/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/ /*** This file is part of systemd. Copyright 2013 Lennart Poettering systemd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with systemd; If not, see . ***/ #include #include #include #include #include #include #include #include #include #include "util.h" #include "macro.h" #include "strv.h" #include "set.h" #include "missing.h" #include "sd-bus.h" #include "bus-internal.h" #include "bus-message.h" #include "bus-type.h" #include "bus-socket.h" #include "bus-kernel.h" #include "bus-control.h" #include "bus-introspect.h" #include "bus-signature.h" #include "bus-objects.h" #include "bus-util.h" #include "bus-container.h" static int bus_poll(sd_bus *bus, bool need_more, uint64_t timeout_usec); static void bus_close_fds(sd_bus *b) { assert(b); if (b->input_fd >= 0) close_nointr_nofail(b->input_fd); if (b->output_fd >= 0 && b->output_fd != b->input_fd) close_nointr_nofail(b->output_fd); b->input_fd = b->output_fd = -1; } static void bus_node_destroy(sd_bus *b, struct node *n) { struct node_callback *c; struct node_vtable *v; struct node_enumerator *e; assert(b); if (!n) return; while (n->child) bus_node_destroy(b, n->child); while ((c = n->callbacks)) { LIST_REMOVE(callbacks, n->callbacks, c); free(c); } while ((v = n->vtables)) { LIST_REMOVE(vtables, n->vtables, v); free(v->interface); free(v); } while ((e = n->enumerators)) { LIST_REMOVE(enumerators, n->enumerators, e); free(e); } if (n->parent) LIST_REMOVE(siblings, n->parent->child, n); assert_se(hashmap_remove(b->nodes, n->path) == n); free(n->path); free(n); } static void bus_reset_queues(sd_bus *b) { unsigned i; assert(b); for (i = 0; i < b->rqueue_size; i++) sd_bus_message_unref(b->rqueue[i]); free(b->rqueue); for (i = 0; i < b->wqueue_size; i++) sd_bus_message_unref(b->wqueue[i]); free(b->wqueue); b->rqueue = b->wqueue = NULL; b->rqueue_size = b->wqueue_size = 0; } static void bus_free(sd_bus *b) { struct filter_callback *f; struct node *n; assert(b); sd_bus_detach_event(b); bus_close_fds(b); if (b->kdbus_buffer) munmap(b->kdbus_buffer, KDBUS_POOL_SIZE); free(b->rbuffer); free(b->unique_name); free(b->auth_buffer); free(b->address); free(b->kernel); free(b->machine); free(b->exec_path); strv_free(b->exec_argv); close_many(b->fds, b->n_fds); free(b->fds); bus_reset_queues(b); hashmap_free_free(b->reply_callbacks); prioq_free(b->reply_callbacks_prioq); while ((f = b->filter_callbacks)) { LIST_REMOVE(callbacks, b->filter_callbacks, f); free(f); } bus_match_free(&b->match_callbacks); hashmap_free_free(b->vtable_methods); hashmap_free_free(b->vtable_properties); while ((n = hashmap_first(b->nodes))) bus_node_destroy(b, n); hashmap_free(b->nodes); bus_kernel_flush_memfd(b); assert_se(pthread_mutex_destroy(&b->memfd_cache_mutex) == 0); free(b); } _public_ int sd_bus_new(sd_bus **ret) { sd_bus *r; assert_return(ret, -EINVAL); r = new0(sd_bus, 1); if (!r) return -ENOMEM; r->n_ref = REFCNT_INIT; r->input_fd = r->output_fd = -1; r->message_version = 1; r->creds_mask |= SD_BUS_CREDS_WELL_KNOWN_NAMES|SD_BUS_CREDS_UNIQUE_NAME; r->hello_flags |= KDBUS_HELLO_ACCEPT_FD; r->attach_flags |= KDBUS_ATTACH_NAMES; r->original_pid = getpid(); assert_se(pthread_mutex_init(&r->memfd_cache_mutex, NULL) == 0); /* We guarantee that wqueue always has space for at least one * entry */ r->wqueue = new(sd_bus_message*, 1); if (!r->wqueue) { free(r); return -ENOMEM; } *ret = r; return 0; } _public_ int sd_bus_set_address(sd_bus *bus, const char *address) { char *a; assert_return(bus, -EINVAL); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(address, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); a = strdup(address); if (!a) return -ENOMEM; free(bus->address); bus->address = a; return 0; } _public_ int sd_bus_set_fd(sd_bus *bus, int input_fd, int output_fd) { assert_return(bus, -EINVAL); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(input_fd >= 0, -EINVAL); assert_return(output_fd >= 0, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); bus->input_fd = input_fd; bus->output_fd = output_fd; return 0; } _public_ int sd_bus_set_exec(sd_bus *bus, const char *path, char *const argv[]) { char *p, **a; assert_return(bus, -EINVAL); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(path, -EINVAL); assert_return(!strv_isempty(argv), -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); p = strdup(path); if (!p) return -ENOMEM; a = strv_copy(argv); if (!a) { free(p); return -ENOMEM; } free(bus->exec_path); strv_free(bus->exec_argv); bus->exec_path = p; bus->exec_argv = a; return 0; } _public_ int sd_bus_set_bus_client(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus->bus_client = !!b; return 0; } _public_ int sd_bus_negotiate_fds(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); SET_FLAG(bus->hello_flags, KDBUS_HELLO_ACCEPT_FD, b); return 0; } _public_ int sd_bus_negotiate_attach_timestamp(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); SET_FLAG(bus->attach_flags, KDBUS_ATTACH_TIMESTAMP, b); return 0; } _public_ int sd_bus_negotiate_attach_creds(sd_bus *bus, uint64_t mask) { assert_return(bus, -EINVAL); assert_return(mask <= _SD_BUS_CREDS_MAX, -EINVAL); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); /* The well knowns we need unconditionally, so that matches can work */ bus->creds_mask = mask | SD_BUS_CREDS_WELL_KNOWN_NAMES|SD_BUS_CREDS_UNIQUE_NAME; return kdbus_translate_attach_flags(bus->creds_mask, &bus->creds_mask); } _public_ int sd_bus_set_server(sd_bus *bus, int b, sd_id128_t server_id) { assert_return(bus, -EINVAL); assert_return(b || sd_id128_equal(server_id, SD_ID128_NULL), -EINVAL); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus->is_server = !!b; bus->server_id = server_id; return 0; } _public_ int sd_bus_set_anonymous(sd_bus *bus, int b) { assert_return(bus, -EINVAL); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus->anonymous_auth = !!b; return 0; } static int hello_callback(sd_bus *bus, sd_bus_message *reply, void *userdata, sd_bus_error *error) { const char *s; int r; assert(bus); assert(bus->state == BUS_HELLO || bus->state == BUS_CLOSING); assert(reply); r = sd_bus_message_get_errno(reply); if (r < 0) return r; if (r > 0) return -r; r = sd_bus_message_read(reply, "s", &s); if (r < 0) return r; if (!service_name_is_valid(s) || s[0] != ':') return -EBADMSG; bus->unique_name = strdup(s); if (!bus->unique_name) return -ENOMEM; if (bus->state == BUS_HELLO) bus->state = BUS_RUNNING; return 1; } static int bus_send_hello(sd_bus *bus) { _cleanup_bus_message_unref_ sd_bus_message *m = NULL; int r; assert(bus); if (!bus->bus_client || bus->is_kernel) return 0; r = sd_bus_message_new_method_call( bus, "org.freedesktop.DBus", "/", "org.freedesktop.DBus", "Hello", &m); if (r < 0) return r; return sd_bus_call_async(bus, m, hello_callback, NULL, 0, &bus->hello_serial); } int bus_start_running(sd_bus *bus) { assert(bus); if (bus->bus_client && !bus->is_kernel) { bus->state = BUS_HELLO; return 1; } bus->state = BUS_RUNNING; return 1; } static int parse_address_key(const char **p, const char *key, char **value) { size_t l, n = 0; const char *a; char *r = NULL; assert(p); assert(*p); assert(value); if (key) { l = strlen(key); if (strncmp(*p, key, l) != 0) return 0; if ((*p)[l] != '=') return 0; if (*value) return -EINVAL; a = *p + l + 1; } else a = *p; while (*a != ';' && *a != ',' && *a != 0) { char c, *t; if (*a == '%') { int x, y; x = unhexchar(a[1]); if (x < 0) { free(r); return x; } y = unhexchar(a[2]); if (y < 0) { free(r); return y; } c = (char) ((x << 4) | y); a += 3; } else { c = *a; a++; } t = realloc(r, n + 2); if (!t) { free(r); return -ENOMEM; } r = t; r[n++] = c; } if (!r) { r = strdup(""); if (!r) return -ENOMEM; } else r[n] = 0; if (*a == ',') a++; *p = a; free(*value); *value = r; return 1; } static void skip_address_key(const char **p) { assert(p); assert(*p); *p += strcspn(*p, ","); if (**p == ',') (*p) ++; } static int parse_unix_address(sd_bus *b, const char **p, char **guid) { _cleanup_free_ char *path = NULL, *abstract = NULL; size_t l; int r; assert(b); assert(p); assert(*p); assert(guid); while (**p != 0 && **p != ';') { r = parse_address_key(p, "guid", guid); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "path", &path); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "abstract", &abstract); if (r < 0) return r; else if (r > 0) continue; skip_address_key(p); } if (!path && !abstract) return -EINVAL; if (path && abstract) return -EINVAL; if (path) { l = strlen(path); if (l > sizeof(b->sockaddr.un.sun_path)) return -E2BIG; b->sockaddr.un.sun_family = AF_UNIX; strncpy(b->sockaddr.un.sun_path, path, sizeof(b->sockaddr.un.sun_path)); b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + l; } else if (abstract) { l = strlen(abstract); if (l > sizeof(b->sockaddr.un.sun_path) - 1) return -E2BIG; b->sockaddr.un.sun_family = AF_UNIX; b->sockaddr.un.sun_path[0] = 0; strncpy(b->sockaddr.un.sun_path+1, abstract, sizeof(b->sockaddr.un.sun_path)-1); b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + 1 + l; } return 0; } static int parse_tcp_address(sd_bus *b, const char **p, char **guid) { _cleanup_free_ char *host = NULL, *port = NULL, *family = NULL; int r; struct addrinfo *result, hints = { .ai_socktype = SOCK_STREAM, .ai_flags = AI_ADDRCONFIG, }; assert(b); assert(p); assert(*p); assert(guid); while (**p != 0 && **p != ';') { r = parse_address_key(p, "guid", guid); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "host", &host); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "port", &port); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "family", &family); if (r < 0) return r; else if (r > 0) continue; skip_address_key(p); } if (!host || !port) return -EINVAL; if (family) { if (streq(family, "ipv4")) hints.ai_family = AF_INET; else if (streq(family, "ipv6")) hints.ai_family = AF_INET6; else return -EINVAL; } r = getaddrinfo(host, port, &hints, &result); if (r == EAI_SYSTEM) return -errno; else if (r != 0) return -EADDRNOTAVAIL; memcpy(&b->sockaddr, result->ai_addr, result->ai_addrlen); b->sockaddr_size = result->ai_addrlen; freeaddrinfo(result); return 0; } static int parse_exec_address(sd_bus *b, const char **p, char **guid) { char *path = NULL; unsigned n_argv = 0, j; char **argv = NULL; int r; assert(b); assert(p); assert(*p); assert(guid); while (**p != 0 && **p != ';') { r = parse_address_key(p, "guid", guid); if (r < 0) goto fail; else if (r > 0) continue; r = parse_address_key(p, "path", &path); if (r < 0) goto fail; else if (r > 0) continue; if (startswith(*p, "argv")) { unsigned ul; errno = 0; ul = strtoul(*p + 4, (char**) p, 10); if (errno > 0 || **p != '=' || ul > 256) { r = -EINVAL; goto fail; } (*p) ++; if (ul >= n_argv) { char **x; x = realloc(argv, sizeof(char*) * (ul + 2)); if (!x) { r = -ENOMEM; goto fail; } memset(x + n_argv, 0, sizeof(char*) * (ul - n_argv + 2)); argv = x; n_argv = ul + 1; } r = parse_address_key(p, NULL, argv + ul); if (r < 0) goto fail; continue; } skip_address_key(p); } if (!path) { r = -EINVAL; goto fail; } /* Make sure there are no holes in the array, with the * exception of argv[0] */ for (j = 1; j < n_argv; j++) if (!argv[j]) { r = -EINVAL; goto fail; } if (argv && argv[0] == NULL) { argv[0] = strdup(path); if (!argv[0]) { r = -ENOMEM; goto fail; } } b->exec_path = path; b->exec_argv = argv; return 0; fail: for (j = 0; j < n_argv; j++) free(argv[j]); free(argv); free(path); return r; } static int parse_kernel_address(sd_bus *b, const char **p, char **guid) { _cleanup_free_ char *path = NULL; int r; assert(b); assert(p); assert(*p); assert(guid); while (**p != 0 && **p != ';') { r = parse_address_key(p, "guid", guid); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "path", &path); if (r < 0) return r; else if (r > 0) continue; skip_address_key(p); } if (!path) return -EINVAL; free(b->kernel); b->kernel = path; path = NULL; return 0; } static int parse_container_address(sd_bus *b, const char **p, char **guid) { _cleanup_free_ char *machine = NULL; int r; assert(b); assert(p); assert(*p); assert(guid); while (**p != 0 && **p != ';') { r = parse_address_key(p, "guid", guid); if (r < 0) return r; else if (r > 0) continue; r = parse_address_key(p, "machine", &machine); if (r < 0) return r; else if (r > 0) continue; skip_address_key(p); } if (!machine) return -EINVAL; free(b->machine); b->machine = machine; machine = NULL; b->sockaddr.un.sun_family = AF_UNIX; strncpy(b->sockaddr.un.sun_path, "/var/run/dbus/system_bus_socket", sizeof(b->sockaddr.un.sun_path)); b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + sizeof("/var/run/dbus/system_bus_socket") - 1; return 0; } static void bus_reset_parsed_address(sd_bus *b) { assert(b); zero(b->sockaddr); b->sockaddr_size = 0; strv_free(b->exec_argv); free(b->exec_path); b->exec_path = NULL; b->exec_argv = NULL; b->server_id = SD_ID128_NULL; free(b->kernel); b->kernel = NULL; free(b->machine); b->machine = NULL; } static int bus_parse_next_address(sd_bus *b) { _cleanup_free_ char *guid = NULL; const char *a; int r; assert(b); if (!b->address) return 0; if (b->address[b->address_index] == 0) return 0; bus_reset_parsed_address(b); a = b->address + b->address_index; while (*a != 0) { if (*a == ';') { a++; continue; } if (startswith(a, "unix:")) { a += 5; r = parse_unix_address(b, &a, &guid); if (r < 0) return r; break; } else if (startswith(a, "tcp:")) { a += 4; r = parse_tcp_address(b, &a, &guid); if (r < 0) return r; break; } else if (startswith(a, "unixexec:")) { a += 9; r = parse_exec_address(b, &a, &guid); if (r < 0) return r; break; } else if (startswith(a, "kernel:")) { a += 7; r = parse_kernel_address(b, &a, &guid); if (r < 0) return r; break; } else if (startswith(a, "x-container:")) { a += 12; r = parse_container_address(b, &a, &guid); if (r < 0) return r; break; } a = strchr(a, ';'); if (!a) return 0; } if (guid) { r = sd_id128_from_string(guid, &b->server_id); if (r < 0) return r; } b->address_index = a - b->address; return 1; } static int bus_start_address(sd_bus *b) { int r; assert(b); for (;;) { sd_bus_close(b); if (b->exec_path) { r = bus_socket_exec(b); if (r >= 0) return r; b->last_connect_error = -r; } else if (b->kernel) { r = bus_kernel_connect(b); if (r >= 0) return r; b->last_connect_error = -r; } else if (b->machine) { r = bus_container_connect(b); if (r >= 0) return r; b->last_connect_error = -r; } else if (b->sockaddr.sa.sa_family != AF_UNSPEC) { r = bus_socket_connect(b); if (r >= 0) return r; b->last_connect_error = -r; } r = bus_parse_next_address(b); if (r < 0) return r; if (r == 0) return b->last_connect_error ? -b->last_connect_error : -ECONNREFUSED; } } int bus_next_address(sd_bus *b) { assert(b); bus_reset_parsed_address(b); return bus_start_address(b); } static int bus_start_fd(sd_bus *b) { struct stat st; int r; assert(b); assert(b->input_fd >= 0); assert(b->output_fd >= 0); r = fd_nonblock(b->input_fd, true); if (r < 0) return r; r = fd_cloexec(b->input_fd, true); if (r < 0) return r; if (b->input_fd != b->output_fd) { r = fd_nonblock(b->output_fd, true); if (r < 0) return r; r = fd_cloexec(b->output_fd, true); if (r < 0) return r; } if (fstat(b->input_fd, &st) < 0) return -errno; if (S_ISCHR(b->input_fd)) return bus_kernel_take_fd(b); else return bus_socket_take_fd(b); } _public_ int sd_bus_start(sd_bus *bus) { int r; assert_return(bus, -EINVAL); assert_return(bus->state == BUS_UNSET, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); bus->state = BUS_OPENING; if (bus->is_server && bus->bus_client) return -EINVAL; if (bus->input_fd >= 0) r = bus_start_fd(bus); else if (bus->address || bus->sockaddr.sa.sa_family != AF_UNSPEC || bus->exec_path || bus->kernel || bus->machine) r = bus_start_address(bus); else return -EINVAL; if (r < 0) return r; return bus_send_hello(bus); } _public_ int sd_bus_open_system(sd_bus **ret) { const char *e; sd_bus *b; int r; assert_return(ret, -EINVAL); r = sd_bus_new(&b); if (r < 0) return r; e = secure_getenv("DBUS_SYSTEM_BUS_ADDRESS"); if (e) r = sd_bus_set_address(b, e); else r = sd_bus_set_address(b, "kernel:path=/dev/kdbus/0-system/bus;unix:path=/run/dbus/system_bus_socket"); if (r < 0) goto fail; b->bus_client = true; r = sd_bus_start(b); if (r < 0) goto fail; *ret = b; return 0; fail: bus_free(b); return r; } _public_ int sd_bus_open_user(sd_bus **ret) { const char *e; sd_bus *b; int r; assert_return(ret, -EINVAL); r = sd_bus_new(&b); if (r < 0) return r; e = secure_getenv("DBUS_SESSION_BUS_ADDRESS"); if (e) { r = sd_bus_set_address(b, e); if (r < 0) goto fail; } else { e = secure_getenv("XDG_RUNTIME_DIR"); if (e) { _cleanup_free_ char *ee = NULL; ee = bus_address_escape(e); if (!ee) { r = -ENOENT; goto fail; } asprintf(&b->address, "kernel:path=/dev/kdbus/%lu-user/bus;unix:path=%s/bus", (unsigned long) getuid(), ee); } else asprintf(&b->address, "kernel:path=/dev/kdbus/%lu-user/bus", (unsigned long) getuid()); if (!b->address) { r = -ENOMEM; goto fail; } } b->bus_client = true; r = sd_bus_start(b); if (r < 0) goto fail; *ret = b; return 0; fail: bus_free(b); return r; } _public_ int sd_bus_open_system_remote(const char *host, sd_bus **ret) { _cleanup_free_ char *e = NULL; char *p = NULL; sd_bus *bus; int r; assert_return(host, -EINVAL); assert_return(ret, -EINVAL); e = bus_address_escape(host); if (!e) return -ENOMEM; p = strjoin("unixexec:path=ssh,argv1=-xT,argv2=", e, ",argv3=systemd-stdio-bridge", NULL); if (!p) return -ENOMEM; r = sd_bus_new(&bus); if (r < 0) { free(p); return r; } bus->address = p; bus->bus_client = true; r = sd_bus_start(bus); if (r < 0) { bus_free(bus); return r; } *ret = bus; return 0; } _public_ int sd_bus_open_system_container(const char *machine, sd_bus **ret) { _cleanup_free_ char *e = NULL; sd_bus *bus; char *p; int r; assert_return(machine, -EINVAL); assert_return(ret, -EINVAL); e = bus_address_escape(machine); if (!e) return -ENOMEM; p = strjoin("x-container:machine=", e, NULL); if (!p) return -ENOMEM; r = sd_bus_new(&bus); if (r < 0) { free(p); return r; } bus->address = p; bus->bus_client = true; r = sd_bus_start(bus); if (r < 0) { bus_free(bus); return r; } *ret = bus; return 0; } _public_ void sd_bus_close(sd_bus *bus) { if (!bus) return; if (bus->state == BUS_CLOSED) return; if (bus_pid_changed(bus)) return; bus->state = BUS_CLOSED; sd_bus_detach_event(bus); /* Drop all queued messages so that they drop references to * the bus object and the bus may be freed */ bus_reset_queues(bus); if (!bus->is_kernel) bus_close_fds(bus); /* We'll leave the fd open in case this is a kernel bus, since * there might still be memblocks around that reference this * bus, and they might need to invoke the * KDBUS_CMD_FREE * ioctl on the fd when they are freed. */ } static void bus_enter_closing(sd_bus *bus) { assert(bus); if (bus->state != BUS_OPENING && bus->state != BUS_AUTHENTICATING && bus->state != BUS_HELLO && bus->state != BUS_RUNNING) return; bus->state = BUS_CLOSING; } _public_ sd_bus *sd_bus_ref(sd_bus *bus) { assert_return(bus, NULL); assert_se(REFCNT_INC(bus->n_ref) >= 2); return bus; } _public_ sd_bus *sd_bus_unref(sd_bus *bus) { assert_return(bus, NULL); if (REFCNT_DEC(bus->n_ref) <= 0) bus_free(bus); return NULL; } _public_ int sd_bus_is_open(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); return BUS_IS_OPEN(bus->state); } _public_ int sd_bus_can_send(sd_bus *bus, char type) { int r; assert_return(bus, -EINVAL); assert_return(bus->state != BUS_UNSET, -ENOTCONN); assert_return(!bus_pid_changed(bus), -ECHILD); if (type == SD_BUS_TYPE_UNIX_FD) { if (!(bus->hello_flags & KDBUS_HELLO_ACCEPT_FD)) return 0; r = bus_ensure_running(bus); if (r < 0) return r; return bus->can_fds; } return bus_type_is_valid(type); } _public_ int sd_bus_get_server_id(sd_bus *bus, sd_id128_t *server_id) { int r; assert_return(bus, -EINVAL); assert_return(server_id, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); r = bus_ensure_running(bus); if (r < 0) return r; *server_id = bus->server_id; return 0; } static int bus_seal_message(sd_bus *b, sd_bus_message *m) { assert(b); assert(m); if (m->header->version > b->message_version) return -EPERM; if (m->sealed) { /* If we copy the same message to multiple * destinations, avoid using the same serial * numbers. */ b->serial = MAX(b->serial, BUS_MESSAGE_SERIAL(m)); return 0; } return bus_message_seal(m, ++b->serial); } int bus_seal_synthetic_message(sd_bus *b, sd_bus_message *m) { assert(b); assert(m); if (m->header->version > b->message_version) return -EPERM; /* The bus specification says the serial number cannot be 0, * hence let's fill something in for synthetic messages. Since * synthetic messages might have a fake sender and we don't * want to interfere with the real sender's serial numbers we * pick a fixed, artifical one. We use (uint32_t) -1 rather * than (uint64_t) -1 since dbus1 only had 32bit identifiers, * even though kdbus can do 64bit. */ return bus_message_seal(m, 0xFFFFFFFFULL); } static int bus_write_message(sd_bus *bus, sd_bus_message *message, size_t *idx) { int r; assert(bus); assert(message); if (bus->is_kernel) return bus_kernel_write_message(bus, message); else return bus_socket_write_message(bus, message, idx); return r; } static int dispatch_wqueue(sd_bus *bus) { int r, ret = 0; assert(bus); assert(bus->state == BUS_RUNNING || bus->state == BUS_HELLO); while (bus->wqueue_size > 0) { r = bus_write_message(bus, bus->wqueue[0], &bus->windex); if (r < 0) return r; else if (r == 0) /* Didn't do anything this time */ return ret; else if (bus->is_kernel || bus->windex >= BUS_MESSAGE_SIZE(bus->wqueue[0])) { /* Fully written. Let's drop the entry from * the queue. * * This isn't particularly optimized, but * well, this is supposed to be our worst-case * buffer only, and the socket buffer is * supposed to be our primary buffer, and if * it got full, then all bets are off * anyway. */ sd_bus_message_unref(bus->wqueue[0]); bus->wqueue_size --; memmove(bus->wqueue, bus->wqueue + 1, sizeof(sd_bus_message*) * bus->wqueue_size); bus->windex = 0; ret = 1; } } return ret; } static int bus_read_message(sd_bus *bus) { assert(bus); if (bus->is_kernel) return bus_kernel_read_message(bus); else return bus_socket_read_message(bus); } int bus_rqueue_make_room(sd_bus *bus) { sd_bus_message **q; unsigned x; x = bus->rqueue_size + 1; if (bus->rqueue_allocated >= x) return 0; if (x > BUS_RQUEUE_MAX) return -ENOBUFS; q = realloc(bus->rqueue, x * sizeof(sd_bus_message*)); if (!q) return -ENOMEM; bus->rqueue = q; bus->rqueue_allocated = x; return 0; } static int dispatch_rqueue(sd_bus *bus, sd_bus_message **m) { int r, ret = 0; assert(bus); assert(m); assert(bus->state == BUS_RUNNING || bus->state == BUS_HELLO); for (;;) { if (bus->rqueue_size > 0) { /* Dispatch a queued message */ *m = bus->rqueue[0]; bus->rqueue_size --; memmove(bus->rqueue, bus->rqueue + 1, sizeof(sd_bus_message*) * bus->rqueue_size); return 1; } /* Try to read a new message */ r = bus_read_message(bus); if (r < 0) return r; if (r == 0) return ret; ret = 1; } } _public_ int sd_bus_send(sd_bus *bus, sd_bus_message *m, uint64_t *serial) { int r; assert_return(bus, -EINVAL); assert_return(BUS_IS_OPEN(bus->state), -ENOTCONN); assert_return(m, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); if (m->n_fds > 0) { r = sd_bus_can_send(bus, SD_BUS_TYPE_UNIX_FD); if (r < 0) return r; if (r == 0) return -ENOTSUP; } /* If the serial number isn't kept, then we know that no reply * is expected */ if (!serial && !m->sealed) m->header->flags |= SD_BUS_MESSAGE_NO_REPLY_EXPECTED; r = bus_seal_message(bus, m); if (r < 0) return r; /* If this is a reply and no reply was requested, then let's * suppress this, if we can */ if (m->dont_send && !serial) return 1; if ((bus->state == BUS_RUNNING || bus->state == BUS_HELLO) && bus->wqueue_size <= 0) { size_t idx = 0; r = bus_write_message(bus, m, &idx); if (r < 0) { if (r == -EPIPE || r == -ENOTCONN || r == -ESHUTDOWN) bus_enter_closing(bus); return r; } else if (!bus->is_kernel && idx < BUS_MESSAGE_SIZE(m)) { /* Wasn't fully written. So let's remember how * much was written. Note that the first entry * of the wqueue array is always allocated so * that we always can remember how much was * written. */ bus->wqueue[0] = sd_bus_message_ref(m); bus->wqueue_size = 1; bus->windex = idx; } } else { sd_bus_message **q; /* Just append it to the queue. */ if (bus->wqueue_size >= BUS_WQUEUE_MAX) return -ENOBUFS; q = realloc(bus->wqueue, sizeof(sd_bus_message*) * (bus->wqueue_size + 1)); if (!q) return -ENOMEM; bus->wqueue = q; q[bus->wqueue_size ++] = sd_bus_message_ref(m); } if (serial) *serial = BUS_MESSAGE_SERIAL(m); return 1; } _public_ int sd_bus_send_to(sd_bus *bus, sd_bus_message *m, const char *destination, uint64_t *serial) { int r; assert_return(bus, -EINVAL); assert_return(BUS_IS_OPEN(bus->state), -ENOTCONN); assert_return(m, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); if (!streq_ptr(m->destination, destination)) { if (!destination) return -EEXIST; r = sd_bus_message_set_destination(m, destination); if (r < 0) return r; } return sd_bus_send(bus, m, serial); } static usec_t calc_elapse(uint64_t usec) { if (usec == (uint64_t) -1) return 0; if (usec == 0) usec = BUS_DEFAULT_TIMEOUT; return now(CLOCK_MONOTONIC) + usec; } static int timeout_compare(const void *a, const void *b) { const struct reply_callback *x = a, *y = b; if (x->timeout != 0 && y->timeout == 0) return -1; if (x->timeout == 0 && y->timeout != 0) return 1; if (x->timeout < y->timeout) return -1; if (x->timeout > y->timeout) return 1; return 0; } _public_ int sd_bus_call_async( sd_bus *bus, sd_bus_message *m, sd_bus_message_handler_t callback, void *userdata, uint64_t usec, uint64_t *serial) { struct reply_callback *c; int r; assert_return(bus, -EINVAL); assert_return(BUS_IS_OPEN(bus->state), -ENOTCONN); assert_return(m, -EINVAL); assert_return(m->header->type == SD_BUS_MESSAGE_METHOD_CALL, -EINVAL); assert_return(!(m->header->flags & SD_BUS_MESSAGE_NO_REPLY_EXPECTED), -EINVAL); assert_return(callback, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); r = hashmap_ensure_allocated(&bus->reply_callbacks, uint64_hash_func, uint64_compare_func); if (r < 0) return r; if (usec != (uint64_t) -1) { r = prioq_ensure_allocated(&bus->reply_callbacks_prioq, timeout_compare); if (r < 0) return r; } r = bus_seal_message(bus, m); if (r < 0) return r; c = new0(struct reply_callback, 1); if (!c) return -ENOMEM; c->callback = callback; c->userdata = userdata; c->serial = BUS_MESSAGE_SERIAL(m); c->timeout = calc_elapse(usec); r = hashmap_put(bus->reply_callbacks, &c->serial, c); if (r < 0) { free(c); return r; } if (c->timeout != 0) { r = prioq_put(bus->reply_callbacks_prioq, c, &c->prioq_idx); if (r < 0) { c->timeout = 0; sd_bus_call_async_cancel(bus, c->serial); return r; } } r = sd_bus_send(bus, m, serial); if (r < 0) { sd_bus_call_async_cancel(bus, c->serial); return r; } return r; } _public_ int sd_bus_call_async_cancel(sd_bus *bus, uint64_t serial) { struct reply_callback *c; assert_return(bus, -EINVAL); assert_return(serial != 0, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); c = hashmap_remove(bus->reply_callbacks, &serial); if (!c) return 0; if (c->timeout != 0) prioq_remove(bus->reply_callbacks_prioq, c, &c->prioq_idx); free(c); return 1; } int bus_ensure_running(sd_bus *bus) { int r; assert(bus); if (bus->state == BUS_UNSET || bus->state == BUS_CLOSED || bus->state == BUS_CLOSING) return -ENOTCONN; if (bus->state == BUS_RUNNING) return 1; for (;;) { r = sd_bus_process(bus, NULL); if (r < 0) return r; if (bus->state == BUS_RUNNING) return 1; if (r > 0) continue; r = sd_bus_wait(bus, (uint64_t) -1); if (r < 0) return r; } } _public_ int sd_bus_call( sd_bus *bus, sd_bus_message *m, uint64_t usec, sd_bus_error *error, sd_bus_message **reply) { usec_t timeout; uint64_t serial; unsigned i; int r; assert_return(bus, -EINVAL); assert_return(BUS_IS_OPEN(bus->state), -ENOTCONN); assert_return(m, -EINVAL); assert_return(m->header->type == SD_BUS_MESSAGE_METHOD_CALL, -EINVAL); assert_return(!(m->header->flags & SD_BUS_MESSAGE_NO_REPLY_EXPECTED), -EINVAL); assert_return(!bus_error_is_dirty(error), -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); r = bus_ensure_running(bus); if (r < 0) return r; i = bus->rqueue_size; r = sd_bus_send(bus, m, &serial); if (r < 0) return r; timeout = calc_elapse(usec); for (;;) { usec_t left; while (i < bus->rqueue_size) { sd_bus_message *incoming = NULL; incoming = bus->rqueue[i]; if (incoming->reply_serial == serial) { /* Found a match! */ memmove(bus->rqueue + i, bus->rqueue + i + 1, sizeof(sd_bus_message*) * (bus->rqueue_size - i - 1)); bus->rqueue_size--; if (incoming->header->type == SD_BUS_MESSAGE_METHOD_RETURN) { if (reply) *reply = incoming; else sd_bus_message_unref(incoming); return 1; } else if (incoming->header->type == SD_BUS_MESSAGE_METHOD_ERROR) r = sd_bus_error_copy(error, &incoming->error); else r = -EIO; sd_bus_message_unref(incoming); return r; } else if (incoming->header->serial == serial && bus->unique_name && incoming->sender && streq(bus->unique_name, incoming->sender)) { memmove(bus->rqueue + i, bus->rqueue + i + 1, sizeof(sd_bus_message*) * (bus->rqueue_size - i - 1)); bus->rqueue_size--; /* Our own message? Somebody is trying * to send its own client a message, * let's not dead-lock, let's fail * immediately. */ sd_bus_message_unref(incoming); return -ELOOP; } /* Try to read more, right-away */ i++; } r = bus_read_message(bus); if (r < 0) { if (r == -EPIPE || r == -ENOTCONN || r == -ESHUTDOWN) bus_enter_closing(bus); return r; } if (r > 0) continue; if (timeout > 0) { usec_t n; n = now(CLOCK_MONOTONIC); if (n >= timeout) return -ETIMEDOUT; left = timeout - n; } else left = (uint64_t) -1; r = bus_poll(bus, true, left); if (r < 0) return r; r = dispatch_wqueue(bus); if (r < 0) { if (r == -EPIPE || r == -ENOTCONN || r == -ESHUTDOWN) bus_enter_closing(bus); return r; } } } _public_ int sd_bus_get_fd(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus->input_fd == bus->output_fd, -EPERM); assert_return(!bus_pid_changed(bus), -ECHILD); return bus->input_fd; } _public_ int sd_bus_get_events(sd_bus *bus) { int flags = 0; assert_return(bus, -EINVAL); assert_return(BUS_IS_OPEN(bus->state) || bus->state == BUS_CLOSING, -ENOTCONN); assert_return(!bus_pid_changed(bus), -ECHILD); if (bus->state == BUS_OPENING) flags |= POLLOUT; else if (bus->state == BUS_AUTHENTICATING) { if (bus_socket_auth_needs_write(bus)) flags |= POLLOUT; flags |= POLLIN; } else if (bus->state == BUS_RUNNING || bus->state == BUS_HELLO) { if (bus->rqueue_size <= 0) flags |= POLLIN; if (bus->wqueue_size > 0) flags |= POLLOUT; } return flags; } _public_ int sd_bus_get_timeout(sd_bus *bus, uint64_t *timeout_usec) { struct reply_callback *c; assert_return(bus, -EINVAL); assert_return(timeout_usec, -EINVAL); assert_return(BUS_IS_OPEN(bus->state) || bus->state == BUS_CLOSING, -ENOTCONN); assert_return(!bus_pid_changed(bus), -ECHILD); if (bus->state == BUS_CLOSING) { *timeout_usec = 0; return 1; } if (bus->state == BUS_AUTHENTICATING) { *timeout_usec = bus->auth_timeout; return 1; } if (bus->state != BUS_RUNNING && bus->state != BUS_HELLO) { *timeout_usec = (uint64_t) -1; return 0; } if (bus->rqueue_size > 0) { *timeout_usec = 0; return 1; } c = prioq_peek(bus->reply_callbacks_prioq); if (!c) { *timeout_usec = (uint64_t) -1; return 0; } *timeout_usec = c->timeout; return 1; } static int process_timeout(sd_bus *bus) { _cleanup_bus_error_free_ sd_bus_error error_buffer = SD_BUS_ERROR_NULL; _cleanup_bus_message_unref_ sd_bus_message* m = NULL; struct reply_callback *c; usec_t n; int r; assert(bus); c = prioq_peek(bus->reply_callbacks_prioq); if (!c) return 0; n = now(CLOCK_MONOTONIC); if (c->timeout > n) return 0; r = bus_message_new_synthetic_error( bus, c->serial, &SD_BUS_ERROR_MAKE_CONST(SD_BUS_ERROR_NO_REPLY, "Method call timed out"), &m); if (r < 0) return r; m->sender = "org.freedesktop.DBus"; r = bus_seal_synthetic_message(bus, m); if (r < 0) return r; assert_se(prioq_pop(bus->reply_callbacks_prioq) == c); hashmap_remove(bus->reply_callbacks, &c->serial); bus->current = m; bus->iteration_counter ++; r = c->callback(bus, m, c->userdata, &error_buffer); r = bus_maybe_reply_error(m, r, &error_buffer); free(c); bus->current = NULL; return r; } static int process_hello(sd_bus *bus, sd_bus_message *m) { assert(bus); assert(m); if (bus->state != BUS_HELLO) return 0; /* Let's make sure the first message on the bus is the HELLO * reply. But note that we don't actually parse the message * here (we leave that to the usual handling), we just verify * we don't let any earlier msg through. */ if (m->header->type != SD_BUS_MESSAGE_METHOD_RETURN && m->header->type != SD_BUS_MESSAGE_METHOD_ERROR) return -EIO; if (m->reply_serial != bus->hello_serial) return -EIO; return 0; } static int process_reply(sd_bus *bus, sd_bus_message *m) { _cleanup_bus_error_free_ sd_bus_error error_buffer = SD_BUS_ERROR_NULL; struct reply_callback *c; int r; assert(bus); assert(m); if (m->header->type != SD_BUS_MESSAGE_METHOD_RETURN && m->header->type != SD_BUS_MESSAGE_METHOD_ERROR) return 0; c = hashmap_remove(bus->reply_callbacks, &m->reply_serial); if (!c) return 0; if (c->timeout != 0) prioq_remove(bus->reply_callbacks_prioq, c, &c->prioq_idx); r = sd_bus_message_rewind(m, true); if (r < 0) return r; r = c->callback(bus, m, c->userdata, &error_buffer); r = bus_maybe_reply_error(m, r, &error_buffer); free(c); return r; } static int process_filter(sd_bus *bus, sd_bus_message *m) { _cleanup_bus_error_free_ sd_bus_error error_buffer = SD_BUS_ERROR_NULL; struct filter_callback *l; int r; assert(bus); assert(m); do { bus->filter_callbacks_modified = false; LIST_FOREACH(callbacks, l, bus->filter_callbacks) { if (bus->filter_callbacks_modified) break; /* Don't run this more than once per iteration */ if (l->last_iteration == bus->iteration_counter) continue; l->last_iteration = bus->iteration_counter; r = sd_bus_message_rewind(m, true); if (r < 0) return r; r = l->callback(bus, m, l->userdata, &error_buffer); r = bus_maybe_reply_error(m, r, &error_buffer); if (r != 0) return r; } } while (bus->filter_callbacks_modified); return 0; } static int process_match(sd_bus *bus, sd_bus_message *m) { int r; assert(bus); assert(m); do { bus->match_callbacks_modified = false; r = bus_match_run(bus, &bus->match_callbacks, m); if (r != 0) return r; } while (bus->match_callbacks_modified); return 0; } static int process_builtin(sd_bus *bus, sd_bus_message *m) { _cleanup_bus_message_unref_ sd_bus_message *reply = NULL; int r; assert(bus); assert(m); if (m->header->type != SD_BUS_MESSAGE_METHOD_CALL) return 0; if (!streq_ptr(m->interface, "org.freedesktop.DBus.Peer")) return 0; if (m->header->flags & SD_BUS_MESSAGE_NO_REPLY_EXPECTED) return 1; if (streq_ptr(m->member, "Ping")) r = sd_bus_message_new_method_return(m, &reply); else if (streq_ptr(m->member, "GetMachineId")) { sd_id128_t id; char sid[33]; r = sd_id128_get_machine(&id); if (r < 0) return r; r = sd_bus_message_new_method_return(m, &reply); if (r < 0) return r; r = sd_bus_message_append(reply, "s", sd_id128_to_string(id, sid)); } else { r = sd_bus_message_new_method_errorf( m, &reply, SD_BUS_ERROR_UNKNOWN_METHOD, "Unknown method '%s' on interface '%s'.", m->member, m->interface); } if (r < 0) return r; r = sd_bus_send(bus, reply, NULL); if (r < 0) return r; return 1; } static int process_message(sd_bus *bus, sd_bus_message *m) { int r; assert(bus); assert(m); bus->current = m; bus->iteration_counter++; log_debug("Got message sender=%s object=%s interface=%s member=%s", strna(sd_bus_message_get_sender(m)), strna(sd_bus_message_get_path(m)), strna(sd_bus_message_get_interface(m)), strna(sd_bus_message_get_member(m))); r = process_hello(bus, m); if (r != 0) goto finish; r = process_reply(bus, m); if (r != 0) goto finish; r = process_filter(bus, m); if (r != 0) goto finish; r = process_match(bus, m); if (r != 0) goto finish; r = process_builtin(bus, m); if (r != 0) goto finish; r = bus_process_object(bus, m); finish: bus->current = NULL; return r; } static int process_running(sd_bus *bus, sd_bus_message **ret) { _cleanup_bus_message_unref_ sd_bus_message *m = NULL; int r; assert(bus); assert(bus->state == BUS_RUNNING || bus->state == BUS_HELLO); r = process_timeout(bus); if (r != 0) goto null_message; r = dispatch_wqueue(bus); if (r != 0) goto null_message; r = dispatch_rqueue(bus, &m); if (r < 0) return r; if (!m) goto null_message; r = process_message(bus, m); if (r != 0) goto null_message; if (ret) { r = sd_bus_message_rewind(m, true); if (r < 0) return r; *ret = m; m = NULL; return 1; } if (m->header->type == SD_BUS_MESSAGE_METHOD_CALL) { r = sd_bus_reply_method_errorf( m, SD_BUS_ERROR_UNKNOWN_OBJECT, "Unknown object '%s'.", m->path); if (r < 0) return r; } return 1; null_message: if (r >= 0 && ret) *ret = NULL; return r; } static int process_closing(sd_bus *bus, sd_bus_message **ret) { _cleanup_bus_message_unref_ sd_bus_message *m = NULL; struct reply_callback *c; int r; assert(bus); assert(bus->state == BUS_CLOSING); c = hashmap_first(bus->reply_callbacks); if (c) { _cleanup_bus_error_free_ sd_bus_error error_buffer = SD_BUS_ERROR_NULL; /* First, fail all outstanding method calls */ r = bus_message_new_synthetic_error( bus, c->serial, &SD_BUS_ERROR_MAKE_CONST(SD_BUS_ERROR_NO_REPLY, "Connection terminated"), &m); if (r < 0) return r; r = bus_seal_synthetic_message(bus, m); if (r < 0) return r; if (c->timeout != 0) prioq_remove(bus->reply_callbacks_prioq, c, &c->prioq_idx); hashmap_remove(bus->reply_callbacks, &c->serial); bus->current = m; bus->iteration_counter++; r = c->callback(bus, m, c->userdata, &error_buffer); r = bus_maybe_reply_error(m, r, &error_buffer); free(c); goto finish; } /* Then, synthesize a Disconnected message */ r = sd_bus_message_new_signal( bus, "/org/freedesktop/DBus/Local", "org.freedesktop.DBus.Local", "Disconnected", &m); if (r < 0) return r; m->sender = "org.freedesktop.DBus.Local"; r = bus_seal_synthetic_message(bus, m); if (r < 0) return r; sd_bus_close(bus); bus->current = m; bus->iteration_counter++; r = process_filter(bus, m); if (r != 0) goto finish; r = process_match(bus, m); if (r != 0) goto finish; if (ret) { *ret = m; m = NULL; } r = 1; finish: bus->current = NULL; return r; } _public_ int sd_bus_process(sd_bus *bus, sd_bus_message **ret) { BUS_DONT_DESTROY(bus); int r; /* Returns 0 when we didn't do anything. This should cause the * caller to invoke sd_bus_wait() before returning the next * time. Returns > 0 when we did something, which possibly * means *ret is filled in with an unprocessed message. */ assert_return(bus, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); /* We don't allow recursively invoking sd_bus_process(). */ assert_return(!bus->current, -EBUSY); switch (bus->state) { case BUS_UNSET: case BUS_CLOSED: return -ENOTCONN; case BUS_OPENING: r = bus_socket_process_opening(bus); if (r == -ECONNRESET || r == -EPIPE || r == -ESHUTDOWN) { bus_enter_closing(bus); r = 1; } else if (r < 0) return r; if (ret) *ret = NULL; return r; case BUS_AUTHENTICATING: r = bus_socket_process_authenticating(bus); if (r == -ECONNRESET || r == -EPIPE || r == -ESHUTDOWN) { bus_enter_closing(bus); r = 1; } else if (r < 0) return r; if (ret) *ret = NULL; return r; case BUS_RUNNING: case BUS_HELLO: r = process_running(bus, ret); if (r == -ECONNRESET || r == -EPIPE || r == -ESHUTDOWN) { bus_enter_closing(bus); r = 1; if (ret) *ret = NULL; } return r; case BUS_CLOSING: return process_closing(bus, ret); } assert_not_reached("Unknown state"); } static int bus_poll(sd_bus *bus, bool need_more, uint64_t timeout_usec) { struct pollfd p[2] = {}; int r, e, n; struct timespec ts; usec_t m = (usec_t) -1; assert(bus); if (bus->state == BUS_CLOSING) return 1; assert_return(BUS_IS_OPEN(bus->state), -ENOTCONN); e = sd_bus_get_events(bus); if (e < 0) return e; if (need_more) /* The caller really needs some more data, he doesn't * care about what's already read, or any timeouts * except its own.*/ e |= POLLIN; else { usec_t until; /* The caller wants to process if there's something to * process, but doesn't care otherwise */ r = sd_bus_get_timeout(bus, &until); if (r < 0) return r; if (r > 0) { usec_t nw; nw = now(CLOCK_MONOTONIC); m = until > nw ? until - nw : 0; } } if (timeout_usec != (uint64_t) -1 && (m == (uint64_t) -1 || timeout_usec < m)) m = timeout_usec; p[0].fd = bus->input_fd; if (bus->output_fd == bus->input_fd) { p[0].events = e; n = 1; } else { p[0].events = e & POLLIN; p[1].fd = bus->output_fd; p[1].events = e & POLLOUT; n = 2; } r = ppoll(p, n, m == (uint64_t) -1 ? NULL : timespec_store(&ts, m), NULL); if (r < 0) return -errno; return r > 0 ? 1 : 0; } _public_ int sd_bus_wait(sd_bus *bus, uint64_t timeout_usec) { assert_return(bus, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); if (bus->state == BUS_CLOSING) return 0; assert_return(BUS_IS_OPEN(bus->state) , -ENOTCONN); if (bus->rqueue_size > 0) return 0; return bus_poll(bus, false, timeout_usec); } _public_ int sd_bus_flush(sd_bus *bus) { int r; assert_return(bus, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); if (bus->state == BUS_CLOSING) return 0; assert_return(BUS_IS_OPEN(bus->state), -ENOTCONN); r = bus_ensure_running(bus); if (r < 0) return r; if (bus->wqueue_size <= 0) return 0; for (;;) { r = dispatch_wqueue(bus); if (r < 0) { if (r == -EPIPE || r == -ENOTCONN || r == -ESHUTDOWN) bus_enter_closing(bus); return r; } if (bus->wqueue_size <= 0) return 0; r = bus_poll(bus, false, (uint64_t) -1); if (r < 0) return r; } } _public_ int sd_bus_add_filter(sd_bus *bus, sd_bus_message_handler_t callback, void *userdata) { struct filter_callback *f; assert_return(bus, -EINVAL); assert_return(callback, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); f = new0(struct filter_callback, 1); if (!f) return -ENOMEM; f->callback = callback; f->userdata = userdata; bus->filter_callbacks_modified = true; LIST_PREPEND(callbacks, bus->filter_callbacks, f); return 0; } _public_ int sd_bus_remove_filter(sd_bus *bus, sd_bus_message_handler_t callback, void *userdata) { struct filter_callback *f; assert_return(bus, -EINVAL); assert_return(callback, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); LIST_FOREACH(callbacks, f, bus->filter_callbacks) { if (f->callback == callback && f->userdata == userdata) { bus->filter_callbacks_modified = true; LIST_REMOVE(callbacks, bus->filter_callbacks, f); free(f); return 1; } } return 0; } _public_ int sd_bus_add_match(sd_bus *bus, const char *match, sd_bus_message_handler_t callback, void *userdata) { struct bus_match_component *components = NULL; unsigned n_components = 0; uint64_t cookie = 0; int r = 0; assert_return(bus, -EINVAL); assert_return(match, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); r = bus_match_parse(match, &components, &n_components); if (r < 0) goto finish; if (bus->bus_client) { cookie = ++bus->match_cookie; r = bus_add_match_internal(bus, match, components, n_components, cookie); if (r < 0) goto finish; } bus->match_callbacks_modified = true; r = bus_match_add(&bus->match_callbacks, components, n_components, callback, userdata, cookie, NULL); if (r < 0) { if (bus->bus_client) bus_remove_match_internal(bus, match, cookie); } finish: bus_match_parse_free(components, n_components); return r; } _public_ int sd_bus_remove_match(sd_bus *bus, const char *match, sd_bus_message_handler_t callback, void *userdata) { struct bus_match_component *components = NULL; unsigned n_components = 0; int r = 0, q = 0; uint64_t cookie = 0; assert_return(bus, -EINVAL); assert_return(match, -EINVAL); assert_return(!bus_pid_changed(bus), -ECHILD); r = bus_match_parse(match, &components, &n_components); if (r < 0) return r; bus->match_callbacks_modified = true; r = bus_match_remove(&bus->match_callbacks, components, n_components, callback, userdata, &cookie); if (bus->bus_client) q = bus_remove_match_internal(bus, match, cookie); bus_match_parse_free(components, n_components); return r < 0 ? r : q; } bool bus_pid_changed(sd_bus *bus) { assert(bus); /* We don't support people creating a bus connection and * keeping it around over a fork(). Let's complain. */ return bus->original_pid != getpid(); } static int io_callback(sd_event_source *s, int fd, uint32_t revents, void *userdata) { sd_bus *bus = userdata; int r; assert(bus); r = sd_bus_process(bus, NULL); if (r < 0) return r; return 1; } static int time_callback(sd_event_source *s, uint64_t usec, void *userdata) { sd_bus *bus = userdata; int r; assert(bus); r = sd_bus_process(bus, NULL); if (r < 0) return r; return 1; } static int prepare_callback(sd_event_source *s, void *userdata) { sd_bus *bus = userdata; int r, e; usec_t until; assert(s); assert(bus); e = sd_bus_get_events(bus); if (e < 0) return e; if (bus->output_fd != bus->input_fd) { r = sd_event_source_set_io_events(bus->input_io_event_source, e & POLLIN); if (r < 0) return r; r = sd_event_source_set_io_events(bus->output_io_event_source, e & POLLOUT); if (r < 0) return r; } else { r = sd_event_source_set_io_events(bus->input_io_event_source, e); if (r < 0) return r; } r = sd_bus_get_timeout(bus, &until); if (r < 0) return r; if (r > 0) { int j; j = sd_event_source_set_time(bus->time_event_source, until); if (j < 0) return j; } r = sd_event_source_set_enabled(bus->time_event_source, r > 0); if (r < 0) return r; return 1; } static int quit_callback(sd_event_source *event, void *userdata) { sd_bus *bus = userdata; assert(event); sd_bus_flush(bus); return 1; } _public_ int sd_bus_attach_event(sd_bus *bus, sd_event *event, int priority) { int r; assert_return(bus, -EINVAL); assert_return(!bus->event, -EBUSY); assert(!bus->input_io_event_source); assert(!bus->output_io_event_source); assert(!bus->time_event_source); if (event) bus->event = sd_event_ref(event); else { r = sd_event_default(&bus->event); if (r < 0) return r; } r = sd_event_add_io(bus->event, bus->input_fd, 0, io_callback, bus, &bus->input_io_event_source); if (r < 0) goto fail; r = sd_event_source_set_priority(bus->input_io_event_source, priority); if (r < 0) goto fail; if (bus->output_fd != bus->input_fd) { r = sd_event_add_io(bus->event, bus->output_fd, 0, io_callback, bus, &bus->output_io_event_source); if (r < 0) goto fail; r = sd_event_source_set_priority(bus->output_io_event_source, priority); if (r < 0) goto fail; } r = sd_event_source_set_prepare(bus->input_io_event_source, prepare_callback); if (r < 0) goto fail; r = sd_event_add_monotonic(bus->event, 0, 0, time_callback, bus, &bus->time_event_source); if (r < 0) goto fail; r = sd_event_source_set_priority(bus->time_event_source, priority); if (r < 0) goto fail; r = sd_event_add_quit(bus->event, quit_callback, bus, &bus->quit_event_source); if (r < 0) goto fail; return 0; fail: sd_bus_detach_event(bus); return r; } _public_ int sd_bus_detach_event(sd_bus *bus) { assert_return(bus, -EINVAL); assert_return(bus->event, -ENXIO); if (bus->input_io_event_source) { sd_event_source_set_enabled(bus->input_io_event_source, SD_EVENT_OFF); bus->input_io_event_source = sd_event_source_unref(bus->input_io_event_source); } if (bus->output_io_event_source) { sd_event_source_set_enabled(bus->output_io_event_source, SD_EVENT_OFF); bus->output_io_event_source = sd_event_source_unref(bus->output_io_event_source); } if (bus->time_event_source) { sd_event_source_set_enabled(bus->time_event_source, SD_EVENT_OFF); bus->time_event_source = sd_event_source_unref(bus->time_event_source); } if (bus->quit_event_source) { sd_event_source_set_enabled(bus->quit_event_source, SD_EVENT_OFF); bus->quit_event_source = sd_event_source_unref(bus->quit_event_source); } if (bus->event) bus->event = sd_event_unref(bus->event); return 0; } _public_ sd_event* sd_bus_get_event(sd_bus *bus) { assert_return(bus, NULL); return bus->event; } _public_ sd_bus_message* sd_bus_get_current(sd_bus *bus) { assert_return(bus, NULL); return bus->current; } static int bus_default(int (*bus_open)(sd_bus **), sd_bus **default_bus, sd_bus **ret) { sd_bus *b = NULL; int r; assert(bus_open); assert(default_bus); if (!ret) return !!*default_bus; if (*default_bus) { *ret = sd_bus_ref(*default_bus); return 0; } r = bus_open(&b); if (r < 0) return r; b->default_bus_ptr = default_bus; b->tid = gettid(); *default_bus = b; *ret = b; return 1; } _public_ int sd_bus_default_system(sd_bus **ret) { static __thread sd_bus *default_system_bus = NULL; return bus_default(sd_bus_open_system, &default_system_bus, ret); } _public_ int sd_bus_default_user(sd_bus **ret) { static __thread sd_bus *default_user_bus = NULL; return bus_default(sd_bus_open_user, &default_user_bus, ret); } _public_ int sd_bus_get_tid(sd_bus *b, pid_t *tid) { assert_return(b, -EINVAL); assert_return(tid, -EINVAL); assert_return(!bus_pid_changed(b), -ECHILD); if (b->tid != 0) { *tid = b->tid; return 0; } if (b->event) return sd_event_get_tid(b->event, tid); return -ENXIO; } _public_ char *sd_bus_label_escape(const char *s) { char *r, *t; const char *f; assert_return(s, NULL); /* Escapes all chars that D-Bus' object path cannot deal * with. Can be reversed with bus_path_unescape(). We special * case the empty string. */ if (*s == 0) return strdup("_"); r = new(char, strlen(s)*3 + 1); if (!r) return NULL; for (f = s, t = r; *f; f++) { /* Escape everything that is not a-zA-Z0-9. We also * escape 0-9 if it's the first character */ if (!(*f >= 'A' && *f <= 'Z') && !(*f >= 'a' && *f <= 'z') && !(f > s && *f >= '0' && *f <= '9')) { *(t++) = '_'; *(t++) = hexchar(*f >> 4); *(t++) = hexchar(*f); } else *(t++) = *f; } *t = 0; return r; } _public_ char *sd_bus_label_unescape(const char *f) { char *r, *t; assert_return(f, NULL); /* Special case for the empty string */ if (streq(f, "_")) return strdup(""); r = new(char, strlen(f) + 1); if (!r) return NULL; for (t = r; *f; f++) { if (*f == '_') { int a, b; if ((a = unhexchar(f[1])) < 0 || (b = unhexchar(f[2])) < 0) { /* Invalid escape code, let's take it literal then */ *(t++) = '_'; } else { *(t++) = (char) ((a << 4) | b); f += 2; } } else *(t++) = *f; } *t = 0; return r; } _public_ int sd_bus_get_peer_creds(sd_bus *bus, uint64_t mask, sd_bus_creds **ret) { sd_bus_creds *c; pid_t pid = 0; int r; assert_return(bus, -EINVAL); assert_return(mask <= _SD_BUS_CREDS_MAX, -ENOTSUP); assert_return(ret, -EINVAL); assert_return(BUS_IS_OPEN(bus->state), -ENOTCONN); assert_return(!bus_pid_changed(bus), -ECHILD); assert_return(!bus->is_kernel, -ENOTSUP); if (!bus->ucred_valid && !isempty(bus->label)) return -ENODATA; c = bus_creds_new(); if (!c) return -ENOMEM; if (bus->ucred_valid) { pid = c->pid = bus->ucred.pid; c->uid = bus->ucred.uid; c->gid = bus->ucred.gid; c->mask |= (SD_BUS_CREDS_UID | SD_BUS_CREDS_PID | SD_BUS_CREDS_GID) & mask; } if (!isempty(bus->label) && (mask & SD_BUS_CREDS_SELINUX_CONTEXT)) { c->label = strdup(bus->label); if (!c->label) { sd_bus_creds_unref(c); return -ENOMEM; } c->mask |= SD_BUS_CREDS_SELINUX_CONTEXT; } r = bus_creds_add_more(c, mask, pid, 0); if (r < 0) return r; *ret = c; return 0; }