGERED_BY], i) if (UNIT_VTABLE(other)->trigger_notify) UNIT_VTABLE(other)->trigger_notify(other, u); } void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, bool reload_success) { Manager *m; bool unexpected; assert(u); assert(os < _UNIT_ACTIVE_STATE_MAX); assert(ns < _UNIT_ACTIVE_STATE_MAX); /* Note that this is called for all low-level state changes, * even if they might map to the same high-level * UnitActiveState! That means that ns == os is OK an expected * behavior here. For example: if a mount point is remounted * this function will be called too! */ m = u->manager; /* Update timestamps for state changes */ if (m->n_reloading <= 0) { dual_timestamp ts; dual_timestamp_get(&ts); if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns)) u->inactive_exit_timestamp = ts; else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns)) u->inactive_enter_timestamp = ts; if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns)) u->active_enter_timestamp = ts; else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns)) u->active_exit_timestamp = ts; } /* Keep track of failed of units */ if (ns == UNIT_FAILED && os != UNIT_FAILED) set_put(u->manager->failed_units, u); else if (os == UNIT_FAILED && ns != UNIT_FAILED) set_remove(u->manager->failed_units, u); /* Make sure the cgroup is always removed when we become inactive */ if (UNIT_IS_INACTIVE_OR_FAILED(ns)) unit_destroy_cgroup(u); /* Note that this doesn't apply to RemainAfterExit services exiting * successfully, since there's no change of state in that case. Which is * why it is handled in service_set_state() */ if (UNIT_IS_INACTIVE_OR_FAILED(os) != UNIT_IS_INACTIVE_OR_FAILED(ns)) { ExecContext *ec; ec = unit_get_exec_context(u); if (ec && exec_context_may_touch_console(ec)) { if (UNIT_IS_INACTIVE_OR_FAILED(ns)) { m->n_on_console --; if (m->n_on_console == 0) /* unset no_console_output flag, since the console is free */ m->no_console_output = false; } else m->n_on_console ++; } } if (u->job) { unexpected = false; if (u->job->state == JOB_WAITING) /* So we reached a different state for this * job. Let's see if we can run it now if it * failed previously due to EAGAIN. */ job_add_to_run_queue(u->job); /* Let's check whether this state change constitutes a * finished job, or maybe contradicts a running job and * hence needs to invalidate jobs. */ switch (u->job->type) { case JOB_START: case JOB_VERIFY_ACTIVE: if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) job_finish_and_invalidate(u->job, JOB_DONE, true); else if (u->job->state == JOB_RUNNING && ns != UNIT_ACTIVATING) { unexpected = true; if (UNIT_IS_INACTIVE_OR_FAILED(ns)) job_finish_and_invalidate(u->job, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true); } break; case JOB_RELOAD: case JOB_RELOAD_OR_START: if (u->job->state == JOB_RUNNING) { if (ns == UNIT_ACTIVE) job_finish_and_invalidate(u->job, reload_success ? JOB_DONE : JOB_FAILED, true); else if (ns != UNIT_ACTIVATING && ns != UNIT_RELOADING) { unexpected = true; if (UNIT_IS_INACTIVE_OR_FAILED(ns)) job_finish_and_invalidate(u->job, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true); } } break; case JOB_STOP: case JOB_RESTART: case JOB_TRY_RESTART: if (UNIT_IS_INACTIVE_OR_FAILED(ns)) job_finish_and_invalidate(u->job, JOB_DONE, true); else if (u->job->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) { unexpected = true; job_finish_and_invalidate(u->job, JOB_FAILED, true); } break; default: assert_not_reached("Job type unknown"); } } else unexpected = true; if (m->n_reloading <= 0) { /* If this state change happened without being * requested by a job, then let's retroactively start * or stop dependencies. We skip that step when * deserializing, since we don't want to create any * additional jobs just because something is already * activated. */ if (unexpected) { if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns)) retroactively_start_dependencies(u); else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns)) retroactively_stop_dependencies(u); } /* stop unneeded units regardless if going down was expected or not */ if (UNIT_IS_INACTIVE_OR_DEACTIVATING(ns)) check_unneeded_dependencies(u); if (ns != os && ns == UNIT_FAILED) { log_notice_unit(u->id, "Unit %s entered failed state.", u->id); unit_start_on_failure(u); } } /* Some names are special */ if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) { if (unit_has_name(u, SPECIAL_DBUS_SERVICE)) /* The bus just might have become available, * hence try to connect to it, if we aren't * yet connected. */ bus_init(m, true); if (u->type == UNIT_SERVICE && !UNIT_IS_ACTIVE_OR_RELOADING(os) && m->n_reloading <= 0) { /* Write audit record if we have just finished starting up */ manager_send_unit_audit(m, u, AUDIT_SERVICE_START, true); u->in_audit = true; } if (!UNIT_IS_ACTIVE_OR_RELOADING(os)) manager_send_unit_plymouth(m, u); } else { /* We don't care about D-Bus here, since we'll get an * asynchronous notification for it anyway. */ if (u->type == UNIT_SERVICE && UNIT_IS_INACTIVE_OR_FAILED(ns) && !UNIT_IS_INACTIVE_OR_FAILED(os) && m->n_reloading <= 0) { /* Hmm, if there was no start record written * write it now, so that we always have a nice * pair */ if (!u->in_audit) { manager_send_unit_audit(m, u, AUDIT_SERVICE_START, ns == UNIT_INACTIVE); if (ns == UNIT_INACTIVE) manager_send_unit_audit(m, u, AUDIT_SERVICE_STOP, true); } else /* Write audit record if we have just finished shutting down */ manager_send_unit_audit(m, u, AUDIT_SERVICE_STOP, ns == UNIT_INACTIVE); u->in_audit = false; } } manager_recheck_journal(m); unit_trigger_notify(u); /* Maybe we finished startup and are now ready for being * stopped because unneeded? */ if (u->manager->n_reloading <= 0) unit_check_unneeded(u); unit_add_to_dbus_queue(u); unit_add_to_gc_queue(u); } int unit_watch_pid(Unit *u, pid_t pid) { int q, r; assert(u); assert(pid >= 1); /* Watch a specific PID. We only support one or two units * watching each PID for now, not more. */ r = set_ensure_allocated(&u->pids, trivial_hash_func, trivial_compare_func); if (r < 0) return r; r = hashmap_ensure_allocated(&u->manager->watch_pids1, trivial_hash_func, trivial_compare_func); if (r < 0) return r; r = hashmap_put(u->manager->watch_pids1, LONG_TO_PTR(pid), u); if (r == -EEXIST) { r = hashmap_ensure_allocated(&u->manager->watch_pids2, trivial_hash_func, trivial_compare_func); if (r < 0) return r; r = hashmap_put(u->manager->watch_pids2, LONG_TO_PTR(pid), u); } q = set_put(u->pids, LONG_TO_PTR(pid)); if (q < 0) return q; return r; } void unit_unwatch_pid(Unit *u, pid_t pid) { assert(u); assert(pid >= 1); hashmap_remove_value(u->manager->watch_pids1, LONG_TO_PTR(pid), u); hashmap_remove_value(u->manager->watch_pids2, LONG_TO_PTR(pid), u); set_remove(u->pids, LONG_TO_PTR(pid)); } void unit_unwatch_all_pids(Unit *u) { assert(u); while (!set_isempty(u->pids)) unit_unwatch_pid(u, PTR_TO_LONG(set_first(u->pids))); set_free(u->pids); u->pids = NULL; } static int unit_watch_pids_in_path(Unit *u, const char *path) { _cleanup_closedir_ DIR *d = NULL; _cleanup_fclose_ FILE *f = NULL; int ret = 0, r; assert(u); assert(path); /* Adds all PIDs from a specific cgroup path to the set of PIDs we watch. */ r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f); if (r >= 0) { pid_t pid; while ((r = cg_read_pid(f, &pid)) > 0) { r = unit_watch_pid(u, pid); if (r < 0 && ret >= 0) ret = r; } if (r < 0 && ret >= 0) ret = r; } else if (ret >= 0) ret = r; r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d); if (r >= 0) { char *fn; while ((r = cg_read_subgroup(d, &fn)) > 0) { _cleanup_free_ char *p = NULL; p = strjoin(path, "/", fn, NULL); free(fn); if (!p) return -ENOMEM; r = unit_watch_pids_in_path(u, p); if (r < 0 && ret >= 0) ret = r; } if (r < 0 && ret >= 0) ret = r; } else if (ret >= 0) ret = r; return ret; } int unit_watch_all_pids(Unit *u) { assert(u); /* Adds all PIDs from our cgroup to the set of PIDs we watch */ if (!u->cgroup_path) return -ENOENT; return unit_watch_pids_in_path(u, u->cgroup_path); } void unit_tidy_watch_pids(Unit *u, pid_t except1, pid_t except2) { Iterator i; void *e; assert(u); /* Cleans dead PIDs from our list */ SET_FOREACH(e, u->pids, i) { pid_t pid = PTR_TO_LONG(e); if (pid == except1 || pid == except2) continue; if (!pid_is_unwaited(pid)) unit_unwatch_pid(u, pid); } } bool unit_job_is_applicable(Unit *u, JobType j) { assert(u); assert(j >= 0 && j < _JOB_TYPE_MAX); switch (j) { case JOB_VERIFY_ACTIVE: case JOB_START: case JOB_STOP: case JOB_NOP: return true; case JOB_RESTART: case JOB_TRY_RESTART: return unit_can_start(u); case JOB_RELOAD: return unit_can_reload(u); case JOB_RELOAD_OR_START: return unit_can_reload(u) && unit_can_start(u); default: assert_not_reached("Invalid job type"); } } int unit_add_dependency(Unit *u, UnitDependency d, Unit *other, bool add_reference) { static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = { [UNIT_REQUIRES] = UNIT_REQUIRED_BY, [UNIT_REQUIRES_OVERRIDABLE] = UNIT_REQUIRED_BY_OVERRIDABLE, [UNIT_WANTS] = UNIT_WANTED_BY, [UNIT_REQUISITE] = UNIT_REQUIRED_BY, [UNIT_REQUISITE_OVERRIDABLE] = UNIT_REQUIRED_BY_OVERRIDABLE, [UNIT_BINDS_TO] = UNIT_BOUND_BY, [UNIT_PART_OF] = UNIT_CONSISTS_OF, [UNIT_REQUIRED_BY] = _UNIT_DEPENDENCY_INVALID, [UNIT_REQUIRED_BY_OVERRIDABLE] = _UNIT_DEPENDENCY_INVALID, [UNIT_WANTED_BY] = _UNIT_DEPENDENCY_INVALID, [UNIT_BOUND_BY] = UNIT_BINDS_TO, [UNIT_CONSISTS_OF] = UNIT_PART_OF, [UNIT_CONFLICTS] = UNIT_CONFLICTED_BY, [UNIT_CONFLICTED_BY] = UNIT_CONFLICTS, [UNIT_BEFORE] = UNIT_AFTER, [UNIT_AFTER] = UNIT_BEFORE, [UNIT_ON_FAILURE] = _UNIT_DEPENDENCY_INVALID, [UNIT_REFERENCES] = UNIT_REFERENCED_BY, [UNIT_REFERENCED_BY] = UNIT_REFERENCES, [UNIT_TRIGGERS] = UNIT_TRIGGERED_BY, [UNIT_TRIGGERED_BY] = UNIT_TRIGGERS, [UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM, [UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO, [UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF, }; int r, q = 0, v = 0, w = 0; assert(u); assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX); assert(other); u = unit_follow_merge(u); other = unit_follow_merge(other); /* We won't allow dependencies on ourselves. We will not * consider them an error however. */ if (u == other) return 0; r = set_ensure_allocated(&u->dependencies[d], trivial_hash_func, trivial_compare_func); if (r < 0) return r; if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID) { r = set_ensure_allocated(&other->dependencies[inverse_table[d]], trivial_hash_func, trivial_compare_func); if (r < 0) return r; } if (add_reference) { r = set_ensure_allocated(&u->dependencies[UNIT_REFERENCES], trivial_hash_func, trivial_compare_func); if (r < 0) return r; r = set_ensure_allocated(&other->dependencies[UNIT_REFERENCED_BY], trivial_hash_func, trivial_compare_func); if (r < 0) return r; } q = set_put(u->dependencies[d], other); if (q < 0) return q; if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID && inverse_table[d] != d) { v = set_put(other->dependencies[inverse_table[d]], u); if (v < 0) { r = v; goto fail; } } if (add_reference) { w = set_put(u->dependencies[UNIT_REFERENCES], other); if (w < 0) { r = w; goto fail; } r = set_put(other->dependencies[UNIT_REFERENCED_BY], u); if (r < 0) goto fail; } unit_add_to_dbus_queue(u); return 0; fail: if (q > 0) set_remove(u->dependencies[d], other); if (v > 0) set_remove(other->dependencies[inverse_table[d]], u); if (w > 0) set_remove(u->dependencies[UNIT_REFERENCES], other); return r; } int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference) { int r; assert(u); if ((r = unit_add_dependency(u, d, other, add_reference)) < 0) return r; if ((r = unit_add_dependency(u, e, other, add_reference)) < 0) return r; return 0; } static const char *resolve_template(Unit *u, const char *name, const char*path, char **p) { char *s; assert(u); assert(name || path); assert(p); if (!name) name = basename(path); if (!unit_name_is_template(name)) { *p = NULL; return name; } if (u->instance) s = unit_name_replace_instance(name, u->instance); else { _cleanup_free_ char *i = NULL; i = unit_name_to_prefix(u->id); if (!i) return NULL; s = unit_name_replace_instance(name, i); } if (!s) return NULL; *p = s; return s; } int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, const char *path, bool add_reference) { Unit *other; int r; _cleanup_free_ char *s = NULL; assert(u); assert(name || path); name = resolve_template(u, name, path, &s); if (!name) return -ENOMEM; r = manager_load_unit(u->manager, name, path, NULL, &other); if (r < 0) return r; return unit_add_dependency(u, d, other, add_reference); } int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, const char *path, bool add_reference) { Unit *other; int r; _cleanup_free_ char *s = NULL; assert(u); assert(name || path); if (!(name = resolve_template(u, name, path, &s))) return -ENOMEM; if ((r = manager_load_unit(u->manager, name, path, NULL, &other)) < 0) return r; r = unit_add_two_dependencies(u, d, e, other, add_reference); return r; } int unit_add_dependency_by_name_inverse(Unit *u, UnitDependency d, const char *name, const char *path, bool add_reference) { Unit *other; int r; _cleanup_free_ char *s = NULL; assert(u); assert(name || path); if (!(name = resolve_template(u, name, path, &s))) return -ENOMEM; if ((r = manager_load_unit(u->manager, name, path, NULL, &other)) < 0) return r; r = unit_add_dependency(other, d, u, add_reference); return r; } int unit_add_two_dependencies_by_name_inverse(Unit *u, UnitDependency d, UnitDependency e, const char *name, const char *path, bool add_reference) { Unit *other; int r; _cleanup_free_ char *s = NULL; assert(u); assert(name || path); if (!(name = resolve_template(u, name, path, &s))) return -ENOMEM; if ((r = manager_load_unit(u->manager, name, path, NULL, &other)) < 0) return r; if ((r = unit_add_two_dependencies(other, d, e, u, add_reference)) < 0) return r; return r; } int set_unit_path(const char *p) { _cleanup_free_ char *c = NULL; /* This is mostly for debug purposes */ c = path_make_absolute_cwd(p); if (setenv("SYSTEMD_UNIT_PATH", c, 0) < 0) return -errno; return 0; } char *unit_dbus_path(Unit *u) { assert(u); if (!u->id) return NULL; return unit_dbus_path_from_name(u->id); } char *unit_default_cgroup_path(Unit *u) { _cleanup_free_ char *escaped = NULL, *slice = NULL; int r; assert(u); if (unit_has_name(u, SPECIAL_ROOT_SLICE)) return strdup(u->manager->cgroup_root); if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) { r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice); if (r < 0) return NULL; } escaped = cg_escape(u->id); if (!escaped) return NULL; if (slice) return strjoin(u->manager->cgroup_root, "/", slice, "/", escaped, NULL); else return strjoin(u->manager->cgroup_root, "/", escaped, NULL); } int unit_add_default_slice(Unit *u) { _cleanup_free_ char *b = NULL; const char *slice_name; Unit *slice; int r; assert(u); if (UNIT_ISSET(u->slice)) return 0; if (!unit_get_cgroup_context(u)) return 0; if (u->instance) { _cleanup_free_ char *prefix = NULL, *escaped = NULL; /* Implicitly place all instantiated units in their * own per-template slice */ prefix = unit_name_to_prefix(u->id); if (!prefix) return -ENOMEM; /* The prefix is already escaped, but it might include * "-" which has a special meaning for slice units, * hence escape it here extra. */ escaped = strreplace(prefix, "-", "\\x2d"); if (!escaped) return -ENOMEM; if (u->manager->running_as == SYSTEMD_SYSTEM) b = strjoin("system-", escaped, ".slice", NULL); else b = strappend(escaped, ".slice"); if (!b) return -ENOMEM; slice_name = b; } else slice_name = u->manager->running_as == SYSTEMD_SYSTEM ? SPECIAL_SYSTEM_SLICE : SPECIAL_ROOT_SLICE; r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice); if (r < 0) return r; unit_ref_set(&u->slice, slice); return 0; } const char *unit_slice_name(Unit *u) { assert(u); if (!UNIT_ISSET(u->slice)) return NULL; return UNIT_DEREF(u->slice)->id; } int unit_load_related_unit(Unit *u, const char *type, Unit **_found) { _cleanup_free_ char *t = NULL; int r; assert(u); assert(type); assert(_found); t = unit_name_change_suffix(u->id, type); if (!t) return -ENOMEM; assert(!unit_has_name(u, t)); r = manager_load_unit(u->manager, t, NULL, NULL, _found); assert(r < 0 || *_found != u); return r; } int unit_watch_bus_name(Unit *u, const char *name) { assert(u); assert(name); /* Watch a specific name on the bus. We only support one unit * watching each name for now. */ return hashmap_put(u->manager->watch_bus, name, u); } void unit_unwatch_bus_name(Unit *u, const char *name) { assert(u); assert(name); hashmap_remove_value(u->manager->watch_bus, name, u); } bool unit_can_serialize(Unit *u) { assert(u); return UNIT_VTABLE(u)->serialize && UNIT_VTABLE(u)->deserialize_item; } int unit_serialize(Unit *u, FILE *f, FDSet *fds, bool serialize_jobs) { ExecRuntime *rt; int r; assert(u); assert(f); assert(fds); if (!unit_can_serialize(u)) return 0; r = UNIT_VTABLE(u)->serialize(u, f, fds); if (r < 0) return r; rt = unit_get_exec_runtime(u); if (rt) { r = exec_runtime_serialize(rt, u, f, fds); if (r < 0) return r; } dual_timestamp_serialize(f, "inactive-exit-timestamp", &u->inactive_exit_timestamp); dual_timestamp_serialize(f, "active-enter-timestamp", &u->active_enter_timestamp); dual_timestamp_serialize(f, "active-exit-timestamp", &u->active_exit_timestamp); dual_timestamp_serialize(f, "inactive-enter-timestamp", &u->inactive_enter_timestamp); dual_timestamp_serialize(f, "condition-timestamp", &u->condition_timestamp); if (dual_timestamp_is_set(&u->condition_timestamp)) unit_serialize_item(u, f, "condition-result", yes_no(u->condition_result)); unit_serialize_item(u, f, "transient", yes_no(u->transient)); if (u->cgroup_path) unit_serialize_item(u, f, "cgroup", u->cgroup_path); if (serialize_jobs) { if (u->job) { fprintf(f, "job\n"); job_serialize(u->job, f, fds); } if (u->nop_job) { fprintf(f, "job\n"); job_serialize(u->nop_job, f, fds); } } /* End marker */ fputc('\n', f); return 0; } void unit_serialize_item_format(Unit *u, FILE *f, const char *key, const char *format, ...) { va_list ap; assert(u); assert(f); assert(key); assert(format); fputs(key, f); fputc('=', f); va_start(ap, format); vfprintf(f, format, ap); va_end(ap); fputc('\n', f); } void unit_serialize_item(Unit *u, FILE *f, const char *key, const char *value) { assert(u); assert(f); assert(key); assert(value); fprintf(f, "%s=%s\n", key, value); } int unit_deserialize(Unit *u, FILE *f, FDSet *fds) { size_t offset; ExecRuntime **rt = NULL; int r; assert(u); assert(f); assert(fds); if (!unit_can_serialize(u)) return 0; offset = UNIT_VTABLE(u)->exec_runtime_offset; if (offset > 0) rt = (ExecRuntime**) ((uint8_t*) u + offset); for (;;) { char line[LINE_MAX], *l, *v; size_t k; if (!fgets(line, sizeof(line), f)) { if (feof(f)) return 0; return -errno; } char_array_0(line); l = strstrip(line); /* End marker */ if (l[0] == 0) return 0; k = strcspn(l, "="); if (l[k] == '=') { l[k] = 0; v = l+k+1; } else v = l+k; if (streq(l, "job")) { if (v[0] == '\0') { /* new-style serialized job */ Job *j = job_new_raw(u); if (!j) return -ENOMEM; r = job_deserialize(j, f, fds); if (r < 0) { job_free(j); return r; } r = hashmap_put(u->manager->jobs, UINT32_TO_PTR(j->id), j); if (r < 0) { job_free(j); return r; } r = job_install_deserialized(j); if (r < 0) { hashmap_remove(u->manager->jobs, UINT32_TO_PTR(j->id)); job_free(j); return r; } if (j->state == JOB_RUNNING) u->manager->n_running_jobs++; } else { /* legacy */ JobType type = job_type_from_string(v); if (type < 0) log_debug("Failed to parse job type value %s", v); else u->deserialized_job = type; } continue; } else if (streq(l, "inactive-exit-timestamp")) { dual_timestamp_deserialize(v, &u->inactive_exit_timestamp); continue; } else if (streq(l, "active-enter-timestamp")) { dual_timestamp_deserialize(v, &u->active_enter_timestamp); continue; } else if (streq(l, "active-exit-timestamp")) { dual_timestamp_deserialize(v, &u->active_exit_timestamp); continue; } else if (streq(l, "inactive-enter-timestamp")) { dual_timestamp_deserialize(v, &u->inactive_enter_timestamp); continue; } else if (streq(l, "condition-timestamp")) { dual_timestamp_deserialize(v, &u->condition_timestamp); continue; } else if (streq(l, "condition-result")) { int b; b = parse_boolean(v); if (b < 0) log_debug("Failed to parse condition result value %s", v); else u->condition_result = b; continue; } else if (streq(l, "transient")) { int b; b = parse_boolean(v); if (b < 0) log_debug("Failed to parse transient bool %s", v); else u->transient = b; continue; } else if (streq(l, "cgroup")) { char *s; s = strdup(v); if (!s) return -ENOMEM; free(u->cgroup_path); u->cgroup_path = s; assert(hashmap_put(u->manager->cgroup_unit, s, u) == 1); continue; } if (rt) { r = exec_runtime_deserialize_item(rt, u, l, v, fds); if (r < 0) return r; if (r > 0) continue; } r = UNIT_VTABLE(u)->deserialize_item(u, l, v, fds); if (r < 0) return r; } } int unit_add_node_link(Unit *u, const char *what, bool wants) { Unit *device; _cleanup_free_ char *e = NULL; int r; assert(u); if (!what) return 0; /* Adds in links to the device node that this unit is based on */ if (!is_device_path(what)) return 0; e = unit_name_from_path(what, ".device"); if (!e) return -ENOMEM; r = manager_load_unit(u->manager, e, NULL, NULL, &device); if (r < 0) return r; r = unit_add_two_dependencies(u, UNIT_AFTER, UNIT_BINDS_TO, device, true); if (r < 0) return r; if (wants) { r = unit_add_dependency(device, UNIT_WANTS, u, false); if (r < 0) return r; } return 0; } int unit_coldplug(Unit *u) { int r; assert(u); if (UNIT_VTABLE(u)->coldplug) if ((r = UNIT_VTABLE(u)->coldplug(u)) < 0) return r; if (u->job) { r = job_coldplug(u->job); if (r < 0) return r; } else if (u->deserialized_job >= 0) { /* legacy */ r = manager_add_job(u->manager, u->deserialized_job, u, JOB_IGNORE_REQUIREMENTS, false, NULL, NULL); if (r < 0) return r; u->deserialized_job = _JOB_TYPE_INVALID; } return 0; } void unit_status_printf(Unit *u, const char *status, const char *unit_status_msg_format) { DISABLE_WARNING_FORMAT_NONLITERAL; manager_status_printf(u->manager, false, status, unit_status_msg_format, unit_description(u)); REENABLE_WARNING; } bool unit_need_daemon_reload(Unit *u) { _cleanup_strv_free_ char **t = NULL; char **path; struct stat st; unsigned loaded_cnt, current_cnt; assert(u); if (u->fragment_path) { zero(st); if (stat(u->fragment_path, &st) < 0) /* What, cannot access this anymore? */ return true; if (u->fragment_mtime > 0 && timespec_load(&st.st_mtim) != u->fragment_mtime) return true; } if (u->source_path) { zero(st); if (stat(u->source_path, &st) < 0) return true; if (u->source_mtime > 0 && timespec_load(&st.st_mtim) != u->source_mtime) return true; } t = unit_find_dropin_paths(u); loaded_cnt = strv_length(t); current_cnt = strv_length(u->dropin_paths); if (loaded_cnt == current_cnt) { if (loaded_cnt == 0) return false; if (strv_overlap(u->dropin_paths, t)) { STRV_FOREACH(path, u->dropin_paths) { zero(st); if (stat(*path, &st) < 0) return true; if (u->dropin_mtime > 0 && timespec_load(&st.st_mtim) > u->dropin_mtime) return true; } return false; } else return true; } else return true; } void unit_reset_failed(Unit *u) { assert(u); if (UNIT_VTABLE(u)->reset_failed) UNIT_VTABLE(u)->reset_failed(u); } Unit *unit_following(Unit *u) { assert(u); if (UNIT_VTABLE(u)->following) return UNIT_VTABLE(u)->following(u); return NULL; } bool unit_stop_pending(Unit *u) { assert(u); /* This call does check the current state of the unit. It's * hence useful to be called from state change calls of the * unit itself, where the state isn't updated yet. This is * different from unit_inactive_or_pending() which checks both * the current state and for a queued job. */ return u->job && u->job->type == JOB_STOP; } bool unit_inactive_or_pending(Unit *u) { assert(u); /* Returns true if the unit is inactive or going down */ if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u))) return true; if (unit_stop_pending(u)) return true; return false; } bool unit_active_or_pending(Unit *u) { assert(u); /* Returns true if the unit is active or going up */ if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))) return true; if (u->job && (u->job->type == JOB_START || u->job->type == JOB_RELOAD_OR_START || u->job->type == JOB_RESTART)) return true; return false; } int unit_kill(Unit *u, KillWho w, int signo, sd_bus_error *error) { assert(u); assert(w >= 0 && w < _KILL_WHO_MAX); assert(signo > 0); assert(signo < _NSIG); if (!UNIT_VTABLE(u)->kill) return -ENOTSUP; return UNIT_VTABLE(u)->kill(u, w, signo, error); } static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) { Set *pid_set; int r; pid_set = set_new(trivial_hash_func, trivial_compare_func); if (!pid_set) return NULL; /* Exclude the main/control pids from being killed via the cgroup */ if (main_pid > 0) { r = set_put(pid_set, LONG_TO_PTR(main_pid)); if (r < 0) goto fail; } if (control_pid > 0) { r = set_put(pid_set, LONG_TO_PTR(control_pid)); if (r < 0) goto fail; } return pid_set; fail: set_free(pid_set); return NULL; } int unit_kill_common( Unit *u, KillWho who, int signo, pid_t main_pid, pid_t control_pid, sd_bus_error *error) { int r = 0; if (who == KILL_MAIN && main_pid <= 0) { if (main_pid < 0) sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type)); else sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill"); return -ESRCH; } if (who == KILL_CONTROL && control_pid <= 0) { if (control_pid < 0) sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type)); else sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill"); return -ESRCH; } if (who == KILL_CONTROL || who == KILL_ALL) if (control_pid > 0) if (kill(control_pid, signo) < 0) r = -errno; if (who == KILL_MAIN || who == KILL_ALL) if (main_pid > 0) if (kill(main_pid, signo) < 0) r = -errno; if (who == KILL_ALL && u->cgroup_path) { _cleanup_set_free_ Set *pid_set = NULL; int q; /* Exclude the main/control pids from being killed via the cgroup */ pid_set = unit_pid_set(main_pid, control_pid); if (!pid_set) return -ENOMEM; q = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, false, true, false, pid_set); if (q < 0 && q != -EAGAIN && q != -ESRCH && q != -ENOENT) r = q; } return r; } int unit_following_set(Unit *u, Set **s) { assert(u); assert(s); if (UNIT_VTABLE(u)->following_set) return UNIT_VTABLE(u)->following_set(u, s); *s = NULL; return 0; } UnitFileState unit_get_unit_file_state(Unit *u) { assert(u); if (u->unit_file_state < 0 && u->fragment_path) u->unit_file_state = unit_file_get_state( u->manager->running_as == SYSTEMD_SYSTEM ? UNIT_FILE_SYSTEM : UNIT_FILE_USER, NULL, basename(u->fragment_path)); return u->unit_file_state; } Unit* unit_ref_set(UnitRef *ref, Unit *u) { assert(ref); assert(u); if (ref->unit) unit_ref_unset(ref); ref->unit = u; LIST_PREPEND(refs, u->refs, ref); return u; } void unit_ref_unset(UnitRef *ref) { assert(ref); if (!ref->unit) return; LIST_REMOVE(refs, ref->unit->refs, ref); ref->unit = NULL; } int unit_cgroup_context_init_defaults(Unit *u, CGroupContext *c) { assert(u); assert(c); /* Copy in the manager defaults into the cgroup context, * _before_ the rest of the settings have been initialized */ c->cpu_accounting = u->manager->default_cpu_accounting; c->blockio_accounting = u->manager->default_blockio_accounting; c->memory_accounting = u->manager->default_memory_accounting; return 0; } int unit_exec_context_patch_defaults(Unit *u, ExecContext *c) { unsigned i; int r; assert(u); assert(c); /* Patch in the manager defaults into the exec context, * _after_ the rest of the settings have been initialized */ /* This only copies in the ones that need memory */ for (i = 0; i < _RLIMIT_MAX; i++) if (u->manager->rlimit[i] && !c->rlimit[i]) { c->rlimit[i] = newdup(struct rlimit, u->manager->rlimit[i], 1); if (!c->rlimit[i]) return -ENOMEM; } if (u->manager->running_as == SYSTEMD_USER && !c->working_directory) { r = get_home_dir(&c->working_directory); if (r < 0) return r; } if (u->manager->running_as == SYSTEMD_USER && (c->syscall_whitelist || !set_isempty(c->syscall_filter) || !set_isempty(c->syscall_archs) || c->address_families_whitelist || !set_isempty(c->address_families))) c->no_new_privileges = true; return 0; } ExecContext *unit_get_exec_context(Unit *u) { size_t offset; assert(u); offset = UNIT_VTABLE(u)->exec_context_offset; if (offset <= 0) return NULL; return (ExecContext*) ((uint8_t*) u + offset); } KillContext *unit_get_kill_context(Unit *u) { size_t offset; assert(u); offset = UNIT_VTABLE(u)->kill_context_offset; if (offset <= 0) return NULL; return (KillContext*) ((uint8_t*) u + offset); } CGroupContext *unit_get_cgroup_context(Unit *u) { size_t offset; offset = UNIT_VTABLE(u)->cgroup_context_offset; if (offset <= 0) return NULL; return (CGroupContext*) ((uint8_t*) u + offset); } ExecRuntime *unit_get_exec_runtime(Unit *u) { size_t offset; offset = UNIT_VTABLE(u)->exec_runtime_offset; if (offset <= 0) return NULL; return *(ExecRuntime**) ((uint8_t*) u + offset); } static int drop_in_file(Unit *u, UnitSetPropertiesMode mode, const char *name, char **_p, char **_q) { _cleanup_free_ char *b = NULL; char *p, *q; int r; assert(u); assert(name); assert(_p); assert(_q); b = xescape(name, "/."); if (!b) return -ENOMEM; if (!filename_is_safe(b)) return -EINVAL; if (u->manager->running_as == SYSTEMD_USER) { _cleanup_free_ char *c = NULL; r = user_config_home(&c); if (r < 0) return r; if (r == 0) return -ENOENT; p = strjoin(c, "/", u->id, ".d", NULL); } else if (mode == UNIT_PERSISTENT && !u->transient) p = strjoin("/etc/systemd/system/", u->id, ".d", NULL); else p = strjoin("/run/systemd/system/", u->id, ".d", NULL); if (!p) return -ENOMEM; q = strjoin(p, "/90-", b, ".conf", NULL); if (!q) { free(p); return -ENOMEM; } *_p = p; *_q = q; return 0; } int unit_write_drop_in(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *data) { _cleanup_free_ char *p = NULL, *q = NULL; int r; assert(u); assert(name); assert(data); if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME)) return 0; r = drop_in_file(u, mode, name, &p, &q); if (r < 0) return r; mkdir_p(p, 0755); return write_string_file_atomic_label(q, data); } int unit_write_drop_in_format(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *format, ...) { _cleanup_free_ char *p = NULL; va_list ap; int r; assert(u); assert(name); assert(format); if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME)) return 0; va_start(ap, format); r = vasprintf(&p, format, ap); va_end(ap); if (r < 0) return -ENOMEM; return unit_write_drop_in(u, mode, name, p); } int unit_write_drop_in_private(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *data) { _cleanup_free_ char *ndata = NULL; assert(u); assert(name); assert(data); if (!UNIT_VTABLE(u)->private_section) return -EINVAL; if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME)) return 0; ndata = strjoin("[", UNIT_VTABLE(u)->private_section, "]\n", data, NULL); if (!ndata) return -ENOMEM; return unit_write_drop_in(u, mode, name, ndata); } int unit_write_drop_in_private_format(Unit *u, UnitSetPropertiesMode mode, const char *name, const char *format, ...) { _cleanup_free_ char *p = NULL; va_list ap; int r; assert(u); assert(name); assert(format); if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME)) return 0; va_start(ap, format); r = vasprintf(&p, format, ap); va_end(ap); if (r < 0) return -ENOMEM; return unit_write_drop_in_private(u, mode, name, p); } int unit_remove_drop_in(Unit *u, UnitSetPropertiesMode mode, const char *name) { _cleanup_free_ char *p = NULL, *q = NULL; int r; assert(u); if (!IN_SET(mode, UNIT_PERSISTENT, UNIT_RUNTIME)) return 0; r = drop_in_file(u, mode, name, &p, &q); if (r < 0) return r; if (unlink(q) < 0) r = errno == ENOENT ? 0 : -errno; else r = 1; rmdir(p); return r; } int unit_make_transient(Unit *u) { int r; assert(u); u->load_state = UNIT_STUB; u->load_error = 0; u->transient = true; free(u->fragment_path); u->fragment_path = NULL; if (u->manager->running_as == SYSTEMD_USER) { _cleanup_free_ char *c = NULL; r = user_config_home(&c); if (r < 0) return r; if (r == 0) return -ENOENT; u->fragment_path = strjoin(c, "/", u->id, NULL); if (!u->fragment_path) return -ENOMEM; mkdir_p(c, 0755); } else { u->fragment_path = strappend("/run/systemd/system/", u->id); if (!u->fragment_path) return -ENOMEM; mkdir_p("/run/systemd/system", 0755); } return write_string_file_atomic_label(u->fragment_path, "# Transient stub"); } int unit_kill_context( Unit *u, KillContext *c, bool sigkill, pid_t main_pid, pid_t control_pid, bool main_pid_alien) { int sig, wait_for_exit = false, r; assert(u); assert(c); if (c->kill_mode == KILL_NONE) return 0; sig = sigkill ? SIGKILL : c->kill_signal; if (main_pid > 0) { r = kill_and_sigcont(main_pid, sig); if (r < 0 && r != -ESRCH) { _cleanup_free_ char *comm = NULL; get_process_comm(main_pid, &comm); log_warning_unit(u->id, "Failed to kill main process " PID_FMT " (%s): %s", main_pid, strna(comm), strerror(-r)); } else { if (!main_pid_alien) wait_for_exit = true; if (c->send_sighup && !sigkill) kill(main_pid, SIGHUP); } } if (control_pid > 0) { r = kill_and_sigcont(control_pid, sig); if (r < 0 && r != -ESRCH) { _cleanup_free_ char *comm = NULL; get_process_comm(control_pid, &comm); log_warning_unit(u->id, "Failed to kill control process " PID_FMT " (%s): %s", control_pid, strna(comm), strerror(-r)); } else { wait_for_exit = true; if (c->send_sighup && !sigkill) kill(control_pid, SIGHUP); } } if ((c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && sigkill)) && u->cgroup_path) { _cleanup_set_free_ Set *pid_set = NULL; /* Exclude the main/control pids from being killed via the cgroup */ pid_set = unit_pid_set(main_pid, control_pid); if (!pid_set) return -ENOMEM; r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, sig, true, true, false, pid_set); if (r < 0) { if (r != -EAGAIN && r != -ESRCH && r != -ENOENT) log_warning_unit(u->id, "Failed to kill control group: %s", strerror(-r)); } else if (r > 0) { /* FIXME: For now, we will not wait for the * cgroup members to die, simply because * cgroup notification is unreliable. It * doesn't work at all in containers, and * outside of containers it can be confused * easily by leaving directories in the * cgroup. */ /* wait_for_exit = true; */ if (c->send_sighup && !sigkill) { set_free(pid_set); pid_set = unit_pid_set(main_pid, control_pid); if (!pid_set) return -ENOMEM; cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, SIGHUP, false, true, false, pid_set); } } } return wait_for_exit; } int unit_require_mounts_for(Unit *u, const char *path) { char prefix[strlen(path) + 1], *p; int r; assert(u); assert(path); /* Registers a unit for requiring a certain path and all its * prefixes. We keep a simple array of these paths in the * unit, since its usually short. However, we build a prefix * table for all possible prefixes so that new appearing mount * units can easily determine which units to make themselves a * dependency of. */ if (!path_is_absolute(path)) return -EINVAL; p = strdup(path); if (!p) return -ENOMEM; path_kill_slashes(p); if (!path_is_safe(p)) { free(p); return -EPERM; } if (strv_contains(u->requires_mounts_for, p)) { free(p); return 0; } r = strv_consume(&u->requires_mounts_for, p); if (r < 0) return r; PATH_FOREACH_PREFIX_MORE(prefix, p) { Set *x; x = hashmap_get(u->manager->units_requiring_mounts_for, prefix); if (!x) { char *q; if (!u->manager->units_requiring_mounts_for) { u->manager->units_requiring_mounts_for = hashmap_new(string_hash_func, string_compare_func); if (!u->manager->units_requiring_mounts_for) return -ENOMEM; } q = strdup(prefix); if (!q) return -ENOMEM; x = set_new(NULL, NULL); if (!x) { free(q); return -ENOMEM; } r = hashmap_put(u->manager->units_requiring_mounts_for, q, x); if (r < 0) { free(q); set_free(x); return r; } } r = set_put(x, u); if (r < 0) return r; } return 0; } int unit_setup_exec_runtime(Unit *u) { ExecRuntime **rt; size_t offset; Iterator i; Unit *other; offset = UNIT_VTABLE(u)->exec_runtime_offset; assert(offset > 0); /* Check if ther already is an ExecRuntime for this unit? */ rt = (ExecRuntime**) ((uint8_t*) u + offset); if (*rt) return 0; /* Try to get it from somebody else */ SET_FOREACH(other, u->dependencies[UNIT_JOINS_NAMESPACE_OF], i) { *rt = unit_get_exec_runtime(other); if (*rt) { exec_runtime_ref(*rt); return 0; } } return exec_runtime_make(rt, unit_get_exec_context(u), u->id); } static const char* const unit_active_state_table[_UNIT_ACTIVE_STATE_MAX] = { [UNIT_ACTIVE] = "active", [UNIT_RELOADING] = "reloading", [UNIT_INACTIVE] = "inactive", [UNIT_FAILED] = "failed", [UNIT_ACTIVATING] = "activating", [UNIT_DEACTIVATING] = "deactivating" }; DEFINE_STRING_TABLE_LOOKUP(unit_active_state, UnitActiveState); static const char* const unit_dependency_table[_UNIT_DEPENDENCY_MAX] = { [UNIT_REQUIRES] = "Requires", [UNIT_REQUIRES_OVERRIDABLE] = "RequiresOverridable", [UNIT_REQUISITE] = "Requisite", [UNIT_REQUISITE_OVERRIDABLE] = "RequisiteOverridable", [UNIT_WANTS] = "Wants", [UNIT_BINDS_TO] = "BindsTo", [UNIT_PART_OF] = "PartOf", [UNIT_REQUIRED_BY] = "RequiredBy", [UNIT_REQUIRED_BY_OVERRIDABLE] = "RequiredByOverridable", [UNIT_WANTED_BY] = "WantedBy", [UNIT_BOUND_BY] = "BoundBy", [UNIT_CONSISTS_OF] = "ConsistsOf", [UNIT_CONFLICTS] = "Conflicts", [UNIT_CONFLICTED_BY] = "ConflictedBy", [UNIT_BEFORE] = "Before", [UNIT_AFTER] = "After", [UNIT_ON_FAILURE] = "OnFailure", [UNIT_TRIGGERS] = "Triggers", [UNIT_TRIGGERED_BY] = "TriggeredBy", [UNIT_PROPAGATES_RELOAD_TO] = "PropagatesReloadTo", [UNIT_RELOAD_PROPAGATED_FROM] = "ReloadPropagatedFrom", [UNIT_JOINS_NAMESPACE_OF] = "JoinsNamespaceOf", [UNIT_REFERENCES] = "References", [UNIT_REFERENCED_BY] = "ReferencedBy", }; DEFINE_STRING_TABLE_LOOKUP(unit_dependency, UnitDependency);