/***
This file is part of systemd.
Copyright 2013 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see .
***/
#include
#include
#include
#include
#include
#include
#include
#include "sd-bus.h"
#include "alloc-util.h"
#include "bus-container.h"
#include "bus-control.h"
#include "bus-internal.h"
#include "bus-kernel.h"
#include "bus-label.h"
#include "bus-message.h"
#include "bus-objects.h"
#include "bus-protocol.h"
#include "bus-slot.h"
#include "bus-socket.h"
#include "bus-track.h"
#include "bus-type.h"
#include "bus-util.h"
#include "cgroup-util.h"
#include "def.h"
#include "fd-util.h"
#include "hexdecoct.h"
#include "hostname-util.h"
#include "macro.h"
#include "missing.h"
#include "parse-util.h"
#include "string-util.h"
#include "strv.h"
#include "util.h"
#define log_debug_bus_message(m) \
do { \
sd_bus_message *_mm = (m); \
log_debug("Got message type=%s sender=%s destination=%s object=%s interface=%s member=%s cookie=%" PRIu64 " reply_cookie=%" PRIu64 " error=%s", \
bus_message_type_to_string(_mm->header->type), \
strna(sd_bus_message_get_sender(_mm)), \
strna(sd_bus_message_get_destination(_mm)), \
strna(sd_bus_message_get_path(_mm)), \
strna(sd_bus_message_get_interface(_mm)), \
strna(sd_bus_message_get_member(_mm)), \
BUS_MESSAGE_COOKIE(_mm), \
_mm->reply_cookie, \
strna(_mm->error.message)); \
} while (false)
static int bus_poll(sd_bus *bus, bool need_more, uint64_t timeout_usec);
static int attach_io_events(sd_bus *b);
static void detach_io_events(sd_bus *b);
static thread_local sd_bus *default_system_bus = NULL;
static thread_local sd_bus *default_user_bus = NULL;
static thread_local sd_bus *default_starter_bus = NULL;
static void bus_close_fds(sd_bus *b) {
assert(b);
detach_io_events(b);
if (b->input_fd != b->output_fd)
safe_close(b->output_fd);
b->output_fd = b->input_fd = safe_close(b->input_fd);
}
static void bus_reset_queues(sd_bus *b) {
assert(b);
while (b->rqueue_size > 0)
sd_bus_message_unref(b->rqueue[--b->rqueue_size]);
b->rqueue = mfree(b->rqueue);
b->rqueue_allocated = 0;
while (b->wqueue_size > 0)
sd_bus_message_unref(b->wqueue[--b->wqueue_size]);
b->wqueue = mfree(b->wqueue);
b->wqueue_allocated = 0;
}
static void bus_free(sd_bus *b) {
sd_bus_slot *s;
assert(b);
assert(!b->track_queue);
b->state = BUS_CLOSED;
sd_bus_detach_event(b);
while ((s = b->slots)) {
/* At this point only floating slots can still be
* around, because the non-floating ones keep a
* reference to the bus, and we thus couldn't be
* destructing right now... We forcibly disconnect the
* slots here, so that they still can be referenced by
* apps, but are dead. */
assert(s->floating);
bus_slot_disconnect(s);
sd_bus_slot_unref(s);
}
if (b->default_bus_ptr)
*b->default_bus_ptr = NULL;
bus_close_fds(b);
if (b->kdbus_buffer)
munmap(b->kdbus_buffer, KDBUS_POOL_SIZE);
free(b->label);
free(b->rbuffer);
free(b->unique_name);
free(b->auth_buffer);
free(b->address);
free(b->kernel);
free(b->machine);
free(b->fake_label);
free(b->cgroup_root);
free(b->description);
free(b->exec_path);
strv_free(b->exec_argv);
close_many(b->fds, b->n_fds);
free(b->fds);
bus_reset_queues(b);
ordered_hashmap_free_free(b->reply_callbacks);
prioq_free(b->reply_callbacks_prioq);
assert(b->match_callbacks.type == BUS_MATCH_ROOT);
bus_match_free(&b->match_callbacks);
hashmap_free_free(b->vtable_methods);
hashmap_free_free(b->vtable_properties);
assert(hashmap_isempty(b->nodes));
hashmap_free(b->nodes);
bus_kernel_flush_memfd(b);
assert_se(pthread_mutex_destroy(&b->memfd_cache_mutex) == 0);
free(b);
}
_public_ int sd_bus_new(sd_bus **ret) {
sd_bus *r;
assert_return(ret, -EINVAL);
r = new0(sd_bus, 1);
if (!r)
return -ENOMEM;
r->n_ref = REFCNT_INIT;
r->input_fd = r->output_fd = -1;
r->message_version = 1;
r->creds_mask |= SD_BUS_CREDS_WELL_KNOWN_NAMES|SD_BUS_CREDS_UNIQUE_NAME;
r->hello_flags |= KDBUS_HELLO_ACCEPT_FD;
r->attach_flags |= KDBUS_ATTACH_NAMES;
r->original_pid = getpid();
assert_se(pthread_mutex_init(&r->memfd_cache_mutex, NULL) == 0);
/* We guarantee that wqueue always has space for at least one
* entry */
if (!GREEDY_REALLOC(r->wqueue, r->wqueue_allocated, 1)) {
free(r);
return -ENOMEM;
}
*ret = r;
return 0;
}
_public_ int sd_bus_set_address(sd_bus *bus, const char *address) {
char *a;
assert_return(bus, -EINVAL);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(address, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
a = strdup(address);
if (!a)
return -ENOMEM;
free(bus->address);
bus->address = a;
return 0;
}
_public_ int sd_bus_set_fd(sd_bus *bus, int input_fd, int output_fd) {
assert_return(bus, -EINVAL);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(input_fd >= 0, -EBADF);
assert_return(output_fd >= 0, -EBADF);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->input_fd = input_fd;
bus->output_fd = output_fd;
return 0;
}
_public_ int sd_bus_set_exec(sd_bus *bus, const char *path, char *const argv[]) {
char *p, **a;
assert_return(bus, -EINVAL);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(path, -EINVAL);
assert_return(!strv_isempty(argv), -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
p = strdup(path);
if (!p)
return -ENOMEM;
a = strv_copy(argv);
if (!a) {
free(p);
return -ENOMEM;
}
free(bus->exec_path);
strv_free(bus->exec_argv);
bus->exec_path = p;
bus->exec_argv = a;
return 0;
}
_public_ int sd_bus_set_bus_client(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->bus_client = !!b;
return 0;
}
_public_ int sd_bus_set_monitor(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
SET_FLAG(bus->hello_flags, KDBUS_HELLO_MONITOR, b);
return 0;
}
_public_ int sd_bus_negotiate_fds(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
SET_FLAG(bus->hello_flags, KDBUS_HELLO_ACCEPT_FD, b);
return 0;
}
_public_ int sd_bus_negotiate_timestamp(sd_bus *bus, int b) {
uint64_t new_flags;
assert_return(bus, -EINVAL);
assert_return(!IN_SET(bus->state, BUS_CLOSING, BUS_CLOSED), -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
new_flags = bus->attach_flags;
SET_FLAG(new_flags, KDBUS_ATTACH_TIMESTAMP, b);
if (bus->attach_flags == new_flags)
return 0;
bus->attach_flags = new_flags;
if (bus->state != BUS_UNSET && bus->is_kernel)
bus_kernel_realize_attach_flags(bus);
return 0;
}
_public_ int sd_bus_negotiate_creds(sd_bus *bus, int b, uint64_t mask) {
uint64_t new_flags;
assert_return(bus, -EINVAL);
assert_return(mask <= _SD_BUS_CREDS_ALL, -EINVAL);
assert_return(!IN_SET(bus->state, BUS_CLOSING, BUS_CLOSED), -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
SET_FLAG(bus->creds_mask, mask, b);
/* The well knowns we need unconditionally, so that matches can work */
bus->creds_mask |= SD_BUS_CREDS_WELL_KNOWN_NAMES|SD_BUS_CREDS_UNIQUE_NAME;
/* Make sure we don't lose the timestamp flag */
new_flags = (bus->attach_flags & KDBUS_ATTACH_TIMESTAMP) | attach_flags_to_kdbus(bus->creds_mask);
if (bus->attach_flags == new_flags)
return 0;
bus->attach_flags = new_flags;
if (bus->state != BUS_UNSET && bus->is_kernel)
bus_kernel_realize_attach_flags(bus);
return 0;
}
_public_ int sd_bus_set_server(sd_bus *bus, int b, sd_id128_t server_id) {
assert_return(bus, -EINVAL);
assert_return(b || sd_id128_equal(server_id, SD_ID128_NULL), -EINVAL);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->is_server = !!b;
bus->server_id = server_id;
return 0;
}
_public_ int sd_bus_set_anonymous(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->anonymous_auth = !!b;
return 0;
}
_public_ int sd_bus_set_trusted(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->trusted = !!b;
return 0;
}
_public_ int sd_bus_set_description(sd_bus *bus, const char *description) {
assert_return(bus, -EINVAL);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
return free_and_strdup(&bus->description, description);
}
_public_ int sd_bus_set_allow_interactive_authorization(sd_bus *bus, int b) {
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->allow_interactive_authorization = !!b;
return 0;
}
_public_ int sd_bus_get_allow_interactive_authorization(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->allow_interactive_authorization;
}
static int hello_callback(sd_bus_message *reply, void *userdata, sd_bus_error *error) {
const char *s;
sd_bus *bus;
int r;
assert(reply);
bus = reply->bus;
assert(bus);
assert(bus->state == BUS_HELLO || bus->state == BUS_CLOSING);
r = sd_bus_message_get_errno(reply);
if (r > 0)
return -r;
r = sd_bus_message_read(reply, "s", &s);
if (r < 0)
return r;
if (!service_name_is_valid(s) || s[0] != ':')
return -EBADMSG;
bus->unique_name = strdup(s);
if (!bus->unique_name)
return -ENOMEM;
if (bus->state == BUS_HELLO)
bus->state = BUS_RUNNING;
return 1;
}
static int bus_send_hello(sd_bus *bus) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL;
int r;
assert(bus);
if (!bus->bus_client || bus->is_kernel)
return 0;
r = sd_bus_message_new_method_call(
bus,
&m,
"org.freedesktop.DBus",
"/org/freedesktop/DBus",
"org.freedesktop.DBus",
"Hello");
if (r < 0)
return r;
return sd_bus_call_async(bus, NULL, m, hello_callback, NULL, 0);
}
int bus_start_running(sd_bus *bus) {
assert(bus);
if (bus->bus_client && !bus->is_kernel) {
bus->state = BUS_HELLO;
return 1;
}
bus->state = BUS_RUNNING;
return 1;
}
static int parse_address_key(const char **p, const char *key, char **value) {
size_t l, n = 0, allocated = 0;
const char *a;
char *r = NULL;
assert(p);
assert(*p);
assert(value);
if (key) {
l = strlen(key);
if (strncmp(*p, key, l) != 0)
return 0;
if ((*p)[l] != '=')
return 0;
if (*value)
return -EINVAL;
a = *p + l + 1;
} else
a = *p;
while (*a != ';' && *a != ',' && *a != 0) {
char c;
if (*a == '%') {
int x, y;
x = unhexchar(a[1]);
if (x < 0) {
free(r);
return x;
}
y = unhexchar(a[2]);
if (y < 0) {
free(r);
return y;
}
c = (char) ((x << 4) | y);
a += 3;
} else {
c = *a;
a++;
}
if (!GREEDY_REALLOC(r, allocated, n + 2))
return -ENOMEM;
r[n++] = c;
}
if (!r) {
r = strdup("");
if (!r)
return -ENOMEM;
} else
r[n] = 0;
if (*a == ',')
a++;
*p = a;
free(*value);
*value = r;
return 1;
}
static void skip_address_key(const char **p) {
assert(p);
assert(*p);
*p += strcspn(*p, ",");
if (**p == ',')
(*p)++;
}
static int parse_unix_address(sd_bus *b, const char **p, char **guid) {
_cleanup_free_ char *path = NULL, *abstract = NULL;
size_t l;
int r;
assert(b);
assert(p);
assert(*p);
assert(guid);
while (**p != 0 && **p != ';') {
r = parse_address_key(p, "guid", guid);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "path", &path);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "abstract", &abstract);
if (r < 0)
return r;
else if (r > 0)
continue;
skip_address_key(p);
}
if (!path && !abstract)
return -EINVAL;
if (path && abstract)
return -EINVAL;
if (path) {
l = strlen(path);
if (l > sizeof(b->sockaddr.un.sun_path))
return -E2BIG;
b->sockaddr.un.sun_family = AF_UNIX;
strncpy(b->sockaddr.un.sun_path, path, sizeof(b->sockaddr.un.sun_path));
b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + l;
} else if (abstract) {
l = strlen(abstract);
if (l > sizeof(b->sockaddr.un.sun_path) - 1)
return -E2BIG;
b->sockaddr.un.sun_family = AF_UNIX;
b->sockaddr.un.sun_path[0] = 0;
strncpy(b->sockaddr.un.sun_path+1, abstract, sizeof(b->sockaddr.un.sun_path)-1);
b->sockaddr_size = offsetof(struct sockaddr_un, sun_path) + 1 + l;
}
return 0;
}
static int parse_tcp_address(sd_bus *b, const char **p, char **guid) {
_cleanup_free_ char *host = NULL, *port = NULL, *family = NULL;
int r;
struct addrinfo *result, hints = {
.ai_socktype = SOCK_STREAM,
.ai_flags = AI_ADDRCONFIG,
};
assert(b);
assert(p);
assert(*p);
assert(guid);
while (**p != 0 && **p != ';') {
r = parse_address_key(p, "guid", guid);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "host", &host);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "port", &port);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "family", &family);
if (r < 0)
return r;
else if (r > 0)
continue;
skip_address_key(p);
}
if (!host || !port)
return -EINVAL;
if (family) {
if (streq(family, "ipv4"))
hints.ai_family = AF_INET;
else if (streq(family, "ipv6"))
hints.ai_family = AF_INET6;
else
return -EINVAL;
}
r = getaddrinfo(host, port, &hints, &result);
if (r == EAI_SYSTEM)
return -errno;
else if (r != 0)
return -EADDRNOTAVAIL;
memcpy(&b->sockaddr, result->ai_addr, result->ai_addrlen);
b->sockaddr_size = result->ai_addrlen;
freeaddrinfo(result);
return 0;
}
static int parse_exec_address(sd_bus *b, const char **p, char **guid) {
char *path = NULL;
unsigned n_argv = 0, j;
char **argv = NULL;
size_t allocated = 0;
int r;
assert(b);
assert(p);
assert(*p);
assert(guid);
while (**p != 0 && **p != ';') {
r = parse_address_key(p, "guid", guid);
if (r < 0)
goto fail;
else if (r > 0)
continue;
r = parse_address_key(p, "path", &path);
if (r < 0)
goto fail;
else if (r > 0)
continue;
if (startswith(*p, "argv")) {
unsigned ul;
errno = 0;
ul = strtoul(*p + 4, (char**) p, 10);
if (errno > 0 || **p != '=' || ul > 256) {
r = -EINVAL;
goto fail;
}
(*p)++;
if (ul >= n_argv) {
if (!GREEDY_REALLOC0(argv, allocated, ul + 2)) {
r = -ENOMEM;
goto fail;
}
n_argv = ul + 1;
}
r = parse_address_key(p, NULL, argv + ul);
if (r < 0)
goto fail;
continue;
}
skip_address_key(p);
}
if (!path) {
r = -EINVAL;
goto fail;
}
/* Make sure there are no holes in the array, with the
* exception of argv[0] */
for (j = 1; j < n_argv; j++)
if (!argv[j]) {
r = -EINVAL;
goto fail;
}
if (argv && argv[0] == NULL) {
argv[0] = strdup(path);
if (!argv[0]) {
r = -ENOMEM;
goto fail;
}
}
b->exec_path = path;
b->exec_argv = argv;
return 0;
fail:
for (j = 0; j < n_argv; j++)
free(argv[j]);
free(argv);
free(path);
return r;
}
static int parse_kernel_address(sd_bus *b, const char **p, char **guid) {
_cleanup_free_ char *path = NULL;
int r;
assert(b);
assert(p);
assert(*p);
assert(guid);
while (**p != 0 && **p != ';') {
r = parse_address_key(p, "guid", guid);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "path", &path);
if (r < 0)
return r;
else if (r > 0)
continue;
skip_address_key(p);
}
if (!path)
return -EINVAL;
free(b->kernel);
b->kernel = path;
path = NULL;
return 0;
}
static int parse_container_unix_address(sd_bus *b, const char **p, char **guid) {
_cleanup_free_ char *machine = NULL, *pid = NULL;
int r;
assert(b);
assert(p);
assert(*p);
assert(guid);
while (**p != 0 && **p != ';') {
r = parse_address_key(p, "guid", guid);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "machine", &machine);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "pid", &pid);
if (r < 0)
return r;
else if (r > 0)
continue;
skip_address_key(p);
}
if (!machine == !pid)
return -EINVAL;
if (machine) {
if (!machine_name_is_valid(machine))
return -EINVAL;
free(b->machine);
b->machine = machine;
machine = NULL;
} else {
b->machine = mfree(b->machine);
}
if (pid) {
r = parse_pid(pid, &b->nspid);
if (r < 0)
return r;
} else
b->nspid = 0;
b->sockaddr.un.sun_family = AF_UNIX;
strncpy(b->sockaddr.un.sun_path, "/var/run/dbus/system_bus_socket", sizeof(b->sockaddr.un.sun_path));
b->sockaddr_size = SOCKADDR_UN_LEN(b->sockaddr.un);
return 0;
}
static int parse_container_kernel_address(sd_bus *b, const char **p, char **guid) {
_cleanup_free_ char *machine = NULL, *pid = NULL;
int r;
assert(b);
assert(p);
assert(*p);
assert(guid);
while (**p != 0 && **p != ';') {
r = parse_address_key(p, "guid", guid);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "machine", &machine);
if (r < 0)
return r;
else if (r > 0)
continue;
r = parse_address_key(p, "pid", &pid);
if (r < 0)
return r;
else if (r > 0)
continue;
skip_address_key(p);
}
if (!machine == !pid)
return -EINVAL;
if (machine) {
if (!machine_name_is_valid(machine))
return -EINVAL;
free(b->machine);
b->machine = machine;
machine = NULL;
} else {
b->machine = mfree(b->machine);
}
if (pid) {
r = parse_pid(pid, &b->nspid);
if (r < 0)
return r;
} else
b->nspid = 0;
r = free_and_strdup(&b->kernel, "/sys/fs/kdbus/0-system/bus");
if (r < 0)
return r;
return 0;
}
static void bus_reset_parsed_address(sd_bus *b) {
assert(b);
zero(b->sockaddr);
b->sockaddr_size = 0;
b->exec_argv = strv_free(b->exec_argv);
b->exec_path = mfree(b->exec_path);
b->server_id = SD_ID128_NULL;
b->kernel = mfree(b->kernel);
b->machine = mfree(b->machine);
b->nspid = 0;
}
static int bus_parse_next_address(sd_bus *b) {
_cleanup_free_ char *guid = NULL;
const char *a;
int r;
assert(b);
if (!b->address)
return 0;
if (b->address[b->address_index] == 0)
return 0;
bus_reset_parsed_address(b);
a = b->address + b->address_index;
while (*a != 0) {
if (*a == ';') {
a++;
continue;
}
if (startswith(a, "unix:")) {
a += 5;
r = parse_unix_address(b, &a, &guid);
if (r < 0)
return r;
break;
} else if (startswith(a, "tcp:")) {
a += 4;
r = parse_tcp_address(b, &a, &guid);
if (r < 0)
return r;
break;
} else if (startswith(a, "unixexec:")) {
a += 9;
r = parse_exec_address(b, &a, &guid);
if (r < 0)
return r;
break;
} else if (startswith(a, "kernel:")) {
a += 7;
r = parse_kernel_address(b, &a, &guid);
if (r < 0)
return r;
break;
} else if (startswith(a, "x-machine-unix:")) {
a += 15;
r = parse_container_unix_address(b, &a, &guid);
if (r < 0)
return r;
break;
} else if (startswith(a, "x-machine-kernel:")) {
a += 17;
r = parse_container_kernel_address(b, &a, &guid);
if (r < 0)
return r;
break;
}
a = strchr(a, ';');
if (!a)
return 0;
}
if (guid) {
r = sd_id128_from_string(guid, &b->server_id);
if (r < 0)
return r;
}
b->address_index = a - b->address;
return 1;
}
static int bus_start_address(sd_bus *b) {
bool container_kdbus_available = false;
bool kdbus_available = false;
int r;
assert(b);
for (;;) {
bool skipped = false;
bus_close_fds(b);
/*
* Usually, if you provide multiple different bus-addresses, we
* try all of them in order. We use the first one that
* succeeds. However, if you mix kernel and unix addresses, we
* never try unix-addresses if a previous kernel address was
* tried and kdbus was available. This is required to prevent
* clients to fallback to the bus-proxy if kdbus is available
* but failed (eg., too many connections).
*/
if (b->exec_path)
r = bus_socket_exec(b);
else if ((b->nspid > 0 || b->machine) && b->kernel) {
r = bus_container_connect_kernel(b);
if (r < 0 && !IN_SET(r, -ENOENT, -ESOCKTNOSUPPORT))
container_kdbus_available = true;
} else if ((b->nspid > 0 || b->machine) && b->sockaddr.sa.sa_family != AF_UNSPEC) {
if (!container_kdbus_available)
r = bus_container_connect_socket(b);
else
skipped = true;
} else if (b->kernel) {
r = bus_kernel_connect(b);
if (r < 0 && !IN_SET(r, -ENOENT, -ESOCKTNOSUPPORT))
kdbus_available = true;
} else if (b->sockaddr.sa.sa_family != AF_UNSPEC) {
if (!kdbus_available)
r = bus_socket_connect(b);
else
skipped = true;
} else
skipped = true;
if (!skipped) {
if (r >= 0) {
r = attach_io_events(b);
if (r >= 0)
return r;
}
b->last_connect_error = -r;
}
r = bus_parse_next_address(b);
if (r < 0)
return r;
if (r == 0)
return b->last_connect_error ? -b->last_connect_error : -ECONNREFUSED;
}
}
int bus_next_address(sd_bus *b) {
assert(b);
bus_reset_parsed_address(b);
return bus_start_address(b);
}
static int bus_start_fd(sd_bus *b) {
struct stat st;
int r;
assert(b);
assert(b->input_fd >= 0);
assert(b->output_fd >= 0);
r = fd_nonblock(b->input_fd, true);
if (r < 0)
return r;
r = fd_cloexec(b->input_fd, true);
if (r < 0)
return r;
if (b->input_fd != b->output_fd) {
r = fd_nonblock(b->output_fd, true);
if (r < 0)
return r;
r = fd_cloexec(b->output_fd, true);
if (r < 0)
return r;
}
if (fstat(b->input_fd, &st) < 0)
return -errno;
if (S_ISCHR(b->input_fd))
return bus_kernel_take_fd(b);
else
return bus_socket_take_fd(b);
}
_public_ int sd_bus_start(sd_bus *bus) {
int r;
assert_return(bus, -EINVAL);
assert_return(bus->state == BUS_UNSET, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
bus->state = BUS_OPENING;
if (bus->is_server && bus->bus_client)
return -EINVAL;
if (bus->input_fd >= 0)
r = bus_start_fd(bus);
else if (bus->address || bus->sockaddr.sa.sa_family != AF_UNSPEC || bus->exec_path || bus->kernel || bus->machine)
r = bus_start_address(bus);
else
return -EINVAL;
if (r < 0) {
sd_bus_close(bus);
return r;
}
return bus_send_hello(bus);
}
_public_ int sd_bus_open(sd_bus **ret) {
const char *e;
sd_bus *b;
int r;
assert_return(ret, -EINVAL);
/* Let's connect to the starter bus if it is set, and
* otherwise to the bus that is appropropriate for the scope
* we are running in */
e = secure_getenv("DBUS_STARTER_BUS_TYPE");
if (e) {
if (streq(e, "system"))
return sd_bus_open_system(ret);
else if (STR_IN_SET(e, "session", "user"))
return sd_bus_open_user(ret);
}
e = secure_getenv("DBUS_STARTER_ADDRESS");
if (!e) {
if (cg_pid_get_owner_uid(0, NULL) >= 0)
return sd_bus_open_user(ret);
else
return sd_bus_open_system(ret);
}
r = sd_bus_new(&b);
if (r < 0)
return r;
r = sd_bus_set_address(b, e);
if (r < 0)
goto fail;
b->bus_client = true;
/* We don't know whether the bus is trusted or not, so better
* be safe, and authenticate everything */
b->trusted = false;
b->attach_flags |= KDBUS_ATTACH_CAPS | KDBUS_ATTACH_CREDS;
b->creds_mask |= SD_BUS_CREDS_UID | SD_BUS_CREDS_EUID | SD_BUS_CREDS_EFFECTIVE_CAPS;
r = sd_bus_start(b);
if (r < 0)
goto fail;
*ret = b;
return 0;
fail:
bus_free(b);
return r;
}
int bus_set_address_system(sd_bus *b) {
const char *e;
assert(b);
e = secure_getenv("DBUS_SYSTEM_BUS_ADDRESS");
if (e)
return sd_bus_set_address(b, e);
return sd_bus_set_address(b, DEFAULT_SYSTEM_BUS_ADDRESS);
}
_public_ int sd_bus_open_system(sd_bus **ret) {
sd_bus *b;
int r;
assert_return(ret, -EINVAL);
r = sd_bus_new(&b);
if (r < 0)
return r;
r = bus_set_address_system(b);
if (r < 0)
goto fail;
b->bus_client = true;
b->is_system = true;
/* Let's do per-method access control on the system bus. We
* need the caller's UID and capability set for that. */
b->trusted = false;
b->attach_flags |= KDBUS_ATTACH_CAPS | KDBUS_ATTACH_CREDS;
b->creds_mask |= SD_BUS_CREDS_UID | SD_BUS_CREDS_EUID | SD_BUS_CREDS_EFFECTIVE_CAPS;
r = sd_bus_start(b);
if (r < 0)
goto fail;
*ret = b;
return 0;
fail:
bus_free(b);
return r;
}
int bus_set_address_user(sd_bus *b) {
const char *e;
uid_t uid;
int r;
assert(b);
e = secure_getenv("DBUS_SESSION_BUS_ADDRESS");
if (e)
return sd_bus_set_address(b, e);
r = cg_pid_get_owner_uid(0, &uid);
if (r < 0)
uid = getuid();
e = secure_getenv("XDG_RUNTIME_DIR");
if (e) {
_cleanup_free_ char *ee = NULL;
ee = bus_address_escape(e);
if (!ee)
return -ENOMEM;
(void) asprintf(&b->address, KERNEL_USER_BUS_ADDRESS_FMT ";" UNIX_USER_BUS_ADDRESS_FMT, uid, ee);
} else
(void) asprintf(&b->address, KERNEL_USER_BUS_ADDRESS_FMT, uid);
if (!b->address)
return -ENOMEM;
return 0;
}
_public_ int sd_bus_open_user(sd_bus **ret) {
sd_bus *b;
int r;
assert_return(ret, -EINVAL);
r = sd_bus_new(&b);
if (r < 0)
return r;
r = bus_set_address_user(b);
if (r < 0)
return r;
b->bus_client = true;
b->is_user = true;
/* We don't do any per-method access control on the user
* bus. */
b->trusted = true;
r = sd_bus_start(b);
if (r < 0)
goto fail;
*ret = b;
return 0;
fail:
bus_free(b);
return r;
}
int bus_set_address_system_remote(sd_bus *b, const char *host) {
_cleanup_free_ char *e = NULL;
char *m = NULL, *c = NULL;
assert(b);
assert(host);
/* Let's see if we shall enter some container */
m = strchr(host, ':');
if (m) {
m++;
/* Let's make sure this is not a port of some kind,
* and is a valid machine name. */
if (!in_charset(m, "0123456789") && machine_name_is_valid(m)) {
char *t;
/* Cut out the host part */
t = strndupa(host, m - host - 1);
e = bus_address_escape(t);
if (!e)
return -ENOMEM;
c = strjoina(",argv4=--machine=", m);
}
}
if (!e) {
e = bus_address_escape(host);
if (!e)
return -ENOMEM;
}
b->address = strjoin("unixexec:path=ssh,argv1=-xT,argv2=", e, ",argv3=systemd-stdio-bridge", c, NULL);
if (!b->address)
return -ENOMEM;
return 0;
}
_public_ int sd_bus_open_system_remote(sd_bus **ret, const char *host) {
sd_bus *bus;
int r;
assert_return(host, -EINVAL);
assert_return(ret, -EINVAL);
r = sd_bus_new(&bus);
if (r < 0)
return r;
r = bus_set_address_system_remote(bus, host);
if (r < 0)
goto fail;
bus->bus_client = true;
bus->trusted = false;
bus->is_system = true;
r = sd_bus_start(bus);
if (r < 0)
goto fail;
*ret = bus;
return 0;
fail:
bus_free(bus);
return r;
}
int bus_set_address_system_machine(sd_bus *b, const char *machine) {
_cleanup_free_ char *e = NULL;
assert(b);
assert(machine);
e = bus_address_escape(machine);
if (!e)
return -ENOMEM;
b->address = strjoin("x-machine-kernel:machine=", e, ";x-machine-unix:machine=", e, NULL);
if (!b->address)
return -ENOMEM;
return 0;
}
_public_ int sd_bus_open_system_machine(sd_bus **ret, const char *machine) {
sd_bus *bus;
int r;
assert_return(machine, -EINVAL);
assert_return(ret, -EINVAL);
assert_return(machine_name_is_valid(machine), -EINVAL);
r = sd_bus_new(&bus);
if (r < 0)
return r;
r = bus_set_address_system_machine(bus, machine);
if (r < 0)
goto fail;
bus->bus_client = true;
bus->trusted = false;
bus->is_system = true;
r = sd_bus_start(bus);
if (r < 0)
goto fail;
*ret = bus;
return 0;
fail:
bus_free(bus);
return r;
}
_public_ void sd_bus_close(sd_bus *bus) {
if (!bus)
return;
if (bus->state == BUS_CLOSED)
return;
if (bus_pid_changed(bus))
return;
bus->state = BUS_CLOSED;
sd_bus_detach_event(bus);
/* Drop all queued messages so that they drop references to
* the bus object and the bus may be freed */
bus_reset_queues(bus);
if (!bus->is_kernel)
bus_close_fds(bus);
/* We'll leave the fd open in case this is a kernel bus, since
* there might still be memblocks around that reference this
* bus, and they might need to invoke the KDBUS_CMD_FREE
* ioctl on the fd when they are freed. */
}
_public_ sd_bus* sd_bus_flush_close_unref(sd_bus *bus) {
if (!bus)
return NULL;
sd_bus_flush(bus);
sd_bus_close(bus);
return sd_bus_unref(bus);
}
static void bus_enter_closing(sd_bus *bus) {
assert(bus);
if (bus->state != BUS_OPENING &&
bus->state != BUS_AUTHENTICATING &&
bus->state != BUS_HELLO &&
bus->state != BUS_RUNNING)
return;
bus->state = BUS_CLOSING;
}
_public_ sd_bus *sd_bus_ref(sd_bus *bus) {
if (!bus)
return NULL;
assert_se(REFCNT_INC(bus->n_ref) >= 2);
return bus;
}
_public_ sd_bus *sd_bus_unref(sd_bus *bus) {
unsigned i;
if (!bus)
return NULL;
i = REFCNT_DEC(bus->n_ref);
if (i > 0)
return NULL;
bus_free(bus);
return NULL;
}
_public_ int sd_bus_is_open(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
return BUS_IS_OPEN(bus->state);
}
_public_ int sd_bus_can_send(sd_bus *bus, char type) {
int r;
assert_return(bus, -EINVAL);
assert_return(bus->state != BUS_UNSET, -ENOTCONN);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (bus->hello_flags & KDBUS_HELLO_MONITOR)
return 0;
if (type == SD_BUS_TYPE_UNIX_FD) {
if (!(bus->hello_flags & KDBUS_HELLO_ACCEPT_FD))
return 0;
r = bus_ensure_running(bus);
if (r < 0)
return r;
return bus->can_fds;
}
return bus_type_is_valid(type);
}
_public_ int sd_bus_get_bus_id(sd_bus *bus, sd_id128_t *id) {
int r;
assert_return(bus, -EINVAL);
assert_return(id, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
r = bus_ensure_running(bus);
if (r < 0)
return r;
*id = bus->server_id;
return 0;
}
static int bus_seal_message(sd_bus *b, sd_bus_message *m, usec_t timeout) {
assert(b);
assert(m);
if (m->sealed) {
/* If we copy the same message to multiple
* destinations, avoid using the same cookie
* numbers. */
b->cookie = MAX(b->cookie, BUS_MESSAGE_COOKIE(m));
return 0;
}
if (timeout == 0)
timeout = BUS_DEFAULT_TIMEOUT;
return bus_message_seal(m, ++b->cookie, timeout);
}
static int bus_remarshal_message(sd_bus *b, sd_bus_message **m) {
bool remarshal = false;
assert(b);
/* wrong packet version */
if (b->message_version != 0 && b->message_version != (*m)->header->version)
remarshal = true;
/* wrong packet endianness */
if (b->message_endian != 0 && b->message_endian != (*m)->header->endian)
remarshal = true;
/* TODO: kdbus-messages received from the kernel contain data which is
* not allowed to be passed to KDBUS_CMD_SEND. Therefore, we have to
* force remarshaling of the message. Technically, we could just
* recreate the kdbus message, but that is non-trivial as other parts of
* the message refer to m->kdbus already. This should be fixed! */
if ((*m)->kdbus && (*m)->release_kdbus)
remarshal = true;
return remarshal ? bus_message_remarshal(b, m) : 0;
}
int bus_seal_synthetic_message(sd_bus *b, sd_bus_message *m) {
assert(b);
assert(m);
/* Fake some timestamps, if they were requested, and not
* already initialized */
if (b->attach_flags & KDBUS_ATTACH_TIMESTAMP) {
if (m->realtime <= 0)
m->realtime = now(CLOCK_REALTIME);
if (m->monotonic <= 0)
m->monotonic = now(CLOCK_MONOTONIC);
}
/* The bus specification says the serial number cannot be 0,
* hence let's fill something in for synthetic messages. Since
* synthetic messages might have a fake sender and we don't
* want to interfere with the real sender's serial numbers we
* pick a fixed, artificial one. We use (uint32_t) -1 rather
* than (uint64_t) -1 since dbus1 only had 32bit identifiers,
* even though kdbus can do 64bit. */
return bus_message_seal(m, 0xFFFFFFFFULL, 0);
}
static int bus_write_message(sd_bus *bus, sd_bus_message *m, bool hint_sync_call, size_t *idx) {
int r;
assert(bus);
assert(m);
if (bus->is_kernel)
r = bus_kernel_write_message(bus, m, hint_sync_call);
else
r = bus_socket_write_message(bus, m, idx);
if (r <= 0)
return r;
if (bus->is_kernel || *idx >= BUS_MESSAGE_SIZE(m))
log_debug("Sent message type=%s sender=%s destination=%s object=%s interface=%s member=%s cookie=%" PRIu64 " reply_cookie=%" PRIu64 " error=%s",
bus_message_type_to_string(m->header->type),
strna(sd_bus_message_get_sender(m)),
strna(sd_bus_message_get_destination(m)),
strna(sd_bus_message_get_path(m)),
strna(sd_bus_message_get_interface(m)),
strna(sd_bus_message_get_member(m)),
BUS_MESSAGE_COOKIE(m),
m->reply_cookie,
strna(m->error.message));
return r;
}
static int dispatch_wqueue(sd_bus *bus) {
int r, ret = 0;
assert(bus);
assert(bus->state == BUS_RUNNING || bus->state == BUS_HELLO);
while (bus->wqueue_size > 0) {
r = bus_write_message(bus, bus->wqueue[0], false, &bus->windex);
if (r < 0)
return r;
else if (r == 0)
/* Didn't do anything this time */
return ret;
else if (bus->is_kernel || bus->windex >= BUS_MESSAGE_SIZE(bus->wqueue[0])) {
/* Fully written. Let's drop the entry from
* the queue.
*
* This isn't particularly optimized, but
* well, this is supposed to be our worst-case
* buffer only, and the socket buffer is
* supposed to be our primary buffer, and if
* it got full, then all bets are off
* anyway. */
bus->wqueue_size--;
sd_bus_message_unref(bus->wqueue[0]);
memmove(bus->wqueue, bus->wqueue + 1, sizeof(sd_bus_message*) * bus->wqueue_size);
bus->windex = 0;
ret = 1;
}
}
return ret;
}
static int bus_read_message(sd_bus *bus, bool hint_priority, int64_t priority) {
assert(bus);
if (bus->is_kernel)
return bus_kernel_read_message(bus, hint_priority, priority);
else
return bus_socket_read_message(bus);
}
int bus_rqueue_make_room(sd_bus *bus) {
assert(bus);
if (bus->rqueue_size >= BUS_RQUEUE_MAX)
return -ENOBUFS;
if (!GREEDY_REALLOC(bus->rqueue, bus->rqueue_allocated, bus->rqueue_size + 1))
return -ENOMEM;
return 0;
}
static int dispatch_rqueue(sd_bus *bus, bool hint_priority, int64_t priority, sd_bus_message **m) {
int r, ret = 0;
assert(bus);
assert(m);
assert(bus->state == BUS_RUNNING || bus->state == BUS_HELLO);
/* Note that the priority logic is only available on kdbus,
* where the rqueue is unused. We check the rqueue here
* anyway, because it's simple... */
for (;;) {
if (bus->rqueue_size > 0) {
/* Dispatch a queued message */
*m = bus->rqueue[0];
bus->rqueue_size--;
memmove(bus->rqueue, bus->rqueue + 1, sizeof(sd_bus_message*) * bus->rqueue_size);
return 1;
}
/* Try to read a new message */
r = bus_read_message(bus, hint_priority, priority);
if (r < 0)
return r;
if (r == 0)
return ret;
ret = 1;
}
}
static int bus_send_internal(sd_bus *bus, sd_bus_message *_m, uint64_t *cookie, bool hint_sync_call) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = sd_bus_message_ref(_m);
int r;
assert_return(m, -EINVAL);
if (!bus)
bus = m->bus;
assert_return(!bus_pid_changed(bus), -ECHILD);
assert_return(!bus->is_kernel || !(bus->hello_flags & KDBUS_HELLO_MONITOR), -EROFS);
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
if (m->n_fds > 0) {
r = sd_bus_can_send(bus, SD_BUS_TYPE_UNIX_FD);
if (r < 0)
return r;
if (r == 0)
return -EOPNOTSUPP;
}
/* If the cookie number isn't kept, then we know that no reply
* is expected */
if (!cookie && !m->sealed)
m->header->flags |= BUS_MESSAGE_NO_REPLY_EXPECTED;
r = bus_seal_message(bus, m, 0);
if (r < 0)
return r;
/* Remarshall if we have to. This will possibly unref the
* message and place a replacement in m */
r = bus_remarshal_message(bus, &m);
if (r < 0)
return r;
/* If this is a reply and no reply was requested, then let's
* suppress this, if we can */
if (m->dont_send)
goto finish;
if ((bus->state == BUS_RUNNING || bus->state == BUS_HELLO) && bus->wqueue_size <= 0) {
size_t idx = 0;
r = bus_write_message(bus, m, hint_sync_call, &idx);
if (r < 0) {
if (IN_SET(r, -ENOTCONN, -ECONNRESET, -EPIPE, -ESHUTDOWN)) {
bus_enter_closing(bus);
return -ECONNRESET;
}
return r;
}
if (!bus->is_kernel && idx < BUS_MESSAGE_SIZE(m)) {
/* Wasn't fully written. So let's remember how
* much was written. Note that the first entry
* of the wqueue array is always allocated so
* that we always can remember how much was
* written. */
bus->wqueue[0] = sd_bus_message_ref(m);
bus->wqueue_size = 1;
bus->windex = idx;
}
} else {
/* Just append it to the queue. */
if (bus->wqueue_size >= BUS_WQUEUE_MAX)
return -ENOBUFS;
if (!GREEDY_REALLOC(bus->wqueue, bus->wqueue_allocated, bus->wqueue_size + 1))
return -ENOMEM;
bus->wqueue[bus->wqueue_size++] = sd_bus_message_ref(m);
}
finish:
if (cookie)
*cookie = BUS_MESSAGE_COOKIE(m);
return 1;
}
_public_ int sd_bus_send(sd_bus *bus, sd_bus_message *m, uint64_t *cookie) {
return bus_send_internal(bus, m, cookie, false);
}
_public_ int sd_bus_send_to(sd_bus *bus, sd_bus_message *m, const char *destination, uint64_t *cookie) {
int r;
assert_return(m, -EINVAL);
if (!bus)
bus = m->bus;
assert_return(!bus_pid_changed(bus), -ECHILD);
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
if (!streq_ptr(m->destination, destination)) {
if (!destination)
return -EEXIST;
r = sd_bus_message_set_destination(m, destination);
if (r < 0)
return r;
}
return sd_bus_send(bus, m, cookie);
}
static usec_t calc_elapse(uint64_t usec) {
if (usec == (uint64_t) -1)
return 0;
return now(CLOCK_MONOTONIC) + usec;
}
static int timeout_compare(const void *a, const void *b) {
const struct reply_callback *x = a, *y = b;
if (x->timeout != 0 && y->timeout == 0)
return -1;
if (x->timeout == 0 && y->timeout != 0)
return 1;
if (x->timeout < y->timeout)
return -1;
if (x->timeout > y->timeout)
return 1;
return 0;
}
_public_ int sd_bus_call_async(
sd_bus *bus,
sd_bus_slot **slot,
sd_bus_message *_m,
sd_bus_message_handler_t callback,
void *userdata,
uint64_t usec) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = sd_bus_message_ref(_m);
_cleanup_(sd_bus_slot_unrefp) sd_bus_slot *s = NULL;
int r;
assert_return(m, -EINVAL);
assert_return(m->header->type == SD_BUS_MESSAGE_METHOD_CALL, -EINVAL);
assert_return(!(m->header->flags & BUS_MESSAGE_NO_REPLY_EXPECTED), -EINVAL);
assert_return(callback, -EINVAL);
if (!bus)
bus = m->bus;
assert_return(!bus_pid_changed(bus), -ECHILD);
assert_return(!bus->is_kernel || !(bus->hello_flags & KDBUS_HELLO_MONITOR), -EROFS);
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
r = ordered_hashmap_ensure_allocated(&bus->reply_callbacks, &uint64_hash_ops);
if (r < 0)
return r;
r = prioq_ensure_allocated(&bus->reply_callbacks_prioq, timeout_compare);
if (r < 0)
return r;
r = bus_seal_message(bus, m, usec);
if (r < 0)
return r;
r = bus_remarshal_message(bus, &m);
if (r < 0)
return r;
s = bus_slot_allocate(bus, !slot, BUS_REPLY_CALLBACK, sizeof(struct reply_callback), userdata);
if (!s)
return -ENOMEM;
s->reply_callback.callback = callback;
s->reply_callback.cookie = BUS_MESSAGE_COOKIE(m);
r = ordered_hashmap_put(bus->reply_callbacks, &s->reply_callback.cookie, &s->reply_callback);
if (r < 0) {
s->reply_callback.cookie = 0;
return r;
}
s->reply_callback.timeout = calc_elapse(m->timeout);
if (s->reply_callback.timeout != 0) {
r = prioq_put(bus->reply_callbacks_prioq, &s->reply_callback, &s->reply_callback.prioq_idx);
if (r < 0) {
s->reply_callback.timeout = 0;
return r;
}
}
r = sd_bus_send(bus, m, &s->reply_callback.cookie);
if (r < 0)
return r;
if (slot)
*slot = s;
s = NULL;
return r;
}
int bus_ensure_running(sd_bus *bus) {
int r;
assert(bus);
if (bus->state == BUS_UNSET || bus->state == BUS_CLOSED || bus->state == BUS_CLOSING)
return -ENOTCONN;
if (bus->state == BUS_RUNNING)
return 1;
for (;;) {
r = sd_bus_process(bus, NULL);
if (r < 0)
return r;
if (bus->state == BUS_RUNNING)
return 1;
if (r > 0)
continue;
r = sd_bus_wait(bus, (uint64_t) -1);
if (r < 0)
return r;
}
}
_public_ int sd_bus_call(
sd_bus *bus,
sd_bus_message *_m,
uint64_t usec,
sd_bus_error *error,
sd_bus_message **reply) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = sd_bus_message_ref(_m);
usec_t timeout;
uint64_t cookie;
unsigned i;
int r;
bus_assert_return(m, -EINVAL, error);
bus_assert_return(m->header->type == SD_BUS_MESSAGE_METHOD_CALL, -EINVAL, error);
bus_assert_return(!(m->header->flags & BUS_MESSAGE_NO_REPLY_EXPECTED), -EINVAL, error);
bus_assert_return(!bus_error_is_dirty(error), -EINVAL, error);
if (!bus)
bus = m->bus;
bus_assert_return(!bus_pid_changed(bus), -ECHILD, error);
bus_assert_return(!bus->is_kernel || !(bus->hello_flags & KDBUS_HELLO_MONITOR), -EROFS, error);
if (!BUS_IS_OPEN(bus->state)) {
r = -ENOTCONN;
goto fail;
}
r = bus_ensure_running(bus);
if (r < 0)
goto fail;
i = bus->rqueue_size;
r = bus_seal_message(bus, m, usec);
if (r < 0)
goto fail;
r = bus_remarshal_message(bus, &m);
if (r < 0)
goto fail;
r = bus_send_internal(bus, m, &cookie, true);
if (r < 0)
goto fail;
timeout = calc_elapse(m->timeout);
for (;;) {
usec_t left;
while (i < bus->rqueue_size) {
sd_bus_message *incoming = NULL;
incoming = bus->rqueue[i];
if (incoming->reply_cookie == cookie) {
/* Found a match! */
memmove(bus->rqueue + i, bus->rqueue + i + 1, sizeof(sd_bus_message*) * (bus->rqueue_size - i - 1));
bus->rqueue_size--;
log_debug_bus_message(incoming);
if (incoming->header->type == SD_BUS_MESSAGE_METHOD_RETURN) {
if (incoming->n_fds <= 0 || (bus->hello_flags & KDBUS_HELLO_ACCEPT_FD)) {
if (reply)
*reply = incoming;
else
sd_bus_message_unref(incoming);
return 1;
}
r = sd_bus_error_setf(error, SD_BUS_ERROR_INCONSISTENT_MESSAGE, "Reply message contained file descriptors which I couldn't accept. Sorry.");
sd_bus_message_unref(incoming);
return r;
} else if (incoming->header->type == SD_BUS_MESSAGE_METHOD_ERROR) {
r = sd_bus_error_copy(error, &incoming->error);
sd_bus_message_unref(incoming);
return r;
} else {
r = -EIO;
goto fail;
}
} else if (BUS_MESSAGE_COOKIE(incoming) == cookie &&
bus->unique_name &&
incoming->sender &&
streq(bus->unique_name, incoming->sender)) {
memmove(bus->rqueue + i, bus->rqueue + i + 1, sizeof(sd_bus_message*) * (bus->rqueue_size - i - 1));
bus->rqueue_size--;
/* Our own message? Somebody is trying
* to send its own client a message,
* let's not dead-lock, let's fail
* immediately. */
sd_bus_message_unref(incoming);
r = -ELOOP;
goto fail;
}
/* Try to read more, right-away */
i++;
}
r = bus_read_message(bus, false, 0);
if (r < 0) {
if (IN_SET(r, -ENOTCONN, -ECONNRESET, -EPIPE, -ESHUTDOWN)) {
bus_enter_closing(bus);
r = -ECONNRESET;
}
goto fail;
}
if (r > 0)
continue;
if (timeout > 0) {
usec_t n;
n = now(CLOCK_MONOTONIC);
if (n >= timeout) {
r = -ETIMEDOUT;
goto fail;
}
left = timeout - n;
} else
left = (uint64_t) -1;
r = bus_poll(bus, true, left);
if (r < 0)
goto fail;
if (r == 0) {
r = -ETIMEDOUT;
goto fail;
}
r = dispatch_wqueue(bus);
if (r < 0) {
if (IN_SET(r, -ENOTCONN, -ECONNRESET, -EPIPE, -ESHUTDOWN)) {
bus_enter_closing(bus);
r = -ECONNRESET;
}
goto fail;
}
}
fail:
return sd_bus_error_set_errno(error, r);
}
_public_ int sd_bus_get_fd(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(bus->input_fd == bus->output_fd, -EPERM);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->input_fd;
}
_public_ int sd_bus_get_events(sd_bus *bus) {
int flags = 0;
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (!BUS_IS_OPEN(bus->state) && bus->state != BUS_CLOSING)
return -ENOTCONN;
if (bus->state == BUS_OPENING)
flags |= POLLOUT;
else if (bus->state == BUS_AUTHENTICATING) {
if (bus_socket_auth_needs_write(bus))
flags |= POLLOUT;
flags |= POLLIN;
} else if (bus->state == BUS_RUNNING || bus->state == BUS_HELLO) {
if (bus->rqueue_size <= 0)
flags |= POLLIN;
if (bus->wqueue_size > 0)
flags |= POLLOUT;
}
return flags;
}
_public_ int sd_bus_get_timeout(sd_bus *bus, uint64_t *timeout_usec) {
struct reply_callback *c;
assert_return(bus, -EINVAL);
assert_return(timeout_usec, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (!BUS_IS_OPEN(bus->state) && bus->state != BUS_CLOSING)
return -ENOTCONN;
if (bus->track_queue) {
*timeout_usec = 0;
return 1;
}
if (bus->state == BUS_CLOSING) {
*timeout_usec = 0;
return 1;
}
if (bus->state == BUS_AUTHENTICATING) {
*timeout_usec = bus->auth_timeout;
return 1;
}
if (bus->state != BUS_RUNNING && bus->state != BUS_HELLO) {
*timeout_usec = (uint64_t) -1;
return 0;
}
if (bus->rqueue_size > 0) {
*timeout_usec = 0;
return 1;
}
c = prioq_peek(bus->reply_callbacks_prioq);
if (!c) {
*timeout_usec = (uint64_t) -1;
return 0;
}
if (c->timeout == 0) {
*timeout_usec = (uint64_t) -1;
return 0;
}
*timeout_usec = c->timeout;
return 1;
}
static int process_timeout(sd_bus *bus) {
_cleanup_(sd_bus_error_free) sd_bus_error error_buffer = SD_BUS_ERROR_NULL;
_cleanup_(sd_bus_message_unrefp) sd_bus_message* m = NULL;
struct reply_callback *c;
sd_bus_slot *slot;
usec_t n;
int r;
assert(bus);
c = prioq_peek(bus->reply_callbacks_prioq);
if (!c)
return 0;
n = now(CLOCK_MONOTONIC);
if (c->timeout > n)
return 0;
r = bus_message_new_synthetic_error(
bus,
c->cookie,
&SD_BUS_ERROR_MAKE_CONST(SD_BUS_ERROR_NO_REPLY, "Method call timed out"),
&m);
if (r < 0)
return r;
r = bus_seal_synthetic_message(bus, m);
if (r < 0)
return r;
assert_se(prioq_pop(bus->reply_callbacks_prioq) == c);
c->timeout = 0;
ordered_hashmap_remove(bus->reply_callbacks, &c->cookie);
c->cookie = 0;
slot = container_of(c, sd_bus_slot, reply_callback);
bus->iteration_counter++;
bus->current_message = m;
bus->current_slot = sd_bus_slot_ref(slot);
bus->current_handler = c->callback;
bus->current_userdata = slot->userdata;
r = c->callback(m, slot->userdata, &error_buffer);
bus->current_userdata = NULL;
bus->current_handler = NULL;
bus->current_slot = NULL;
bus->current_message = NULL;
if (slot->floating) {
bus_slot_disconnect(slot);
sd_bus_slot_unref(slot);
}
sd_bus_slot_unref(slot);
return bus_maybe_reply_error(m, r, &error_buffer);
}
static int process_hello(sd_bus *bus, sd_bus_message *m) {
assert(bus);
assert(m);
if (bus->state != BUS_HELLO)
return 0;
/* Let's make sure the first message on the bus is the HELLO
* reply. But note that we don't actually parse the message
* here (we leave that to the usual handling), we just verify
* we don't let any earlier msg through. */
if (m->header->type != SD_BUS_MESSAGE_METHOD_RETURN &&
m->header->type != SD_BUS_MESSAGE_METHOD_ERROR)
return -EIO;
if (m->reply_cookie != 1)
return -EIO;
return 0;
}
static int process_reply(sd_bus *bus, sd_bus_message *m) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *synthetic_reply = NULL;
_cleanup_(sd_bus_error_free) sd_bus_error error_buffer = SD_BUS_ERROR_NULL;
struct reply_callback *c;
sd_bus_slot *slot;
int r;
assert(bus);
assert(m);
if (m->header->type != SD_BUS_MESSAGE_METHOD_RETURN &&
m->header->type != SD_BUS_MESSAGE_METHOD_ERROR)
return 0;
if (bus->is_kernel && (bus->hello_flags & KDBUS_HELLO_MONITOR))
return 0;
if (m->destination && bus->unique_name && !streq_ptr(m->destination, bus->unique_name))
return 0;
c = ordered_hashmap_remove(bus->reply_callbacks, &m->reply_cookie);
if (!c)
return 0;
c->cookie = 0;
slot = container_of(c, sd_bus_slot, reply_callback);
if (m->n_fds > 0 && !(bus->hello_flags & KDBUS_HELLO_ACCEPT_FD)) {
/* If the reply contained a file descriptor which we
* didn't want we pass an error instead. */
r = bus_message_new_synthetic_error(
bus,
m->reply_cookie,
&SD_BUS_ERROR_MAKE_CONST(SD_BUS_ERROR_INCONSISTENT_MESSAGE, "Reply message contained file descriptor"),
&synthetic_reply);
if (r < 0)
return r;
/* Copy over original timestamp */
synthetic_reply->realtime = m->realtime;
synthetic_reply->monotonic = m->monotonic;
synthetic_reply->seqnum = m->seqnum;
r = bus_seal_synthetic_message(bus, synthetic_reply);
if (r < 0)
return r;
m = synthetic_reply;
} else {
r = sd_bus_message_rewind(m, true);
if (r < 0)
return r;
}
if (c->timeout != 0) {
prioq_remove(bus->reply_callbacks_prioq, c, &c->prioq_idx);
c->timeout = 0;
}
bus->current_slot = sd_bus_slot_ref(slot);
bus->current_handler = c->callback;
bus->current_userdata = slot->userdata;
r = c->callback(m, slot->userdata, &error_buffer);
bus->current_userdata = NULL;
bus->current_handler = NULL;
bus->current_slot = NULL;
if (slot->floating) {
bus_slot_disconnect(slot);
sd_bus_slot_unref(slot);
}
sd_bus_slot_unref(slot);
return bus_maybe_reply_error(m, r, &error_buffer);
}
static int process_filter(sd_bus *bus, sd_bus_message *m) {
_cleanup_(sd_bus_error_free) sd_bus_error error_buffer = SD_BUS_ERROR_NULL;
struct filter_callback *l;
int r;
assert(bus);
assert(m);
do {
bus->filter_callbacks_modified = false;
LIST_FOREACH(callbacks, l, bus->filter_callbacks) {
sd_bus_slot *slot;
if (bus->filter_callbacks_modified)
break;
/* Don't run this more than once per iteration */
if (l->last_iteration == bus->iteration_counter)
continue;
l->last_iteration = bus->iteration_counter;
r = sd_bus_message_rewind(m, true);
if (r < 0)
return r;
slot = container_of(l, sd_bus_slot, filter_callback);
bus->current_slot = sd_bus_slot_ref(slot);
bus->current_handler = l->callback;
bus->current_userdata = slot->userdata;
r = l->callback(m, slot->userdata, &error_buffer);
bus->current_userdata = NULL;
bus->current_handler = NULL;
bus->current_slot = sd_bus_slot_unref(slot);
r = bus_maybe_reply_error(m, r, &error_buffer);
if (r != 0)
return r;
}
} while (bus->filter_callbacks_modified);
return 0;
}
static int process_match(sd_bus *bus, sd_bus_message *m) {
int r;
assert(bus);
assert(m);
do {
bus->match_callbacks_modified = false;
r = bus_match_run(bus, &bus->match_callbacks, m);
if (r != 0)
return r;
} while (bus->match_callbacks_modified);
return 0;
}
static int process_builtin(sd_bus *bus, sd_bus_message *m) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *reply = NULL;
int r;
assert(bus);
assert(m);
if (bus->hello_flags & KDBUS_HELLO_MONITOR)
return 0;
if (bus->manual_peer_interface)
return 0;
if (m->header->type != SD_BUS_MESSAGE_METHOD_CALL)
return 0;
if (!streq_ptr(m->interface, "org.freedesktop.DBus.Peer"))
return 0;
if (m->header->flags & BUS_MESSAGE_NO_REPLY_EXPECTED)
return 1;
if (streq_ptr(m->member, "Ping"))
r = sd_bus_message_new_method_return(m, &reply);
else if (streq_ptr(m->member, "GetMachineId")) {
sd_id128_t id;
char sid[33];
r = sd_id128_get_machine(&id);
if (r < 0)
return r;
r = sd_bus_message_new_method_return(m, &reply);
if (r < 0)
return r;
r = sd_bus_message_append(reply, "s", sd_id128_to_string(id, sid));
} else {
r = sd_bus_message_new_method_errorf(
m, &reply,
SD_BUS_ERROR_UNKNOWN_METHOD,
"Unknown method '%s' on interface '%s'.", m->member, m->interface);
}
if (r < 0)
return r;
r = sd_bus_send(bus, reply, NULL);
if (r < 0)
return r;
return 1;
}
static int process_fd_check(sd_bus *bus, sd_bus_message *m) {
assert(bus);
assert(m);
/* If we got a message with a file descriptor which we didn't
* want to accept, then let's drop it. How can this even
* happen? For example, when the kernel queues a message into
* an activatable names's queue which allows fds, and then is
* delivered to us later even though we ourselves did not
* negotiate it. */
if (bus->hello_flags & KDBUS_HELLO_MONITOR)
return 0;
if (m->n_fds <= 0)
return 0;
if (bus->hello_flags & KDBUS_HELLO_ACCEPT_FD)
return 0;
if (m->header->type != SD_BUS_MESSAGE_METHOD_CALL)
return 1; /* just eat it up */
return sd_bus_reply_method_errorf(m, SD_BUS_ERROR_INCONSISTENT_MESSAGE, "Message contains file descriptors, which I cannot accept. Sorry.");
}
static int process_message(sd_bus *bus, sd_bus_message *m) {
int r;
assert(bus);
assert(m);
bus->current_message = m;
bus->iteration_counter++;
log_debug_bus_message(m);
r = process_hello(bus, m);
if (r != 0)
goto finish;
r = process_reply(bus, m);
if (r != 0)
goto finish;
r = process_fd_check(bus, m);
if (r != 0)
goto finish;
r = process_filter(bus, m);
if (r != 0)
goto finish;
r = process_match(bus, m);
if (r != 0)
goto finish;
r = process_builtin(bus, m);
if (r != 0)
goto finish;
r = bus_process_object(bus, m);
finish:
bus->current_message = NULL;
return r;
}
static int dispatch_track(sd_bus *bus) {
assert(bus);
if (!bus->track_queue)
return 0;
bus_track_dispatch(bus->track_queue);
return 1;
}
static int process_running(sd_bus *bus, bool hint_priority, int64_t priority, sd_bus_message **ret) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL;
int r;
assert(bus);
assert(bus->state == BUS_RUNNING || bus->state == BUS_HELLO);
r = process_timeout(bus);
if (r != 0)
goto null_message;
r = dispatch_wqueue(bus);
if (r != 0)
goto null_message;
r = dispatch_track(bus);
if (r != 0)
goto null_message;
r = dispatch_rqueue(bus, hint_priority, priority, &m);
if (r < 0)
return r;
if (!m)
goto null_message;
r = process_message(bus, m);
if (r != 0)
goto null_message;
if (ret) {
r = sd_bus_message_rewind(m, true);
if (r < 0)
return r;
*ret = m;
m = NULL;
return 1;
}
if (m->header->type == SD_BUS_MESSAGE_METHOD_CALL) {
log_debug("Unprocessed message call sender=%s object=%s interface=%s member=%s",
strna(sd_bus_message_get_sender(m)),
strna(sd_bus_message_get_path(m)),
strna(sd_bus_message_get_interface(m)),
strna(sd_bus_message_get_member(m)));
r = sd_bus_reply_method_errorf(
m,
SD_BUS_ERROR_UNKNOWN_OBJECT,
"Unknown object '%s'.", m->path);
if (r < 0)
return r;
}
return 1;
null_message:
if (r >= 0 && ret)
*ret = NULL;
return r;
}
static int process_closing_reply_callback(sd_bus *bus, struct reply_callback *c) {
_cleanup_(sd_bus_error_free) sd_bus_error error_buffer = SD_BUS_ERROR_NULL;
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL;
sd_bus_slot *slot;
int r;
assert(bus);
assert(c);
r = bus_message_new_synthetic_error(
bus,
c->cookie,
&SD_BUS_ERROR_MAKE_CONST(SD_BUS_ERROR_NO_REPLY, "Connection terminated"),
&m);
if (r < 0)
return r;
r = bus_seal_synthetic_message(bus, m);
if (r < 0)
return r;
if (c->timeout != 0) {
prioq_remove(bus->reply_callbacks_prioq, c, &c->prioq_idx);
c->timeout = 0;
}
ordered_hashmap_remove(bus->reply_callbacks, &c->cookie);
c->cookie = 0;
slot = container_of(c, sd_bus_slot, reply_callback);
bus->iteration_counter++;
bus->current_message = m;
bus->current_slot = sd_bus_slot_ref(slot);
bus->current_handler = c->callback;
bus->current_userdata = slot->userdata;
r = c->callback(m, slot->userdata, &error_buffer);
bus->current_userdata = NULL;
bus->current_handler = NULL;
bus->current_slot = NULL;
bus->current_message = NULL;
if (slot->floating) {
bus_slot_disconnect(slot);
sd_bus_slot_unref(slot);
}
sd_bus_slot_unref(slot);
return bus_maybe_reply_error(m, r, &error_buffer);
}
static int process_closing(sd_bus *bus, sd_bus_message **ret) {
_cleanup_(sd_bus_message_unrefp) sd_bus_message *m = NULL;
struct reply_callback *c;
int r;
assert(bus);
assert(bus->state == BUS_CLOSING);
/* First, fail all outstanding method calls */
c = ordered_hashmap_first(bus->reply_callbacks);
if (c)
return process_closing_reply_callback(bus, c);
/* Then, synthesize a Disconnected message */
r = sd_bus_message_new_signal(
bus,
&m,
"/org/freedesktop/DBus/Local",
"org.freedesktop.DBus.Local",
"Disconnected");
if (r < 0)
return r;
bus_message_set_sender_local(bus, m);
r = bus_seal_synthetic_message(bus, m);
if (r < 0)
return r;
sd_bus_close(bus);
bus->current_message = m;
bus->iteration_counter++;
r = process_filter(bus, m);
if (r != 0)
goto finish;
r = process_match(bus, m);
if (r != 0)
goto finish;
if (ret) {
*ret = m;
m = NULL;
}
r = 1;
finish:
bus->current_message = NULL;
return r;
}
static int bus_process_internal(sd_bus *bus, bool hint_priority, int64_t priority, sd_bus_message **ret) {
BUS_DONT_DESTROY(bus);
int r;
/* Returns 0 when we didn't do anything. This should cause the
* caller to invoke sd_bus_wait() before returning the next
* time. Returns > 0 when we did something, which possibly
* means *ret is filled in with an unprocessed message. */
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
/* We don't allow recursively invoking sd_bus_process(). */
assert_return(!bus->current_message, -EBUSY);
assert(!bus->current_slot);
switch (bus->state) {
case BUS_UNSET:
return -ENOTCONN;
case BUS_CLOSED:
return -ECONNRESET;
case BUS_OPENING:
r = bus_socket_process_opening(bus);
if (IN_SET(r, -ENOTCONN, -ECONNRESET, -EPIPE, -ESHUTDOWN)) {
bus_enter_closing(bus);
r = 1;
} else if (r < 0)
return r;
if (ret)
*ret = NULL;
return r;
case BUS_AUTHENTICATING:
r = bus_socket_process_authenticating(bus);
if (IN_SET(r, -ENOTCONN, -ECONNRESET, -EPIPE, -ESHUTDOWN)) {
bus_enter_closing(bus);
r = 1;
} else if (r < 0)
return r;
if (ret)
*ret = NULL;
return r;
case BUS_RUNNING:
case BUS_HELLO:
r = process_running(bus, hint_priority, priority, ret);
if (IN_SET(r, -ENOTCONN, -ECONNRESET, -EPIPE, -ESHUTDOWN)) {
bus_enter_closing(bus);
r = 1;
if (ret)
*ret = NULL;
}
return r;
case BUS_CLOSING:
return process_closing(bus, ret);
}
assert_not_reached("Unknown state");
}
_public_ int sd_bus_process(sd_bus *bus, sd_bus_message **ret) {
return bus_process_internal(bus, false, 0, ret);
}
_public_ int sd_bus_process_priority(sd_bus *bus, int64_t priority, sd_bus_message **ret) {
return bus_process_internal(bus, true, priority, ret);
}
static int bus_poll(sd_bus *bus, bool need_more, uint64_t timeout_usec) {
struct pollfd p[2] = {};
int r, e, n;
struct timespec ts;
usec_t m = USEC_INFINITY;
assert(bus);
if (bus->state == BUS_CLOSING)
return 1;
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
e = sd_bus_get_events(bus);
if (e < 0)
return e;
if (need_more)
/* The caller really needs some more data, he doesn't
* care about what's already read, or any timeouts
* except its own. */
e |= POLLIN;
else {
usec_t until;
/* The caller wants to process if there's something to
* process, but doesn't care otherwise */
r = sd_bus_get_timeout(bus, &until);
if (r < 0)
return r;
if (r > 0) {
usec_t nw;
nw = now(CLOCK_MONOTONIC);
m = until > nw ? until - nw : 0;
}
}
if (timeout_usec != (uint64_t) -1 && (m == (uint64_t) -1 || timeout_usec < m))
m = timeout_usec;
p[0].fd = bus->input_fd;
if (bus->output_fd == bus->input_fd) {
p[0].events = e;
n = 1;
} else {
p[0].events = e & POLLIN;
p[1].fd = bus->output_fd;
p[1].events = e & POLLOUT;
n = 2;
}
r = ppoll(p, n, m == (uint64_t) -1 ? NULL : timespec_store(&ts, m), NULL);
if (r < 0)
return -errno;
return r > 0 ? 1 : 0;
}
_public_ int sd_bus_wait(sd_bus *bus, uint64_t timeout_usec) {
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (bus->state == BUS_CLOSING)
return 0;
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
if (bus->rqueue_size > 0)
return 0;
return bus_poll(bus, false, timeout_usec);
}
_public_ int sd_bus_flush(sd_bus *bus) {
int r;
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (bus->state == BUS_CLOSING)
return 0;
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
r = bus_ensure_running(bus);
if (r < 0)
return r;
if (bus->wqueue_size <= 0)
return 0;
for (;;) {
r = dispatch_wqueue(bus);
if (r < 0) {
if (IN_SET(r, -ENOTCONN, -ECONNRESET, -EPIPE, -ESHUTDOWN)) {
bus_enter_closing(bus);
return -ECONNRESET;
}
return r;
}
if (bus->wqueue_size <= 0)
return 0;
r = bus_poll(bus, false, (uint64_t) -1);
if (r < 0)
return r;
}
}
_public_ int sd_bus_add_filter(
sd_bus *bus,
sd_bus_slot **slot,
sd_bus_message_handler_t callback,
void *userdata) {
sd_bus_slot *s;
assert_return(bus, -EINVAL);
assert_return(callback, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
s = bus_slot_allocate(bus, !slot, BUS_FILTER_CALLBACK, sizeof(struct filter_callback), userdata);
if (!s)
return -ENOMEM;
s->filter_callback.callback = callback;
bus->filter_callbacks_modified = true;
LIST_PREPEND(callbacks, bus->filter_callbacks, &s->filter_callback);
if (slot)
*slot = s;
return 0;
}
_public_ int sd_bus_add_match(
sd_bus *bus,
sd_bus_slot **slot,
const char *match,
sd_bus_message_handler_t callback,
void *userdata) {
struct bus_match_component *components = NULL;
unsigned n_components = 0;
sd_bus_slot *s = NULL;
int r = 0;
assert_return(bus, -EINVAL);
assert_return(match, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
r = bus_match_parse(match, &components, &n_components);
if (r < 0)
goto finish;
s = bus_slot_allocate(bus, !slot, BUS_MATCH_CALLBACK, sizeof(struct match_callback), userdata);
if (!s) {
r = -ENOMEM;
goto finish;
}
s->match_callback.callback = callback;
s->match_callback.cookie = ++bus->match_cookie;
if (bus->bus_client) {
enum bus_match_scope scope;
scope = bus_match_get_scope(components, n_components);
/* Do not install server-side matches for matches
* against the local service, interface or bus
* path. */
if (scope != BUS_MATCH_LOCAL) {
if (!bus->is_kernel) {
/* When this is not a kernel transport, we
* store the original match string, so that we
* can use it to remove the match again */
s->match_callback.match_string = strdup(match);
if (!s->match_callback.match_string) {
r = -ENOMEM;
goto finish;
}
}
r = bus_add_match_internal(bus, s->match_callback.match_string, components, n_components, s->match_callback.cookie);
if (r < 0)
goto finish;
s->match_added = true;
}
}
bus->match_callbacks_modified = true;
r = bus_match_add(&bus->match_callbacks, components, n_components, &s->match_callback);
if (r < 0)
goto finish;
if (slot)
*slot = s;
s = NULL;
finish:
bus_match_parse_free(components, n_components);
sd_bus_slot_unref(s);
return r;
}
int bus_remove_match_by_string(
sd_bus *bus,
const char *match,
sd_bus_message_handler_t callback,
void *userdata) {
struct bus_match_component *components = NULL;
unsigned n_components = 0;
struct match_callback *c;
int r = 0;
assert_return(bus, -EINVAL);
assert_return(match, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
r = bus_match_parse(match, &components, &n_components);
if (r < 0)
goto finish;
r = bus_match_find(&bus->match_callbacks, components, n_components, NULL, NULL, &c);
if (r <= 0)
goto finish;
sd_bus_slot_unref(container_of(c, sd_bus_slot, match_callback));
finish:
bus_match_parse_free(components, n_components);
return r;
}
bool bus_pid_changed(sd_bus *bus) {
assert(bus);
/* We don't support people creating a bus connection and
* keeping it around over a fork(). Let's complain. */
return bus->original_pid != getpid();
}
static int io_callback(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
sd_bus *bus = userdata;
int r;
assert(bus);
r = sd_bus_process(bus, NULL);
if (r < 0)
return r;
return 1;
}
static int time_callback(sd_event_source *s, uint64_t usec, void *userdata) {
sd_bus *bus = userdata;
int r;
assert(bus);
r = sd_bus_process(bus, NULL);
if (r < 0)
return r;
return 1;
}
static int prepare_callback(sd_event_source *s, void *userdata) {
sd_bus *bus = userdata;
int r, e;
usec_t until;
assert(s);
assert(bus);
e = sd_bus_get_events(bus);
if (e < 0)
return e;
if (bus->output_fd != bus->input_fd) {
r = sd_event_source_set_io_events(bus->input_io_event_source, e & POLLIN);
if (r < 0)
return r;
r = sd_event_source_set_io_events(bus->output_io_event_source, e & POLLOUT);
if (r < 0)
return r;
} else {
r = sd_event_source_set_io_events(bus->input_io_event_source, e);
if (r < 0)
return r;
}
r = sd_bus_get_timeout(bus, &until);
if (r < 0)
return r;
if (r > 0) {
int j;
j = sd_event_source_set_time(bus->time_event_source, until);
if (j < 0)
return j;
}
r = sd_event_source_set_enabled(bus->time_event_source, r > 0);
if (r < 0)
return r;
return 1;
}
static int quit_callback(sd_event_source *event, void *userdata) {
sd_bus *bus = userdata;
assert(event);
sd_bus_flush(bus);
sd_bus_close(bus);
return 1;
}
static int attach_io_events(sd_bus *bus) {
int r;
assert(bus);
if (bus->input_fd < 0)
return 0;
if (!bus->event)
return 0;
if (!bus->input_io_event_source) {
r = sd_event_add_io(bus->event, &bus->input_io_event_source, bus->input_fd, 0, io_callback, bus);
if (r < 0)
return r;
r = sd_event_source_set_prepare(bus->input_io_event_source, prepare_callback);
if (r < 0)
return r;
r = sd_event_source_set_priority(bus->input_io_event_source, bus->event_priority);
if (r < 0)
return r;
r = sd_event_source_set_description(bus->input_io_event_source, "bus-input");
} else
r = sd_event_source_set_io_fd(bus->input_io_event_source, bus->input_fd);
if (r < 0)
return r;
if (bus->output_fd != bus->input_fd) {
assert(bus->output_fd >= 0);
if (!bus->output_io_event_source) {
r = sd_event_add_io(bus->event, &bus->output_io_event_source, bus->output_fd, 0, io_callback, bus);
if (r < 0)
return r;
r = sd_event_source_set_priority(bus->output_io_event_source, bus->event_priority);
if (r < 0)
return r;
r = sd_event_source_set_description(bus->input_io_event_source, "bus-output");
} else
r = sd_event_source_set_io_fd(bus->output_io_event_source, bus->output_fd);
if (r < 0)
return r;
}
return 0;
}
static void detach_io_events(sd_bus *bus) {
assert(bus);
if (bus->input_io_event_source) {
sd_event_source_set_enabled(bus->input_io_event_source, SD_EVENT_OFF);
bus->input_io_event_source = sd_event_source_unref(bus->input_io_event_source);
}
if (bus->output_io_event_source) {
sd_event_source_set_enabled(bus->output_io_event_source, SD_EVENT_OFF);
bus->output_io_event_source = sd_event_source_unref(bus->output_io_event_source);
}
}
_public_ int sd_bus_attach_event(sd_bus *bus, sd_event *event, int priority) {
int r;
assert_return(bus, -EINVAL);
assert_return(!bus->event, -EBUSY);
assert(!bus->input_io_event_source);
assert(!bus->output_io_event_source);
assert(!bus->time_event_source);
if (event)
bus->event = sd_event_ref(event);
else {
r = sd_event_default(&bus->event);
if (r < 0)
return r;
}
bus->event_priority = priority;
r = sd_event_add_time(bus->event, &bus->time_event_source, CLOCK_MONOTONIC, 0, 0, time_callback, bus);
if (r < 0)
goto fail;
r = sd_event_source_set_priority(bus->time_event_source, priority);
if (r < 0)
goto fail;
r = sd_event_source_set_description(bus->time_event_source, "bus-time");
if (r < 0)
goto fail;
r = sd_event_add_exit(bus->event, &bus->quit_event_source, quit_callback, bus);
if (r < 0)
goto fail;
r = sd_event_source_set_description(bus->quit_event_source, "bus-exit");
if (r < 0)
goto fail;
r = attach_io_events(bus);
if (r < 0)
goto fail;
return 0;
fail:
sd_bus_detach_event(bus);
return r;
}
_public_ int sd_bus_detach_event(sd_bus *bus) {
assert_return(bus, -EINVAL);
if (!bus->event)
return 0;
detach_io_events(bus);
if (bus->time_event_source) {
sd_event_source_set_enabled(bus->time_event_source, SD_EVENT_OFF);
bus->time_event_source = sd_event_source_unref(bus->time_event_source);
}
if (bus->quit_event_source) {
sd_event_source_set_enabled(bus->quit_event_source, SD_EVENT_OFF);
bus->quit_event_source = sd_event_source_unref(bus->quit_event_source);
}
bus->event = sd_event_unref(bus->event);
return 1;
}
_public_ sd_event* sd_bus_get_event(sd_bus *bus) {
assert_return(bus, NULL);
return bus->event;
}
_public_ sd_bus_message* sd_bus_get_current_message(sd_bus *bus) {
assert_return(bus, NULL);
return bus->current_message;
}
_public_ sd_bus_slot* sd_bus_get_current_slot(sd_bus *bus) {
assert_return(bus, NULL);
return bus->current_slot;
}
_public_ sd_bus_message_handler_t sd_bus_get_current_handler(sd_bus *bus) {
assert_return(bus, NULL);
return bus->current_handler;
}
_public_ void* sd_bus_get_current_userdata(sd_bus *bus) {
assert_return(bus, NULL);
return bus->current_userdata;
}
static int bus_default(int (*bus_open)(sd_bus **), sd_bus **default_bus, sd_bus **ret) {
sd_bus *b = NULL;
int r;
assert(bus_open);
assert(default_bus);
if (!ret)
return !!*default_bus;
if (*default_bus) {
*ret = sd_bus_ref(*default_bus);
return 0;
}
r = bus_open(&b);
if (r < 0)
return r;
b->default_bus_ptr = default_bus;
b->tid = gettid();
*default_bus = b;
*ret = b;
return 1;
}
_public_ int sd_bus_default_system(sd_bus **ret) {
return bus_default(sd_bus_open_system, &default_system_bus, ret);
}
_public_ int sd_bus_default_user(sd_bus **ret) {
return bus_default(sd_bus_open_user, &default_user_bus, ret);
}
_public_ int sd_bus_default(sd_bus **ret) {
const char *e;
/* Let's try our best to reuse another cached connection. If
* the starter bus type is set, connect via our normal
* connection logic, ignoring $DBUS_STARTER_ADDRESS, so that
* we can share the connection with the user/system default
* bus. */
e = secure_getenv("DBUS_STARTER_BUS_TYPE");
if (e) {
if (streq(e, "system"))
return sd_bus_default_system(ret);
else if (STR_IN_SET(e, "user", "session"))
return sd_bus_default_user(ret);
}
/* No type is specified, so we have not other option than to
* use the starter address if it is set. */
e = secure_getenv("DBUS_STARTER_ADDRESS");
if (e) {
return bus_default(sd_bus_open, &default_starter_bus, ret);
}
/* Finally, if nothing is set use the cached connection for
* the right scope */
if (cg_pid_get_owner_uid(0, NULL) >= 0)
return sd_bus_default_user(ret);
else
return sd_bus_default_system(ret);
}
_public_ int sd_bus_get_tid(sd_bus *b, pid_t *tid) {
assert_return(b, -EINVAL);
assert_return(tid, -EINVAL);
assert_return(!bus_pid_changed(b), -ECHILD);
if (b->tid != 0) {
*tid = b->tid;
return 0;
}
if (b->event)
return sd_event_get_tid(b->event, tid);
return -ENXIO;
}
_public_ int sd_bus_path_encode(const char *prefix, const char *external_id, char **ret_path) {
_cleanup_free_ char *e = NULL;
char *ret;
assert_return(object_path_is_valid(prefix), -EINVAL);
assert_return(external_id, -EINVAL);
assert_return(ret_path, -EINVAL);
e = bus_label_escape(external_id);
if (!e)
return -ENOMEM;
ret = strjoin(prefix, "/", e, NULL);
if (!ret)
return -ENOMEM;
*ret_path = ret;
return 0;
}
_public_ int sd_bus_path_decode(const char *path, const char *prefix, char **external_id) {
const char *e;
char *ret;
assert_return(object_path_is_valid(path), -EINVAL);
assert_return(object_path_is_valid(prefix), -EINVAL);
assert_return(external_id, -EINVAL);
e = object_path_startswith(path, prefix);
if (!e) {
*external_id = NULL;
return 0;
}
ret = bus_label_unescape(e);
if (!ret)
return -ENOMEM;
*external_id = ret;
return 1;
}
_public_ int sd_bus_path_encode_many(char **out, const char *path_template, ...) {
_cleanup_strv_free_ char **labels = NULL;
char *path, *path_pos, **label_pos;
const char *sep, *template_pos;
size_t path_length;
va_list list;
int r;
assert_return(out, -EINVAL);
assert_return(path_template, -EINVAL);
path_length = strlen(path_template);
va_start(list, path_template);
for (sep = strchr(path_template, '%'); sep; sep = strchr(sep + 1, '%')) {
const char *arg;
char *label;
arg = va_arg(list, const char *);
if (!arg) {
va_end(list);
return -EINVAL;
}
label = bus_label_escape(arg);
if (!label) {
va_end(list);
return -ENOMEM;
}
r = strv_consume(&labels, label);
if (r < 0) {
va_end(list);
return r;
}
/* add label length, but account for the format character */
path_length += strlen(label) - 1;
}
va_end(list);
path = malloc(path_length + 1);
if (!path)
return -ENOMEM;
path_pos = path;
label_pos = labels;
for (template_pos = path_template; *template_pos; ) {
sep = strchrnul(template_pos, '%');
path_pos = mempcpy(path_pos, template_pos, sep - template_pos);
if (!*sep)
break;
path_pos = stpcpy(path_pos, *label_pos++);
template_pos = sep + 1;
}
*path_pos = 0;
*out = path;
return 0;
}
_public_ int sd_bus_path_decode_many(const char *path, const char *path_template, ...) {
_cleanup_strv_free_ char **labels = NULL;
const char *template_pos, *path_pos;
char **label_pos;
va_list list;
int r;
/*
* This decodes an object-path based on a template argument. The
* template consists of a verbatim path, optionally including special
* directives:
*
* - Each occurrence of '%' in the template matches an arbitrary
* substring of a label in the given path. At most one such
* directive is allowed per label. For each such directive, the
* caller must provide an output parameter (char **) via va_arg. If
* NULL is passed, the given label is verified, but not returned.
* For each matched label, the *decoded* label is stored in the
* passed output argument, and the caller is responsible to free
* it. Note that the output arguments are only modified if the
* actualy path matched the template. Otherwise, they're left
* untouched.
*
* This function returns <0 on error, 0 if the path does not match the
* template, 1 if it matched.
*/
assert_return(path, -EINVAL);
assert_return(path_template, -EINVAL);
path_pos = path;
for (template_pos = path_template; *template_pos; ) {
const char *sep;
size_t length;
char *label;
/* verify everything until the next '%' matches verbatim */
sep = strchrnul(template_pos, '%');
length = sep - template_pos;
if (strncmp(path_pos, template_pos, length))
return 0;
path_pos += length;
template_pos += length;
if (!*template_pos)
break;
/* We found the next '%' character. Everything up until here
* matched. We now skip ahead to the end of this label and make
* sure it matches the tail of the label in the path. Then we
* decode the string in-between and save it for later use. */
++template_pos; /* skip over '%' */
sep = strchrnul(template_pos, '/');
length = sep - template_pos; /* length of suffix to match verbatim */
/* verify the suffixes match */
sep = strchrnul(path_pos, '/');
if (sep - path_pos < (ssize_t)length ||
strncmp(sep - length, template_pos, length))
return 0;
template_pos += length; /* skip over matched label */
length = sep - path_pos - length; /* length of sub-label to decode */
/* store unescaped label for later use */
label = bus_label_unescape_n(path_pos, length);
if (!label)
return -ENOMEM;
r = strv_consume(&labels, label);
if (r < 0)
return r;
path_pos = sep; /* skip decoded label and suffix */
}
/* end of template must match end of path */
if (*path_pos)
return 0;
/* copy the labels over to the caller */
va_start(list, path_template);
for (label_pos = labels; label_pos && *label_pos; ++label_pos) {
char **arg;
arg = va_arg(list, char **);
if (arg)
*arg = *label_pos;
else
free(*label_pos);
}
va_end(list);
free(labels);
labels = NULL;
return 1;
}
_public_ int sd_bus_try_close(sd_bus *bus) {
int r;
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (!bus->is_kernel)
return -EOPNOTSUPP;
if (!BUS_IS_OPEN(bus->state))
return -ENOTCONN;
if (bus->rqueue_size > 0)
return -EBUSY;
if (bus->wqueue_size > 0)
return -EBUSY;
r = bus_kernel_try_close(bus);
if (r < 0)
return r;
sd_bus_close(bus);
return 0;
}
_public_ int sd_bus_get_description(sd_bus *bus, const char **description) {
assert_return(bus, -EINVAL);
assert_return(description, -EINVAL);
assert_return(bus->description, -ENXIO);
assert_return(!bus_pid_changed(bus), -ECHILD);
*description = bus->description;
return 0;
}
int bus_get_root_path(sd_bus *bus) {
int r;
if (bus->cgroup_root)
return 0;
r = cg_get_root_path(&bus->cgroup_root);
if (r == -ENOENT) {
bus->cgroup_root = strdup("/");
if (!bus->cgroup_root)
return -ENOMEM;
r = 0;
}
return r;
}
_public_ int sd_bus_get_scope(sd_bus *bus, const char **scope) {
int r;
assert_return(bus, -EINVAL);
assert_return(scope, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (bus->is_kernel) {
_cleanup_free_ char *n = NULL;
const char *dash;
r = bus_kernel_get_bus_name(bus, &n);
if (r < 0)
return r;
if (streq(n, "0-system")) {
*scope = "system";
return 0;
}
dash = strchr(n, '-');
if (streq_ptr(dash, "-user")) {
*scope = "user";
return 0;
}
}
if (bus->is_user) {
*scope = "user";
return 0;
}
if (bus->is_system) {
*scope = "system";
return 0;
}
return -ENODATA;
}
_public_ int sd_bus_get_address(sd_bus *bus, const char **address) {
assert_return(bus, -EINVAL);
assert_return(address, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
if (bus->address) {
*address = bus->address;
return 0;
}
return -ENODATA;
}
_public_ int sd_bus_get_creds_mask(sd_bus *bus, uint64_t *mask) {
assert_return(bus, -EINVAL);
assert_return(mask, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
*mask = bus->creds_mask;
return 0;
}
_public_ int sd_bus_is_bus_client(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->bus_client;
}
_public_ int sd_bus_is_server(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->is_server;
}
_public_ int sd_bus_is_anonymous(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->anonymous_auth;
}
_public_ int sd_bus_is_trusted(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
return bus->trusted;
}
_public_ int sd_bus_is_monitor(sd_bus *bus) {
assert_return(bus, -EINVAL);
assert_return(!bus_pid_changed(bus), -ECHILD);
return !!(bus->hello_flags & KDBUS_HELLO_MONITOR);
}
static void flush_close(sd_bus *bus) {
if (!bus)
return;
/* Flushes and closes the specified bus. We take a ref before,
* to ensure the flushing does not cause the bus to be
* unreferenced. */
sd_bus_flush_close_unref(sd_bus_ref(bus));
}
_public_ void sd_bus_default_flush_close(void) {
flush_close(default_starter_bus);
flush_close(default_user_bus);
flush_close(default_system_bus);
}