/***
This file is part of systemd.
Copyright 2014 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see .
***/
#include
#include "alloc-util.h"
#include "dns-domain.h"
#include "dns-type.h"
#include "escape.h"
#include "hexdecoct.h"
#include "resolved-dns-dnssec.h"
#include "resolved-dns-packet.h"
#include "resolved-dns-rr.h"
#include "string-table.h"
#include "string-util.h"
#include "strv.h"
#include "terminal-util.h"
DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) {
DnsResourceKey *k;
size_t l;
assert(name);
l = strlen(name);
k = malloc0(sizeof(DnsResourceKey) + l + 1);
if (!k)
return NULL;
k->n_ref = 1;
k->class = class;
k->type = type;
strcpy((char*) k + sizeof(DnsResourceKey), name);
return k;
}
DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) {
int r;
assert(key);
assert(cname);
assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
if (cname->key->type == DNS_TYPE_CNAME)
return dns_resource_key_new(key->class, key->type, cname->cname.name);
else {
DnsResourceKey *k;
char *destination = NULL;
r = dns_name_change_suffix(dns_resource_key_name(key), dns_resource_key_name(cname->key), cname->dname.name, &destination);
if (r < 0)
return NULL;
if (r == 0)
return dns_resource_key_ref((DnsResourceKey*) key);
k = dns_resource_key_new_consume(key->class, key->type, destination);
if (!k)
return mfree(destination);
return k;
}
}
int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) {
DnsResourceKey *new_key;
char *joined;
int r;
assert(ret);
assert(key);
assert(name);
if (dns_name_is_root(name)) {
*ret = dns_resource_key_ref(key);
return 0;
}
r = dns_name_concat(dns_resource_key_name(key), name, &joined);
if (r < 0)
return r;
new_key = dns_resource_key_new_consume(key->class, key->type, joined);
if (!new_key) {
free(joined);
return -ENOMEM;
}
*ret = new_key;
return 0;
}
DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) {
DnsResourceKey *k;
assert(name);
k = new0(DnsResourceKey, 1);
if (!k)
return NULL;
k->n_ref = 1;
k->class = class;
k->type = type;
k->_name = name;
return k;
}
DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) {
if (!k)
return NULL;
/* Static/const keys created with DNS_RESOURCE_KEY_CONST will
* set this to -1, they should not be reffed/unreffed */
assert(k->n_ref != (unsigned) -1);
assert(k->n_ref > 0);
k->n_ref++;
return k;
}
DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) {
if (!k)
return NULL;
assert(k->n_ref != (unsigned) -1);
assert(k->n_ref > 0);
if (k->n_ref == 1) {
free(k->_name);
free(k);
} else
k->n_ref--;
return NULL;
}
const char* dns_resource_key_name(const DnsResourceKey *key) {
const char *name;
if (!key)
return NULL;
if (key->_name)
name = key->_name;
else
name = (char*) key + sizeof(DnsResourceKey);
if (dns_name_is_root(name))
return ".";
else
return name;
}
bool dns_resource_key_is_address(const DnsResourceKey *key) {
assert(key);
/* Check if this is an A or AAAA resource key */
return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA);
}
int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) {
int r;
if (a == b)
return 1;
r = dns_name_equal(dns_resource_key_name(a), dns_resource_key_name(b));
if (r <= 0)
return r;
if (a->class != b->class)
return 0;
if (a->type != b->type)
return 0;
return 1;
}
int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) {
int r;
assert(key);
assert(rr);
if (key == rr->key)
return 1;
/* Checks if an rr matches the specified key. If a search
* domain is specified, it will also be checked if the key
* with the search domain suffixed might match the RR. */
if (rr->key->class != key->class && key->class != DNS_CLASS_ANY)
return 0;
if (rr->key->type != key->type && key->type != DNS_TYPE_ANY)
return 0;
r = dns_name_equal(dns_resource_key_name(rr->key), dns_resource_key_name(key));
if (r != 0)
return r;
if (search_domain) {
_cleanup_free_ char *joined = NULL;
r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
if (r < 0)
return r;
return dns_name_equal(dns_resource_key_name(rr->key), joined);
}
return 0;
}
int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) {
int r;
assert(key);
assert(cname);
if (cname->class != key->class && key->class != DNS_CLASS_ANY)
return 0;
if (cname->type == DNS_TYPE_CNAME)
r = dns_name_equal(dns_resource_key_name(key), dns_resource_key_name(cname));
else if (cname->type == DNS_TYPE_DNAME)
r = dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(cname));
else
return 0;
if (r != 0)
return r;
if (search_domain) {
_cleanup_free_ char *joined = NULL;
r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
if (r < 0)
return r;
if (cname->type == DNS_TYPE_CNAME)
return dns_name_equal(joined, dns_resource_key_name(cname));
else if (cname->type == DNS_TYPE_DNAME)
return dns_name_endswith(joined, dns_resource_key_name(cname));
}
return 0;
}
int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) {
assert(soa);
assert(key);
/* Checks whether 'soa' is a SOA record for the specified key. */
if (soa->class != key->class)
return 0;
if (soa->type != DNS_TYPE_SOA)
return 0;
return dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(soa));
}
static void dns_resource_key_hash_func(const void *i, struct siphash *state) {
const DnsResourceKey *k = i;
assert(k);
dns_name_hash_func(dns_resource_key_name(k), state);
siphash24_compress(&k->class, sizeof(k->class), state);
siphash24_compress(&k->type, sizeof(k->type), state);
}
static int dns_resource_key_compare_func(const void *a, const void *b) {
const DnsResourceKey *x = a, *y = b;
int ret;
ret = dns_name_compare_func(dns_resource_key_name(x), dns_resource_key_name(y));
if (ret != 0)
return ret;
if (x->type < y->type)
return -1;
if (x->type > y->type)
return 1;
if (x->class < y->class)
return -1;
if (x->class > y->class)
return 1;
return 0;
}
const struct hash_ops dns_resource_key_hash_ops = {
.hash = dns_resource_key_hash_func,
.compare = dns_resource_key_compare_func
};
char* dns_resource_key_to_string(const DnsResourceKey *key, char *buf, size_t buf_size) {
const char *c, *t;
char *ans = buf;
/* If we cannot convert the CLASS/TYPE into a known string,
use the format recommended by RFC 3597, Section 5. */
c = dns_class_to_string(key->class);
t = dns_type_to_string(key->type);
snprintf(buf, buf_size, "%s %s%s%.0u %s%s%.0u",
dns_resource_key_name(key),
c ?: "", c ? "" : "CLASS", c ? 0 : key->class,
t ?: "", t ? "" : "TYPE", t ? 0 : key->class);
return ans;
}
bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) {
assert(a);
assert(b);
/* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do
* this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come
* from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same
* superficial data. */
if (!*a)
return false;
if (!*b)
return false;
/* We refuse merging const keys */
if ((*a)->n_ref == (unsigned) -1)
return false;
if ((*b)->n_ref == (unsigned) -1)
return false;
/* Already the same? */
if (*a == *b)
return true;
/* Are they really identical? */
if (dns_resource_key_equal(*a, *b) <= 0)
return false;
/* Keep the one which already has more references. */
if ((*a)->n_ref > (*b)->n_ref) {
dns_resource_key_unref(*b);
*b = dns_resource_key_ref(*a);
} else {
dns_resource_key_unref(*a);
*a = dns_resource_key_ref(*b);
}
return true;
}
DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) {
DnsResourceRecord *rr;
rr = new0(DnsResourceRecord, 1);
if (!rr)
return NULL;
rr->n_ref = 1;
rr->key = dns_resource_key_ref(key);
rr->expiry = USEC_INFINITY;
rr->n_skip_labels_signer = rr->n_skip_labels_source = (unsigned) -1;
return rr;
}
DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) {
_cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
key = dns_resource_key_new(class, type, name);
if (!key)
return NULL;
return dns_resource_record_new(key);
}
DnsResourceRecord* dns_resource_record_ref(DnsResourceRecord *rr) {
if (!rr)
return NULL;
assert(rr->n_ref > 0);
rr->n_ref++;
return rr;
}
DnsResourceRecord* dns_resource_record_unref(DnsResourceRecord *rr) {
if (!rr)
return NULL;
assert(rr->n_ref > 0);
if (rr->n_ref > 1) {
rr->n_ref--;
return NULL;
}
if (rr->key) {
switch(rr->key->type) {
case DNS_TYPE_SRV:
free(rr->srv.name);
break;
case DNS_TYPE_PTR:
case DNS_TYPE_NS:
case DNS_TYPE_CNAME:
case DNS_TYPE_DNAME:
free(rr->ptr.name);
break;
case DNS_TYPE_HINFO:
free(rr->hinfo.cpu);
free(rr->hinfo.os);
break;
case DNS_TYPE_TXT:
case DNS_TYPE_SPF:
dns_txt_item_free_all(rr->txt.items);
break;
case DNS_TYPE_SOA:
free(rr->soa.mname);
free(rr->soa.rname);
break;
case DNS_TYPE_MX:
free(rr->mx.exchange);
break;
case DNS_TYPE_DS:
free(rr->ds.digest);
break;
case DNS_TYPE_SSHFP:
free(rr->sshfp.fingerprint);
break;
case DNS_TYPE_DNSKEY:
free(rr->dnskey.key);
break;
case DNS_TYPE_RRSIG:
free(rr->rrsig.signer);
free(rr->rrsig.signature);
break;
case DNS_TYPE_NSEC:
free(rr->nsec.next_domain_name);
bitmap_free(rr->nsec.types);
break;
case DNS_TYPE_NSEC3:
free(rr->nsec3.next_hashed_name);
free(rr->nsec3.salt);
bitmap_free(rr->nsec3.types);
break;
case DNS_TYPE_LOC:
case DNS_TYPE_A:
case DNS_TYPE_AAAA:
break;
case DNS_TYPE_TLSA:
free(rr->tlsa.data);
break;
case DNS_TYPE_CAA:
free(rr->caa.tag);
free(rr->caa.value);
break;
case DNS_TYPE_OPENPGPKEY:
default:
free(rr->generic.data);
}
free(rr->wire_format);
dns_resource_key_unref(rr->key);
}
free(rr->to_string);
return mfree(rr);
}
int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) {
_cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
_cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
_cleanup_free_ char *ptr = NULL;
int r;
assert(ret);
assert(address);
assert(hostname);
r = dns_name_reverse(family, address, &ptr);
if (r < 0)
return r;
key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr);
if (!key)
return -ENOMEM;
ptr = NULL;
rr = dns_resource_record_new(key);
if (!rr)
return -ENOMEM;
rr->ptr.name = strdup(hostname);
if (!rr->ptr.name)
return -ENOMEM;
*ret = rr;
rr = NULL;
return 0;
}
int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) {
DnsResourceRecord *rr;
assert(ret);
assert(address);
assert(family);
if (family == AF_INET) {
rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name);
if (!rr)
return -ENOMEM;
rr->a.in_addr = address->in;
} else if (family == AF_INET6) {
rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
if (!rr)
return -ENOMEM;
rr->aaaa.in6_addr = address->in6;
} else
return -EAFNOSUPPORT;
*ret = rr;
return 0;
}
#define FIELD_EQUAL(a, b, field) \
((a).field ## _size == (b).field ## _size && \
memcmp((a).field, (b).field, (a).field ## _size) == 0)
int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
int r;
assert(a);
assert(b);
if (a == b)
return 1;
r = dns_resource_key_equal(a->key, b->key);
if (r <= 0)
return r;
if (a->unparseable != b->unparseable)
return 0;
switch (a->unparseable ? _DNS_TYPE_INVALID : a->key->type) {
case DNS_TYPE_SRV:
r = dns_name_equal(a->srv.name, b->srv.name);
if (r <= 0)
return r;
return a->srv.priority == b->srv.priority &&
a->srv.weight == b->srv.weight &&
a->srv.port == b->srv.port;
case DNS_TYPE_PTR:
case DNS_TYPE_NS:
case DNS_TYPE_CNAME:
case DNS_TYPE_DNAME:
return dns_name_equal(a->ptr.name, b->ptr.name);
case DNS_TYPE_HINFO:
return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) &&
strcaseeq(a->hinfo.os, b->hinfo.os);
case DNS_TYPE_SPF: /* exactly the same as TXT */
case DNS_TYPE_TXT:
return dns_txt_item_equal(a->txt.items, b->txt.items);
case DNS_TYPE_A:
return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0;
case DNS_TYPE_AAAA:
return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0;
case DNS_TYPE_SOA:
r = dns_name_equal(a->soa.mname, b->soa.mname);
if (r <= 0)
return r;
r = dns_name_equal(a->soa.rname, b->soa.rname);
if (r <= 0)
return r;
return a->soa.serial == b->soa.serial &&
a->soa.refresh == b->soa.refresh &&
a->soa.retry == b->soa.retry &&
a->soa.expire == b->soa.expire &&
a->soa.minimum == b->soa.minimum;
case DNS_TYPE_MX:
if (a->mx.priority != b->mx.priority)
return 0;
return dns_name_equal(a->mx.exchange, b->mx.exchange);
case DNS_TYPE_LOC:
assert(a->loc.version == b->loc.version);
return a->loc.size == b->loc.size &&
a->loc.horiz_pre == b->loc.horiz_pre &&
a->loc.vert_pre == b->loc.vert_pre &&
a->loc.latitude == b->loc.latitude &&
a->loc.longitude == b->loc.longitude &&
a->loc.altitude == b->loc.altitude;
case DNS_TYPE_DS:
return a->ds.key_tag == b->ds.key_tag &&
a->ds.algorithm == b->ds.algorithm &&
a->ds.digest_type == b->ds.digest_type &&
FIELD_EQUAL(a->ds, b->ds, digest);
case DNS_TYPE_SSHFP:
return a->sshfp.algorithm == b->sshfp.algorithm &&
a->sshfp.fptype == b->sshfp.fptype &&
FIELD_EQUAL(a->sshfp, b->sshfp, fingerprint);
case DNS_TYPE_DNSKEY:
return a->dnskey.flags == b->dnskey.flags &&
a->dnskey.protocol == b->dnskey.protocol &&
a->dnskey.algorithm == b->dnskey.algorithm &&
FIELD_EQUAL(a->dnskey, b->dnskey, key);
case DNS_TYPE_RRSIG:
/* do the fast comparisons first */
return a->rrsig.type_covered == b->rrsig.type_covered &&
a->rrsig.algorithm == b->rrsig.algorithm &&
a->rrsig.labels == b->rrsig.labels &&
a->rrsig.original_ttl == b->rrsig.original_ttl &&
a->rrsig.expiration == b->rrsig.expiration &&
a->rrsig.inception == b->rrsig.inception &&
a->rrsig.key_tag == b->rrsig.key_tag &&
FIELD_EQUAL(a->rrsig, b->rrsig, signature) &&
dns_name_equal(a->rrsig.signer, b->rrsig.signer);
case DNS_TYPE_NSEC:
return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) &&
bitmap_equal(a->nsec.types, b->nsec.types);
case DNS_TYPE_NSEC3:
return a->nsec3.algorithm == b->nsec3.algorithm &&
a->nsec3.flags == b->nsec3.flags &&
a->nsec3.iterations == b->nsec3.iterations &&
FIELD_EQUAL(a->nsec3, b->nsec3, salt) &&
FIELD_EQUAL(a->nsec3, b->nsec3, next_hashed_name) &&
bitmap_equal(a->nsec3.types, b->nsec3.types);
case DNS_TYPE_TLSA:
return a->tlsa.cert_usage == b->tlsa.cert_usage &&
a->tlsa.selector == b->tlsa.selector &&
a->tlsa.matching_type == b->tlsa.matching_type &&
FIELD_EQUAL(a->tlsa, b->tlsa, data);
case DNS_TYPE_CAA:
return a->caa.flags == b->caa.flags &&
streq(a->caa.tag, b->caa.tag) &&
FIELD_EQUAL(a->caa, b->caa, value);
case DNS_TYPE_OPENPGPKEY:
default:
return FIELD_EQUAL(a->generic, b->generic, data);
}
}
static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude,
uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) {
char *s;
char NS = latitude >= 1U<<31 ? 'N' : 'S';
char EW = longitude >= 1U<<31 ? 'E' : 'W';
int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude);
int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude);
double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude);
double siz = (size >> 4) * exp10((double) (size & 0xF));
double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF));
double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF));
if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm",
(lat / 60000 / 60),
(lat / 60000) % 60,
(lat % 60000) / 1000.,
NS,
(lon / 60000 / 60),
(lon / 60000) % 60,
(lon % 60000) / 1000.,
EW,
alt / 100.,
siz / 100.,
hor / 100.,
ver / 100.) < 0)
return NULL;
return s;
}
static int format_timestamp_dns(char *buf, size_t l, time_t sec) {
struct tm tm;
assert(buf);
assert(l > strlen("YYYYMMDDHHmmSS"));
if (!gmtime_r(&sec, &tm))
return -EINVAL;
if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0)
return -EINVAL;
return 0;
}
static char *format_types(Bitmap *types) {
_cleanup_strv_free_ char **strv = NULL;
_cleanup_free_ char *str = NULL;
Iterator i;
unsigned type;
int r;
BITMAP_FOREACH(type, types, i) {
if (dns_type_to_string(type)) {
r = strv_extend(&strv, dns_type_to_string(type));
if (r < 0)
return NULL;
} else {
char *t;
r = asprintf(&t, "TYPE%u", type);
if (r < 0)
return NULL;
r = strv_consume(&strv, t);
if (r < 0)
return NULL;
}
}
str = strv_join(strv, " ");
if (!str)
return NULL;
return strjoin("( ", str, " )", NULL);
}
static char *format_txt(DnsTxtItem *first) {
DnsTxtItem *i;
size_t c = 1;
char *p, *s;
LIST_FOREACH(items, i, first)
c += i->length * 4 + 3;
p = s = new(char, c);
if (!s)
return NULL;
LIST_FOREACH(items, i, first) {
size_t j;
if (i != first)
*(p++) = ' ';
*(p++) = '"';
for (j = 0; j < i->length; j++) {
if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) {
*(p++) = '\\';
*(p++) = '0' + (i->data[j] / 100);
*(p++) = '0' + ((i->data[j] / 10) % 10);
*(p++) = '0' + (i->data[j] % 10);
} else
*(p++) = i->data[j];
}
*(p++) = '"';
}
*p = 0;
return s;
}
const char *dns_resource_record_to_string(DnsResourceRecord *rr) {
_cleanup_free_ char *t = NULL;
char *s, k[DNS_RESOURCE_KEY_STRING_MAX];
int r;
assert(rr);
if (rr->to_string)
return rr->to_string;
dns_resource_key_to_string(rr->key, k, sizeof(k));
switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
case DNS_TYPE_SRV:
r = asprintf(&s, "%s %u %u %u %s",
k,
rr->srv.priority,
rr->srv.weight,
rr->srv.port,
strna(rr->srv.name));
if (r < 0)
return NULL;
break;
case DNS_TYPE_PTR:
case DNS_TYPE_NS:
case DNS_TYPE_CNAME:
case DNS_TYPE_DNAME:
s = strjoin(k, " ", rr->ptr.name, NULL);
if (!s)
return NULL;
break;
case DNS_TYPE_HINFO:
s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os, NULL);
if (!s)
return NULL;
break;
case DNS_TYPE_SPF: /* exactly the same as TXT */
case DNS_TYPE_TXT:
t = format_txt(rr->txt.items);
if (!t)
return NULL;
s = strjoin(k, " ", t, NULL);
if (!s)
return NULL;
break;
case DNS_TYPE_A: {
_cleanup_free_ char *x = NULL;
r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &x);
if (r < 0)
return NULL;
s = strjoin(k, " ", x, NULL);
if (!s)
return NULL;
break;
}
case DNS_TYPE_AAAA:
r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t);
if (r < 0)
return NULL;
s = strjoin(k, " ", t, NULL);
if (!s)
return NULL;
break;
case DNS_TYPE_SOA:
r = asprintf(&s, "%s %s %s %u %u %u %u %u",
k,
strna(rr->soa.mname),
strna(rr->soa.rname),
rr->soa.serial,
rr->soa.refresh,
rr->soa.retry,
rr->soa.expire,
rr->soa.minimum);
if (r < 0)
return NULL;
break;
case DNS_TYPE_MX:
r = asprintf(&s, "%s %u %s",
k,
rr->mx.priority,
rr->mx.exchange);
if (r < 0)
return NULL;
break;
case DNS_TYPE_LOC:
assert(rr->loc.version == 0);
t = format_location(rr->loc.latitude,
rr->loc.longitude,
rr->loc.altitude,
rr->loc.size,
rr->loc.horiz_pre,
rr->loc.vert_pre);
if (!t)
return NULL;
s = strjoin(k, " ", t, NULL);
if (!s)
return NULL;
break;
case DNS_TYPE_DS:
t = hexmem(rr->ds.digest, rr->ds.digest_size);
if (!t)
return NULL;
r = asprintf(&s, "%s %u %u %u %s",
k,
rr->ds.key_tag,
rr->ds.algorithm,
rr->ds.digest_type,
t);
if (r < 0)
return NULL;
break;
case DNS_TYPE_SSHFP:
t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
if (!t)
return NULL;
r = asprintf(&s, "%s %u %u %s",
k,
rr->sshfp.algorithm,
rr->sshfp.fptype,
t);
if (r < 0)
return NULL;
break;
case DNS_TYPE_DNSKEY: {
_cleanup_free_ char *alg = NULL;
char *ss;
int n;
uint16_t key_tag;
key_tag = dnssec_keytag(rr, true);
r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg);
if (r < 0)
return NULL;
r = asprintf(&s, "%s %u %u %s %n",
k,
rr->dnskey.flags,
rr->dnskey.protocol,
alg,
&n);
if (r < 0)
return NULL;
r = base64_append(&s, n,
rr->dnskey.key, rr->dnskey.key_size,
8, columns());
if (r < 0)
return NULL;
r = asprintf(&ss, "%s\n"
" -- Flags:%s%s%s\n"
" -- Key tag: %u",
s,
rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "",
rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "",
rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : "",
key_tag);
if (r < 0)
return NULL;
free(s);
s = ss;
break;
}
case DNS_TYPE_RRSIG: {
_cleanup_free_ char *alg = NULL;
char expiration[strlen("YYYYMMDDHHmmSS") + 1], inception[strlen("YYYYMMDDHHmmSS") + 1];
const char *type;
int n;
type = dns_type_to_string(rr->rrsig.type_covered);
r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg);
if (r < 0)
return NULL;
r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration);
if (r < 0)
return NULL;
r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception);
if (r < 0)
return NULL;
/* TYPE?? follows
* http://tools.ietf.org/html/rfc3597#section-5 */
r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s %n",
k,
type ?: "TYPE",
type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered,
alg,
rr->rrsig.labels,
rr->rrsig.original_ttl,
expiration,
inception,
rr->rrsig.key_tag,
rr->rrsig.signer,
&n);
if (r < 0)
return NULL;
r = base64_append(&s, n,
rr->rrsig.signature, rr->rrsig.signature_size,
8, columns());
if (r < 0)
return NULL;
break;
}
case DNS_TYPE_NSEC:
t = format_types(rr->nsec.types);
if (!t)
return NULL;
r = asprintf(&s, "%s %s %s",
k,
rr->nsec.next_domain_name,
t);
if (r < 0)
return NULL;
break;
case DNS_TYPE_NSEC3: {
_cleanup_free_ char *salt = NULL, *hash = NULL;
if (rr->nsec3.salt_size > 0) {
salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size);
if (!salt)
return NULL;
}
hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false);
if (!hash)
return NULL;
t = format_types(rr->nsec3.types);
if (!t)
return NULL;
r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s",
k,
rr->nsec3.algorithm,
rr->nsec3.flags,
rr->nsec3.iterations,
rr->nsec3.salt_size > 0 ? salt : "-",
hash,
t);
if (r < 0)
return NULL;
break;
}
case DNS_TYPE_TLSA: {
const char *cert_usage, *selector, *matching_type;
cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage);
selector = tlsa_selector_to_string(rr->tlsa.selector);
matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type);
t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
if (!t)
return NULL;
r = asprintf(&s,
"%s %u %u %u %s\n"
" -- Cert. usage: %s\n"
" -- Selector: %s\n"
" -- Matching type: %s",
k,
rr->tlsa.cert_usage,
rr->tlsa.selector,
rr->tlsa.matching_type,
t,
cert_usage,
selector,
matching_type);
if (r < 0)
return NULL;
break;
}
case DNS_TYPE_CAA: {
_cleanup_free_ char *value;
value = octescape(rr->caa.value, rr->caa.value_size);
if (!value)
return NULL;
r = asprintf(&s, "%s %u %s \"%s\"%s%s%s%.0u",
k,
rr->caa.flags,
rr->caa.tag,
value,
rr->caa.flags ? "\n -- Flags:" : "",
rr->caa.flags & CAA_FLAG_CRITICAL ? " critical" : "",
rr->caa.flags & ~CAA_FLAG_CRITICAL ? " " : "",
rr->caa.flags & ~CAA_FLAG_CRITICAL);
if (r < 0)
return NULL;
break;
}
case DNS_TYPE_OPENPGPKEY: {
int n;
r = asprintf(&s, "%s %n",
k,
&n);
if (r < 0)
return NULL;
r = base64_append(&s, n,
rr->generic.data, rr->generic.data_size,
8, columns());
if (r < 0)
return NULL;
break;
}
default:
t = hexmem(rr->generic.data, rr->generic.data_size);
if (!t)
return NULL;
/* Format as documented in RFC 3597, Section 5 */
r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.data_size, t);
if (r < 0)
return NULL;
break;
}
rr->to_string = s;
return s;
}
ssize_t dns_resource_record_payload(DnsResourceRecord *rr, void **out) {
assert(rr);
assert(out);
switch(rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
case DNS_TYPE_SRV:
case DNS_TYPE_PTR:
case DNS_TYPE_NS:
case DNS_TYPE_CNAME:
case DNS_TYPE_DNAME:
case DNS_TYPE_HINFO:
case DNS_TYPE_SPF:
case DNS_TYPE_TXT:
case DNS_TYPE_A:
case DNS_TYPE_AAAA:
case DNS_TYPE_SOA:
case DNS_TYPE_MX:
case DNS_TYPE_LOC:
case DNS_TYPE_DS:
case DNS_TYPE_DNSKEY:
case DNS_TYPE_RRSIG:
case DNS_TYPE_NSEC:
case DNS_TYPE_NSEC3:
return -EINVAL;
case DNS_TYPE_SSHFP:
*out = rr->sshfp.fingerprint;
return rr->sshfp.fingerprint_size;
case DNS_TYPE_TLSA:
*out = rr->tlsa.data;
return rr->tlsa.data_size;
case DNS_TYPE_OPENPGPKEY:
default:
*out = rr->generic.data;
return rr->generic.data_size;
}
}
int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) {
DnsPacket packet = {
.n_ref = 1,
.protocol = DNS_PROTOCOL_DNS,
.on_stack = true,
.refuse_compression = true,
.canonical_form = canonical,
};
size_t start, rds;
int r;
assert(rr);
/* Generates the RR in wire-format, optionally in the
* canonical form as discussed in the DNSSEC RFC 4034, Section
* 6.2. We allocate a throw-away DnsPacket object on the stack
* here, because we need some book-keeping for memory
* management, and can reuse the DnsPacket serializer, that
* can generate the canonical form, too, but also knows label
* compression and suchlike. */
if (rr->wire_format && rr->wire_format_canonical == canonical)
return 0;
r = dns_packet_append_rr(&packet, rr, &start, &rds);
if (r < 0)
return r;
assert(start == 0);
assert(packet._data);
free(rr->wire_format);
rr->wire_format = packet._data;
rr->wire_format_size = packet.size;
rr->wire_format_rdata_offset = rds;
rr->wire_format_canonical = canonical;
packet._data = NULL;
dns_packet_unref(&packet);
return 0;
}
int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) {
const char *n;
int r;
assert(rr);
assert(ret);
/* Returns the RRset's signer, if it is known. */
if (rr->n_skip_labels_signer == (unsigned) -1)
return -ENODATA;
n = dns_resource_key_name(rr->key);
r = dns_name_skip(n, rr->n_skip_labels_signer, &n);
if (r < 0)
return r;
if (r == 0)
return -EINVAL;
*ret = n;
return 0;
}
int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) {
const char *n;
int r;
assert(rr);
assert(ret);
/* Returns the RRset's synthesizing source, if it is known. */
if (rr->n_skip_labels_source == (unsigned) -1)
return -ENODATA;
n = dns_resource_key_name(rr->key);
r = dns_name_skip(n, rr->n_skip_labels_source, &n);
if (r < 0)
return r;
if (r == 0)
return -EINVAL;
*ret = n;
return 0;
}
int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) {
const char *signer;
int r;
assert(rr);
r = dns_resource_record_signer(rr, &signer);
if (r < 0)
return r;
return dns_name_equal(zone, signer);
}
int dns_resource_record_is_synthetic(DnsResourceRecord *rr) {
int r;
assert(rr);
/* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */
if (rr->n_skip_labels_source == (unsigned) -1)
return -ENODATA;
if (rr->n_skip_labels_source == 0)
return 0;
if (rr->n_skip_labels_source > 1)
return 1;
r = dns_name_startswith(dns_resource_key_name(rr->key), "*");
if (r < 0)
return r;
return !r;
}
void dns_resource_record_hash_func(const void *i, struct siphash *state) {
const DnsResourceRecord *rr = i;
assert(rr);
dns_resource_key_hash_func(rr->key, state);
switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
case DNS_TYPE_SRV:
siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state);
siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state);
siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state);
dns_name_hash_func(rr->srv.name, state);
break;
case DNS_TYPE_PTR:
case DNS_TYPE_NS:
case DNS_TYPE_CNAME:
case DNS_TYPE_DNAME:
dns_name_hash_func(rr->ptr.name, state);
break;
case DNS_TYPE_HINFO:
string_hash_func(rr->hinfo.cpu, state);
string_hash_func(rr->hinfo.os, state);
break;
case DNS_TYPE_TXT:
case DNS_TYPE_SPF: {
DnsTxtItem *j;
LIST_FOREACH(items, j, rr->txt.items) {
siphash24_compress(j->data, j->length, state);
/* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab"
* followed by "". */
siphash24_compress_byte(0, state);
}
break;
}
case DNS_TYPE_A:
siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state);
break;
case DNS_TYPE_AAAA:
siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state);
break;
case DNS_TYPE_SOA:
dns_name_hash_func(rr->soa.mname, state);
dns_name_hash_func(rr->soa.rname, state);
siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state);
siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state);
siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state);
siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state);
siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state);
break;
case DNS_TYPE_MX:
siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state);
dns_name_hash_func(rr->mx.exchange, state);
break;
case DNS_TYPE_LOC:
siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state);
siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state);
siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state);
siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state);
siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state);
siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state);
siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state);
break;
case DNS_TYPE_SSHFP:
siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state);
siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state);
siphash24_compress(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state);
break;
case DNS_TYPE_DNSKEY:
siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state);
siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state);
siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state);
siphash24_compress(rr->dnskey.key, rr->dnskey.key_size, state);
break;
case DNS_TYPE_RRSIG:
siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state);
siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state);
siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state);
siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state);
siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state);
siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state);
siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state);
dns_name_hash_func(rr->rrsig.signer, state);
siphash24_compress(rr->rrsig.signature, rr->rrsig.signature_size, state);
break;
case DNS_TYPE_NSEC:
dns_name_hash_func(rr->nsec.next_domain_name, state);
/* FIXME: we leave out the type bitmap here. Hash
* would be better if we'd take it into account
* too. */
break;
case DNS_TYPE_DS:
siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state);
siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state);
siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state);
siphash24_compress(rr->ds.digest, rr->ds.digest_size, state);
break;
case DNS_TYPE_NSEC3:
siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state);
siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state);
siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state);
siphash24_compress(rr->nsec3.salt, rr->nsec3.salt_size, state);
siphash24_compress(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state);
/* FIXME: We leave the bitmaps out */
break;
case DNS_TYPE_TLSA:
siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state);
siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state);
siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state);
siphash24_compress(rr->tlsa.data, rr->tlsa.data_size, state);
break;
case DNS_TYPE_CAA:
siphash24_compress(&rr->caa.flags, sizeof(rr->caa.flags), state);
string_hash_func(rr->caa.tag, state);
siphash24_compress(rr->caa.value, rr->caa.value_size, state);
break;
case DNS_TYPE_OPENPGPKEY:
default:
siphash24_compress(rr->generic.data, rr->generic.data_size, state);
break;
}
}
static int dns_resource_record_compare_func(const void *a, const void *b) {
const DnsResourceRecord *x = a, *y = b;
int ret;
ret = dns_resource_key_compare_func(x->key, y->key);
if (ret != 0)
return ret;
if (dns_resource_record_equal(x, y))
return 0;
/* This is a bit dirty, we don't implement proper ordering, but
* the hashtable doesn't need ordering anyway, hence we don't
* care. */
return x < y ? -1 : 1;
}
const struct hash_ops dns_resource_record_hash_ops = {
.hash = dns_resource_record_hash_func,
.compare = dns_resource_record_compare_func,
};
DnsResourceRecord *dns_resource_record_copy(DnsResourceRecord *rr) {
_cleanup_(dns_resource_record_unrefp) DnsResourceRecord *copy = NULL;
DnsResourceRecord *t;
assert(rr);
copy = dns_resource_record_new(rr->key);
if (!copy)
return NULL;
copy->ttl = rr->ttl;
copy->expiry = rr->expiry;
copy->n_skip_labels_signer = rr->n_skip_labels_signer;
copy->n_skip_labels_source = rr->n_skip_labels_source;
copy->unparseable = rr->unparseable;
switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
case DNS_TYPE_SRV:
copy->srv.priority = rr->srv.priority;
copy->srv.weight = rr->srv.weight;
copy->srv.port = rr->srv.port;
copy->srv.name = strdup(rr->srv.name);
if (!copy->srv.name)
return NULL;
break;
case DNS_TYPE_PTR:
case DNS_TYPE_NS:
case DNS_TYPE_CNAME:
case DNS_TYPE_DNAME:
copy->ptr.name = strdup(rr->ptr.name);
if (!copy->ptr.name)
return NULL;
break;
case DNS_TYPE_HINFO:
copy->hinfo.cpu = strdup(rr->hinfo.cpu);
if (!copy->hinfo.cpu)
return NULL;
copy->hinfo.os = strdup(rr->hinfo.os);
if(!copy->hinfo.os)
return NULL;
break;
case DNS_TYPE_TXT:
case DNS_TYPE_SPF:
copy->txt.items = dns_txt_item_copy(rr->txt.items);
if (!copy->txt.items)
return NULL;
break;
case DNS_TYPE_A:
copy->a = rr->a;
break;
case DNS_TYPE_AAAA:
copy->aaaa = rr->aaaa;
break;
case DNS_TYPE_SOA:
copy->soa.mname = strdup(rr->soa.mname);
if (!copy->soa.mname)
return NULL;
copy->soa.rname = strdup(rr->soa.rname);
if (!copy->soa.rname)
return NULL;
copy->soa.serial = rr->soa.serial;
copy->soa.refresh = rr->soa.refresh;
copy->soa.retry = rr->soa.retry;
copy->soa.expire = rr->soa.expire;
copy->soa.minimum = rr->soa.minimum;
break;
case DNS_TYPE_MX:
copy->mx.priority = rr->mx.priority;
copy->mx.exchange = strdup(rr->mx.exchange);
if (!copy->mx.exchange)
return NULL;
break;
case DNS_TYPE_LOC:
copy->loc = rr->loc;
break;
case DNS_TYPE_SSHFP:
copy->sshfp.algorithm = rr->sshfp.algorithm;
copy->sshfp.fptype = rr->sshfp.fptype;
copy->sshfp.fingerprint = memdup(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
if (!copy->sshfp.fingerprint)
return NULL;
copy->sshfp.fingerprint_size = rr->sshfp.fingerprint_size;
break;
case DNS_TYPE_DNSKEY:
copy->dnskey.flags = rr->dnskey.flags;
copy->dnskey.protocol = rr->dnskey.protocol;
copy->dnskey.algorithm = rr->dnskey.algorithm;
copy->dnskey.key = memdup(rr->dnskey.key, rr->dnskey.key_size);
if (!copy->dnskey.key)
return NULL;
copy->dnskey.key_size = rr->dnskey.key_size;
break;
case DNS_TYPE_RRSIG:
copy->rrsig.type_covered = rr->rrsig.type_covered;
copy->rrsig.algorithm = rr->rrsig.algorithm;
copy->rrsig.labels = rr->rrsig.labels;
copy->rrsig.original_ttl = rr->rrsig.original_ttl;
copy->rrsig.expiration = rr->rrsig.expiration;
copy->rrsig.inception = rr->rrsig.inception;
copy->rrsig.key_tag = rr->rrsig.key_tag;
copy->rrsig.signer = strdup(rr->rrsig.signer);
if (!copy->rrsig.signer)
return NULL;
copy->rrsig.signature = memdup(rr->rrsig.signature, rr->rrsig.signature_size);
if (!copy->rrsig.signature)
return NULL;
copy->rrsig.signature_size = rr->rrsig.signature_size;
break;
case DNS_TYPE_NSEC:
copy->nsec.next_domain_name = strdup(rr->nsec.next_domain_name);
if (!copy->nsec.next_domain_name)
return NULL;
copy->nsec.types = bitmap_copy(rr->nsec.types);
if (!copy->nsec.types)
return NULL;
break;
case DNS_TYPE_DS:
copy->ds.key_tag = rr->ds.key_tag;
copy->ds.algorithm = rr->ds.algorithm;
copy->ds.digest_type = rr->ds.digest_type;
copy->ds.digest = memdup(rr->ds.digest, rr->ds.digest_size);
if (!copy->ds.digest)
return NULL;
copy->ds.digest_size = rr->ds.digest_size;
break;
case DNS_TYPE_NSEC3:
copy->nsec3.algorithm = rr->nsec3.algorithm;
copy->nsec3.flags = rr->nsec3.flags;
copy->nsec3.iterations = rr->nsec3.iterations;
copy->nsec3.salt = memdup(rr->nsec3.salt, rr->nsec3.salt_size);
if (!copy->nsec3.salt)
return NULL;
copy->nsec3.salt_size = rr->nsec3.salt_size;
copy->nsec3.next_hashed_name = memdup(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size);
if (!copy->nsec3.next_hashed_name_size)
return NULL;
copy->nsec3.next_hashed_name_size = rr->nsec3.next_hashed_name_size;
copy->nsec3.types = bitmap_copy(rr->nsec3.types);
if (!copy->nsec3.types)
return NULL;
break;
case DNS_TYPE_TLSA:
copy->tlsa.cert_usage = rr->tlsa.cert_usage;
copy->tlsa.selector = rr->tlsa.selector;
copy->tlsa.matching_type = rr->tlsa.matching_type;
copy->tlsa.data = memdup(rr->tlsa.data, rr->tlsa.data_size);
if (!copy->tlsa.data)
return NULL;
copy->tlsa.data_size = rr->tlsa.data_size;
break;
case DNS_TYPE_CAA:
copy->caa.flags = rr->caa.flags;
copy->caa.tag = strdup(rr->caa.tag);
if (!copy->caa.tag)
return NULL;
copy->caa.value = memdup(rr->caa.value, rr->caa.value_size);
if (!copy->caa.value)
return NULL;
copy->caa.value_size = rr->caa.value_size;
break;
case DNS_TYPE_OPT:
default:
copy->generic.data = memdup(rr->generic.data, rr->generic.data_size);
if (!copy->generic.data)
return NULL;
copy->generic.data_size = rr->generic.data_size;
break;
}
t = copy;
copy = NULL;
return t;
}
int dns_resource_record_clamp_ttl(DnsResourceRecord **rr, uint32_t max_ttl) {
DnsResourceRecord *old_rr, *new_rr;
uint32_t new_ttl;
assert(rr);
old_rr = *rr;
if (old_rr->key->type == DNS_TYPE_OPT)
return -EINVAL;
new_ttl = MIN(old_rr->ttl, max_ttl);
if (new_ttl == old_rr->ttl)
return 0;
if (old_rr->n_ref == 1) {
/* Patch in place */
old_rr->ttl = new_ttl;
return 1;
}
new_rr = dns_resource_record_copy(old_rr);
if (!new_rr)
return -ENOMEM;
new_rr->ttl = new_ttl;
dns_resource_record_unref(*rr);
*rr = new_rr;
return 1;
}
DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) {
DnsTxtItem *n;
if (!i)
return NULL;
n = i->items_next;
free(i);
return dns_txt_item_free_all(n);
}
bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) {
if (a == b)
return true;
if (!a != !b)
return false;
if (!a)
return true;
if (a->length != b->length)
return false;
if (memcmp(a->data, b->data, a->length) != 0)
return false;
return dns_txt_item_equal(a->items_next, b->items_next);
}
DnsTxtItem *dns_txt_item_copy(DnsTxtItem *first) {
DnsTxtItem *i, *copy = NULL, *end = NULL;
LIST_FOREACH(items, i, first) {
DnsTxtItem *j;
j = memdup(i, offsetof(DnsTxtItem, data) + i->length + 1);
if (!j) {
dns_txt_item_free_all(copy);
return NULL;
}
LIST_INSERT_AFTER(items, copy, end, j);
end = j;
}
return copy;
}
static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = {
/* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
[DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5",
[DNSSEC_ALGORITHM_DH] = "DH",
[DNSSEC_ALGORITHM_DSA] = "DSA",
[DNSSEC_ALGORITHM_ECC] = "ECC",
[DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1",
[DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1",
[DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1",
[DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256",
[DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512",
[DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST",
[DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256",
[DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384",
[DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT",
[DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS",
[DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID",
};
DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255);
static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = {
/* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
[DNSSEC_DIGEST_SHA1] = "SHA-1",
[DNSSEC_DIGEST_SHA256] = "SHA-256",
[DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94",
[DNSSEC_DIGEST_SHA384] = "SHA-384",
};
DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);