/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/ /*** This file is part of systemd. Copyright 2014 Lennart Poettering systemd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with systemd; If not, see . ***/ #include #include "alloc-util.h" #include "dns-domain.h" #include "dns-type.h" #include "hexdecoct.h" #include "resolved-dns-packet.h" #include "resolved-dns-rr.h" #include "string-table.h" #include "string-util.h" #include "strv.h" #include "terminal-util.h" DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) { DnsResourceKey *k; size_t l; assert(name); l = strlen(name); k = malloc0(sizeof(DnsResourceKey) + l + 1); if (!k) return NULL; k->n_ref = 1; k->class = class; k->type = type; strcpy((char*) k + sizeof(DnsResourceKey), name); return k; } DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) { int r; assert(key); assert(cname); assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME)); if (cname->key->type == DNS_TYPE_CNAME) return dns_resource_key_new(key->class, key->type, cname->cname.name); else { DnsResourceKey *k; char *destination = NULL; r = dns_name_change_suffix(DNS_RESOURCE_KEY_NAME(key), DNS_RESOURCE_KEY_NAME(cname->key), cname->dname.name, &destination); if (r < 0) return NULL; if (r == 0) return dns_resource_key_ref((DnsResourceKey*) key); k = dns_resource_key_new_consume(key->class, key->type, destination); if (!k) { free(destination); return NULL; } return k; } } int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) { DnsResourceKey *new_key; char *joined; int r; assert(ret); assert(key); assert(name); if (dns_name_is_root(name)) { *ret = dns_resource_key_ref(key); return 0; } r = dns_name_concat(DNS_RESOURCE_KEY_NAME(key), name, &joined); if (r < 0) return r; new_key = dns_resource_key_new_consume(key->class, key->type, joined); if (!new_key) { free(joined); return -ENOMEM; } *ret = new_key; return 0; } DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) { DnsResourceKey *k; assert(name); k = new0(DnsResourceKey, 1); if (!k) return NULL; k->n_ref = 1; k->class = class; k->type = type; k->_name = name; return k; } DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) { if (!k) return NULL; /* Static/const keys created with DNS_RESOURCE_KEY_CONST will * set this to -1, they should not be reffed/unreffed */ assert(k->n_ref != (unsigned) -1); assert(k->n_ref > 0); k->n_ref++; return k; } DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) { if (!k) return NULL; assert(k->n_ref != (unsigned) -1); assert(k->n_ref > 0); if (k->n_ref == 1) { free(k->_name); free(k); } else k->n_ref--; return NULL; } bool dns_resource_key_is_address(const DnsResourceKey *key) { assert(key); /* Check if this is an A or AAAA resource key */ return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA); } int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) { int r; if (a == b) return 1; r = dns_name_equal(DNS_RESOURCE_KEY_NAME(a), DNS_RESOURCE_KEY_NAME(b)); if (r <= 0) return r; if (a->class != b->class) return 0; if (a->type != b->type) return 0; return 1; } int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) { int r; assert(key); assert(rr); if (key == rr->key) return 1; /* Checks if an rr matches the specified key. If a search * domain is specified, it will also be checked if the key * with the search domain suffixed might match the RR. */ if (rr->key->class != key->class && key->class != DNS_CLASS_ANY) return 0; if (rr->key->type != key->type && key->type != DNS_TYPE_ANY) return 0; r = dns_name_equal(DNS_RESOURCE_KEY_NAME(rr->key), DNS_RESOURCE_KEY_NAME(key)); if (r != 0) return r; if (search_domain) { _cleanup_free_ char *joined = NULL; r = dns_name_concat(DNS_RESOURCE_KEY_NAME(key), search_domain, &joined); if (r < 0) return r; return dns_name_equal(DNS_RESOURCE_KEY_NAME(rr->key), joined); } return 0; } int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) { int r; assert(key); assert(cname); if (cname->class != key->class && key->class != DNS_CLASS_ANY) return 0; if (cname->type == DNS_TYPE_CNAME) r = dns_name_equal(DNS_RESOURCE_KEY_NAME(key), DNS_RESOURCE_KEY_NAME(cname)); else if (cname->type == DNS_TYPE_DNAME) r = dns_name_endswith(DNS_RESOURCE_KEY_NAME(key), DNS_RESOURCE_KEY_NAME(cname)); else return 0; if (r != 0) return r; if (search_domain) { _cleanup_free_ char *joined = NULL; r = dns_name_concat(DNS_RESOURCE_KEY_NAME(key), search_domain, &joined); if (r < 0) return r; if (cname->type == DNS_TYPE_CNAME) return dns_name_equal(joined, DNS_RESOURCE_KEY_NAME(cname)); else if (cname->type == DNS_TYPE_DNAME) return dns_name_endswith(joined, DNS_RESOURCE_KEY_NAME(cname)); } return 0; } int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) { assert(soa); assert(key); /* Checks whether 'soa' is a SOA record for the specified key. */ if (soa->class != key->class) return 0; if (soa->type != DNS_TYPE_SOA) return 0; return dns_name_endswith(DNS_RESOURCE_KEY_NAME(key), DNS_RESOURCE_KEY_NAME(soa)); } static void dns_resource_key_hash_func(const void *i, struct siphash *state) { const DnsResourceKey *k = i; assert(k); dns_name_hash_func(DNS_RESOURCE_KEY_NAME(k), state); siphash24_compress(&k->class, sizeof(k->class), state); siphash24_compress(&k->type, sizeof(k->type), state); } static int dns_resource_key_compare_func(const void *a, const void *b) { const DnsResourceKey *x = a, *y = b; int ret; ret = dns_name_compare_func(DNS_RESOURCE_KEY_NAME(x), DNS_RESOURCE_KEY_NAME(y)); if (ret != 0) return ret; if (x->type < y->type) return -1; if (x->type > y->type) return 1; if (x->class < y->class) return -1; if (x->class > y->class) return 1; return 0; } const struct hash_ops dns_resource_key_hash_ops = { .hash = dns_resource_key_hash_func, .compare = dns_resource_key_compare_func }; int dns_resource_key_to_string(const DnsResourceKey *key, char **ret) { char cbuf[strlen("CLASS") + DECIMAL_STR_MAX(uint16_t)], tbuf[strlen("TYPE") + DECIMAL_STR_MAX(uint16_t)]; const char *c, *t, *n; char *s; /* If we cannot convert the CLASS/TYPE into a known string, use the format recommended by RFC 3597, Section 5. */ c = dns_class_to_string(key->class); if (!c) { sprintf(cbuf, "CLASS%u", key->class); c = cbuf; } t = dns_type_to_string(key->type); if (!t){ sprintf(tbuf, "TYPE%u", key->type); t = tbuf; } n = DNS_RESOURCE_KEY_NAME(key); if (asprintf(&s, "%s%s %s %-5s", n, endswith(n, ".") ? "" : ".", c, t) < 0) return -ENOMEM; *ret = s; return 0; } bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) { assert(a); assert(b); /* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do * this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come * from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same * superficial data. */ if (!*a) return false; if (!*b) return false; /* We refuse merging const keys */ if ((*a)->n_ref == (unsigned) -1) return false; if ((*b)->n_ref == (unsigned) -1) return false; /* Already the same? */ if (*a == *b) return true; /* Are they really identical? */ if (dns_resource_key_equal(*a, *b) <= 0) return false; /* Keep the one which already has more references. */ if ((*a)->n_ref > (*b)->n_ref) { dns_resource_key_unref(*b); *b = dns_resource_key_ref(*a); } else { dns_resource_key_unref(*a); *a = dns_resource_key_ref(*b); } return true; } DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) { DnsResourceRecord *rr; rr = new0(DnsResourceRecord, 1); if (!rr) return NULL; rr->n_ref = 1; rr->key = dns_resource_key_ref(key); rr->expiry = USEC_INFINITY; rr->n_skip_labels_signer = rr->n_skip_labels_source = (unsigned) -1; return rr; } DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) { _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL; key = dns_resource_key_new(class, type, name); if (!key) return NULL; return dns_resource_record_new(key); } DnsResourceRecord* dns_resource_record_ref(DnsResourceRecord *rr) { if (!rr) return NULL; assert(rr->n_ref > 0); rr->n_ref++; return rr; } DnsResourceRecord* dns_resource_record_unref(DnsResourceRecord *rr) { if (!rr) return NULL; assert(rr->n_ref > 0); if (rr->n_ref > 1) { rr->n_ref--; return NULL; } if (rr->key) { switch(rr->key->type) { case DNS_TYPE_SRV: free(rr->srv.name); break; case DNS_TYPE_PTR: case DNS_TYPE_NS: case DNS_TYPE_CNAME: case DNS_TYPE_DNAME: free(rr->ptr.name); break; case DNS_TYPE_HINFO: free(rr->hinfo.cpu); free(rr->hinfo.os); break; case DNS_TYPE_TXT: case DNS_TYPE_SPF: dns_txt_item_free_all(rr->txt.items); break; case DNS_TYPE_SOA: free(rr->soa.mname); free(rr->soa.rname); break; case DNS_TYPE_MX: free(rr->mx.exchange); break; case DNS_TYPE_DS: free(rr->ds.digest); break; case DNS_TYPE_SSHFP: free(rr->sshfp.fingerprint); break; case DNS_TYPE_DNSKEY: free(rr->dnskey.key); break; case DNS_TYPE_RRSIG: free(rr->rrsig.signer); free(rr->rrsig.signature); break; case DNS_TYPE_NSEC: free(rr->nsec.next_domain_name); bitmap_free(rr->nsec.types); break; case DNS_TYPE_NSEC3: free(rr->nsec3.next_hashed_name); free(rr->nsec3.salt); bitmap_free(rr->nsec3.types); break; case DNS_TYPE_LOC: case DNS_TYPE_A: case DNS_TYPE_AAAA: break; case DNS_TYPE_TLSA: free(rr->tlsa.data); break; case DNS_TYPE_OPENPGPKEY: default: free(rr->generic.data); } free(rr->wire_format); dns_resource_key_unref(rr->key); } free(rr->to_string); free(rr); return NULL; } int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) { _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL; _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL; _cleanup_free_ char *ptr = NULL; int r; assert(ret); assert(address); assert(hostname); r = dns_name_reverse(family, address, &ptr); if (r < 0) return r; key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr); if (!key) return -ENOMEM; ptr = NULL; rr = dns_resource_record_new(key); if (!rr) return -ENOMEM; rr->ptr.name = strdup(hostname); if (!rr->ptr.name) return -ENOMEM; *ret = rr; rr = NULL; return 0; } int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) { DnsResourceRecord *rr; assert(ret); assert(address); assert(family); if (family == AF_INET) { rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name); if (!rr) return -ENOMEM; rr->a.in_addr = address->in; } else if (family == AF_INET6) { rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name); if (!rr) return -ENOMEM; rr->aaaa.in6_addr = address->in6; } else return -EAFNOSUPPORT; *ret = rr; return 0; } int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) { int r; assert(a); assert(b); if (a == b) return 1; r = dns_resource_key_equal(a->key, b->key); if (r <= 0) return r; if (a->unparseable != b->unparseable) return 0; switch (a->unparseable ? _DNS_TYPE_INVALID : a->key->type) { case DNS_TYPE_SRV: r = dns_name_equal(a->srv.name, b->srv.name); if (r <= 0) return r; return a->srv.priority == b->srv.priority && a->srv.weight == b->srv.weight && a->srv.port == b->srv.port; case DNS_TYPE_PTR: case DNS_TYPE_NS: case DNS_TYPE_CNAME: case DNS_TYPE_DNAME: return dns_name_equal(a->ptr.name, b->ptr.name); case DNS_TYPE_HINFO: return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) && strcaseeq(a->hinfo.os, b->hinfo.os); case DNS_TYPE_SPF: /* exactly the same as TXT */ case DNS_TYPE_TXT: return dns_txt_item_equal(a->txt.items, b->txt.items); case DNS_TYPE_A: return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0; case DNS_TYPE_AAAA: return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0; case DNS_TYPE_SOA: r = dns_name_equal(a->soa.mname, b->soa.mname); if (r <= 0) return r; r = dns_name_equal(a->soa.rname, b->soa.rname); if (r <= 0) return r; return a->soa.serial == b->soa.serial && a->soa.refresh == b->soa.refresh && a->soa.retry == b->soa.retry && a->soa.expire == b->soa.expire && a->soa.minimum == b->soa.minimum; case DNS_TYPE_MX: if (a->mx.priority != b->mx.priority) return 0; return dns_name_equal(a->mx.exchange, b->mx.exchange); case DNS_TYPE_LOC: assert(a->loc.version == b->loc.version); return a->loc.size == b->loc.size && a->loc.horiz_pre == b->loc.horiz_pre && a->loc.vert_pre == b->loc.vert_pre && a->loc.latitude == b->loc.latitude && a->loc.longitude == b->loc.longitude && a->loc.altitude == b->loc.altitude; case DNS_TYPE_DS: return a->ds.key_tag == b->ds.key_tag && a->ds.algorithm == b->ds.algorithm && a->ds.digest_type == b->ds.digest_type && a->ds.digest_size == b->ds.digest_size && memcmp(a->ds.digest, b->ds.digest, a->ds.digest_size) == 0; case DNS_TYPE_SSHFP: return a->sshfp.algorithm == b->sshfp.algorithm && a->sshfp.fptype == b->sshfp.fptype && a->sshfp.fingerprint_size == b->sshfp.fingerprint_size && memcmp(a->sshfp.fingerprint, b->sshfp.fingerprint, a->sshfp.fingerprint_size) == 0; case DNS_TYPE_DNSKEY: return a->dnskey.flags == b->dnskey.flags && a->dnskey.protocol == b->dnskey.protocol && a->dnskey.algorithm == b->dnskey.algorithm && a->dnskey.key_size == b->dnskey.key_size && memcmp(a->dnskey.key, b->dnskey.key, a->dnskey.key_size) == 0; case DNS_TYPE_RRSIG: /* do the fast comparisons first */ if (a->rrsig.type_covered != b->rrsig.type_covered || a->rrsig.algorithm != b->rrsig.algorithm || a->rrsig.labels != b->rrsig.labels || a->rrsig.original_ttl != b->rrsig.original_ttl || a->rrsig.expiration != b->rrsig.expiration || a->rrsig.inception != b->rrsig.inception || a->rrsig.key_tag != b->rrsig.key_tag || a->rrsig.signature_size != b->rrsig.signature_size || memcmp(a->rrsig.signature, b->rrsig.signature, a->rrsig.signature_size) != 0) return false; return dns_name_equal(a->rrsig.signer, b->rrsig.signer); case DNS_TYPE_NSEC: return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) && bitmap_equal(a->nsec.types, b->nsec.types); case DNS_TYPE_NSEC3: return a->nsec3.algorithm == b->nsec3.algorithm && a->nsec3.flags == b->nsec3.flags && a->nsec3.iterations == b->nsec3.iterations && a->nsec3.salt_size == b->nsec3.salt_size && memcmp(a->nsec3.salt, b->nsec3.salt, a->nsec3.salt_size) == 0 && memcmp(a->nsec3.next_hashed_name, b->nsec3.next_hashed_name, a->nsec3.next_hashed_name_size) == 0 && bitmap_equal(a->nsec3.types, b->nsec3.types); case DNS_TYPE_TLSA: return a->tlsa.cert_usage == b->tlsa.cert_usage && a->tlsa.selector == b->tlsa.selector && a->tlsa.matching_type == b->tlsa.matching_type && a->tlsa.data_size == b->tlsa.data_size && memcmp(a->tlsa.data, b->tlsa.data, a->tlsa.data_size) == 0; default: return a->generic.size == b->generic.size && memcmp(a->generic.data, b->generic.data, a->generic.size) == 0; } } static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude, uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) { char *s; char NS = latitude >= 1U<<31 ? 'N' : 'S'; char EW = longitude >= 1U<<31 ? 'E' : 'W'; int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude); int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude); double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude); double siz = (size >> 4) * exp10((double) (size & 0xF)); double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF)); double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF)); if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm", (lat / 60000 / 60), (lat / 60000) % 60, (lat % 60000) / 1000., NS, (lon / 60000 / 60), (lon / 60000) % 60, (lon % 60000) / 1000., EW, alt / 100., siz / 100., hor / 100., ver / 100.) < 0) return NULL; return s; } static int format_timestamp_dns(char *buf, size_t l, time_t sec) { struct tm tm; assert(buf); assert(l > strlen("YYYYMMDDHHmmSS")); if (!gmtime_r(&sec, &tm)) return -EINVAL; if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0) return -EINVAL; return 0; } static char *format_types(Bitmap *types) { _cleanup_strv_free_ char **strv = NULL; _cleanup_free_ char *str = NULL; Iterator i; unsigned type; int r; BITMAP_FOREACH(type, types, i) { if (dns_type_to_string(type)) { r = strv_extend(&strv, dns_type_to_string(type)); if (r < 0) return NULL; } else { char *t; r = asprintf(&t, "TYPE%u", type); if (r < 0) return NULL; r = strv_consume(&strv, t); if (r < 0) return NULL; } } str = strv_join(strv, " "); if (!str) return NULL; return strjoin("( ", str, " )", NULL); } static char *format_txt(DnsTxtItem *first) { DnsTxtItem *i; size_t c = 1; char *p, *s; LIST_FOREACH(items, i, first) c += i->length * 4 + 3; p = s = new(char, c); if (!s) return NULL; LIST_FOREACH(items, i, first) { size_t j; if (i != first) *(p++) = ' '; *(p++) = '"'; for (j = 0; j < i->length; j++) { if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) { *(p++) = '\\'; *(p++) = '0' + (i->data[j] / 100); *(p++) = '0' + ((i->data[j] / 10) % 10); *(p++) = '0' + (i->data[j] % 10); } else *(p++) = i->data[j]; } *(p++) = '"'; } *p = 0; return s; } const char *dns_resource_record_to_string(DnsResourceRecord *rr) { _cleanup_free_ char *k = NULL, *t = NULL; char *s; int r; assert(rr); if (rr->to_string) return rr->to_string; r = dns_resource_key_to_string(rr->key, &k); if (r < 0) return NULL; switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) { case DNS_TYPE_SRV: r = asprintf(&s, "%s %u %u %u %s", k, rr->srv.priority, rr->srv.weight, rr->srv.port, strna(rr->srv.name)); if (r < 0) return NULL; break; case DNS_TYPE_PTR: case DNS_TYPE_NS: case DNS_TYPE_CNAME: case DNS_TYPE_DNAME: s = strjoin(k, " ", rr->ptr.name, NULL); if (!s) return NULL; break; case DNS_TYPE_HINFO: s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os, NULL); if (!s) return NULL; break; case DNS_TYPE_SPF: /* exactly the same as TXT */ case DNS_TYPE_TXT: t = format_txt(rr->txt.items); if (!t) return NULL; s = strjoin(k, " ", t, NULL); if (!s) return NULL; break; case DNS_TYPE_A: { _cleanup_free_ char *x = NULL; r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &x); if (r < 0) return NULL; s = strjoin(k, " ", x, NULL); if (!s) return NULL; break; } case DNS_TYPE_AAAA: r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t); if (r < 0) return NULL; s = strjoin(k, " ", t, NULL); if (!s) return NULL; break; case DNS_TYPE_SOA: r = asprintf(&s, "%s %s %s %u %u %u %u %u", k, strna(rr->soa.mname), strna(rr->soa.rname), rr->soa.serial, rr->soa.refresh, rr->soa.retry, rr->soa.expire, rr->soa.minimum); if (r < 0) return NULL; break; case DNS_TYPE_MX: r = asprintf(&s, "%s %u %s", k, rr->mx.priority, rr->mx.exchange); if (r < 0) return NULL; break; case DNS_TYPE_LOC: assert(rr->loc.version == 0); t = format_location(rr->loc.latitude, rr->loc.longitude, rr->loc.altitude, rr->loc.size, rr->loc.horiz_pre, rr->loc.vert_pre); if (!t) return NULL; s = strjoin(k, " ", t, NULL); if (!s) return NULL; break; case DNS_TYPE_DS: t = hexmem(rr->ds.digest, rr->ds.digest_size); if (!t) return NULL; r = asprintf(&s, "%s %u %u %u %s", k, rr->ds.key_tag, rr->ds.algorithm, rr->ds.digest_type, t); if (r < 0) return NULL; break; case DNS_TYPE_SSHFP: t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size); if (!t) return NULL; r = asprintf(&s, "%s %u %u %s", k, rr->sshfp.algorithm, rr->sshfp.fptype, t); if (r < 0) return NULL; break; case DNS_TYPE_DNSKEY: { _cleanup_free_ char *alg = NULL; char *ss; int n, n1; r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg); if (r < 0) return NULL; r = asprintf(&s, "%s %n%u %u %s %n", k, &n1, rr->dnskey.flags, rr->dnskey.protocol, alg, &n); if (r < 0) return NULL; r = base64_append(&s, n, rr->dnskey.key, rr->dnskey.key_size, 8, columns()); if (r < 0) return NULL; r = asprintf(&ss, "%s\n" "%*s-- Flags:%s%s%s", s, n1, "", rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "", rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "", rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : ""); if (r < 0) return NULL; free(s); s = ss; break; } case DNS_TYPE_RRSIG: { _cleanup_free_ char *alg = NULL; char expiration[strlen("YYYYMMDDHHmmSS") + 1], inception[strlen("YYYYMMDDHHmmSS") + 1]; const char *type; int n; type = dns_type_to_string(rr->rrsig.type_covered); r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg); if (r < 0) return NULL; r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration); if (r < 0) return NULL; r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception); if (r < 0) return NULL; /* TYPE?? follows * http://tools.ietf.org/html/rfc3597#section-5 */ r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s %n", k, type ?: "TYPE", type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered, alg, rr->rrsig.labels, rr->rrsig.original_ttl, expiration, inception, rr->rrsig.key_tag, rr->rrsig.signer, &n); if (r < 0) return NULL; r = base64_append(&s, n, rr->rrsig.signature, rr->rrsig.signature_size, 8, columns()); if (r < 0) return NULL; break; } case DNS_TYPE_NSEC: t = format_types(rr->nsec.types); if (!t) return NULL; r = asprintf(&s, "%s %s %s", k, rr->nsec.next_domain_name, t); if (r < 0) return NULL; break; case DNS_TYPE_NSEC3: { _cleanup_free_ char *salt = NULL, *hash = NULL; if (rr->nsec3.salt_size > 0) { salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size); if (!salt) return NULL; } hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false); if (!hash) return NULL; t = format_types(rr->nsec3.types); if (!t) return NULL; r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s", k, rr->nsec3.algorithm, rr->nsec3.flags, rr->nsec3.iterations, rr->nsec3.salt_size > 0 ? salt : "-", hash, t); if (r < 0) return NULL; break; } case DNS_TYPE_TLSA: { const char *cert_usage, *selector, *matching_type; char *ss; int n; cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage); selector = tlsa_selector_to_string(rr->tlsa.selector); matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type); r = asprintf(&s, "%s %u %u %u %n", k, rr->tlsa.cert_usage, rr->tlsa.selector, rr->tlsa.matching_type, &n); if (r < 0) return NULL; r = base64_append(&s, n, rr->tlsa.data, rr->tlsa.data_size, 8, columns()); if (r < 0) return NULL; r = asprintf(&ss, "%s\n" "%*s-- Cert. usage: %s\n" "%*s-- Selector: %s\n" "%*s-- Matching type: %s", s, n - 6, "", cert_usage, n - 6, "", selector, n - 6, "", matching_type); if (r < 0) return NULL; free(s); s = ss; break; } case DNS_TYPE_OPENPGPKEY: { int n; r = asprintf(&s, "%s %n", k, &n); if (r < 0) return NULL; r = base64_append(&s, n, rr->generic.data, rr->generic.size, 8, columns()); if (r < 0) return NULL; break; } default: t = hexmem(rr->generic.data, rr->generic.size); if (!t) return NULL; /* Format as documented in RFC 3597, Section 5 */ r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.size, t); if (r < 0) return NULL; break; } rr->to_string = s; return s; } int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) { DnsPacket packet = { .n_ref = 1, .protocol = DNS_PROTOCOL_DNS, .on_stack = true, .refuse_compression = true, .canonical_form = canonical, }; size_t start, rds; int r; assert(rr); /* Generates the RR in wire-format, optionally in the * canonical form as discussed in the DNSSEC RFC 4034, Section * 6.2. We allocate a throw-away DnsPacket object on the stack * here, because we need some book-keeping for memory * management, and can reuse the DnsPacket serializer, that * can generate the canonical form, too, but also knows label * compression and suchlike. */ if (rr->wire_format && rr->wire_format_canonical == canonical) return 0; r = dns_packet_append_rr(&packet, rr, &start, &rds); if (r < 0) return r; assert(start == 0); assert(packet._data); free(rr->wire_format); rr->wire_format = packet._data; rr->wire_format_size = packet.size; rr->wire_format_rdata_offset = rds; rr->wire_format_canonical = canonical; packet._data = NULL; dns_packet_unref(&packet); return 0; } int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) { const char *n; int r; assert(rr); assert(ret); /* Returns the RRset's signer, if it is known. */ if (rr->n_skip_labels_signer == (unsigned) -1) return -ENODATA; n = DNS_RESOURCE_KEY_NAME(rr->key); r = dns_name_skip(n, rr->n_skip_labels_signer, &n); if (r < 0) return r; if (r == 0) return -EINVAL; *ret = n; return 0; } int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) { const char *n; int r; assert(rr); assert(ret); /* Returns the RRset's synthesizing source, if it is known. */ if (rr->n_skip_labels_source == (unsigned) -1) return -ENODATA; n = DNS_RESOURCE_KEY_NAME(rr->key); r = dns_name_skip(n, rr->n_skip_labels_source, &n); if (r < 0) return r; if (r == 0) return -EINVAL; *ret = n; return 0; } int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) { const char *signer; int r; assert(rr); r = dns_resource_record_signer(rr, &signer); if (r < 0) return r; return dns_name_equal(zone, signer); } int dns_resource_record_is_synthetic(DnsResourceRecord *rr) { int r; assert(rr); /* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */ if (rr->n_skip_labels_source == (unsigned) -1) return -ENODATA; if (rr->n_skip_labels_source == 0) return 0; if (rr->n_skip_labels_source > 1) return 1; r = dns_name_startswith(DNS_RESOURCE_KEY_NAME(rr->key), "*"); if (r < 0) return r; return !r; } static void dns_resource_record_hash_func(const void *i, struct siphash *state) { const DnsResourceRecord *rr = i; assert(rr); dns_resource_key_hash_func(rr->key, state); switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) { case DNS_TYPE_SRV: siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state); siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state); siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state); dns_name_hash_func(rr->srv.name, state); break; case DNS_TYPE_PTR: case DNS_TYPE_NS: case DNS_TYPE_CNAME: case DNS_TYPE_DNAME: dns_name_hash_func(rr->ptr.name, state); break; case DNS_TYPE_HINFO: string_hash_func(rr->hinfo.cpu, state); string_hash_func(rr->hinfo.os, state); break; case DNS_TYPE_TXT: case DNS_TYPE_SPF: { DnsTxtItem *j; LIST_FOREACH(items, j, rr->txt.items) { siphash24_compress(j->data, j->length, state); /* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab" * followed by "". */ siphash24_compress_byte(0, state); } break; } case DNS_TYPE_A: siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state); break; case DNS_TYPE_AAAA: siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state); break; case DNS_TYPE_SOA: dns_name_hash_func(rr->soa.mname, state); dns_name_hash_func(rr->soa.rname, state); siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state); siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state); siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state); siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state); siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state); break; case DNS_TYPE_MX: siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state); dns_name_hash_func(rr->mx.exchange, state); break; case DNS_TYPE_LOC: siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state); siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state); siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state); siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state); siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state); siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state); siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state); break; case DNS_TYPE_SSHFP: siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state); siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state); siphash24_compress(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state); break; case DNS_TYPE_DNSKEY: siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state); siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state); siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state); siphash24_compress(rr->dnskey.key, rr->dnskey.key_size, state); break; case DNS_TYPE_RRSIG: siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state); siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state); siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state); siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state); siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state); siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state); siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state); dns_name_hash_func(rr->rrsig.signer, state); siphash24_compress(rr->rrsig.signature, rr->rrsig.signature_size, state); break; case DNS_TYPE_NSEC: dns_name_hash_func(rr->nsec.next_domain_name, state); /* FIXME: we leave out the type bitmap here. Hash * would be better if we'd take it into account * too. */ break; case DNS_TYPE_DS: siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state); siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state); siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state); siphash24_compress(rr->ds.digest, rr->ds.digest_size, state); break; case DNS_TYPE_NSEC3: siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state); siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state); siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state); siphash24_compress(rr->nsec3.salt, rr->nsec3.salt_size, state); siphash24_compress(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state); /* FIXME: We leave the bitmaps out */ break; case DNS_TYPE_TLSA: siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state); siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state); siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state); siphash24_compress(&rr->tlsa.data, rr->tlsa.data_size, state); break; case DNS_TYPE_OPENPGPKEY: default: siphash24_compress(rr->generic.data, rr->generic.size, state); break; } } static int dns_resource_record_compare_func(const void *a, const void *b) { const DnsResourceRecord *x = a, *y = b; int ret; ret = dns_resource_key_compare_func(x->key, y->key); if (ret != 0) return ret; if (dns_resource_record_equal(x, y)) return 0; /* This is a bit dirty, we don't implement proper odering, but * the hashtable doesn't need ordering anyway, hence we don't * care. */ return x < y ? -1 : 1; } const struct hash_ops dns_resource_record_hash_ops = { .hash = dns_resource_record_hash_func, .compare = dns_resource_record_compare_func, }; DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) { DnsTxtItem *n; if (!i) return NULL; n = i->items_next; free(i); return dns_txt_item_free_all(n); } bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) { if (a == b) return true; if (!a != !b) return false; if (!a) return true; if (a->length != b->length) return false; if (memcmp(a->data, b->data, a->length) != 0) return false; return dns_txt_item_equal(a->items_next, b->items_next); } static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = { /* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */ [DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5", [DNSSEC_ALGORITHM_DH] = "DH", [DNSSEC_ALGORITHM_DSA] = "DSA", [DNSSEC_ALGORITHM_ECC] = "ECC", [DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1", [DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1", [DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1", [DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256", [DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512", [DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST", [DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256", [DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384", [DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT", [DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS", [DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID", }; DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255); static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = { /* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */ [DNSSEC_DIGEST_SHA1] = "SHA-1", [DNSSEC_DIGEST_SHA256] = "SHA-256", [DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94", [DNSSEC_DIGEST_SHA384] = "SHA-384", }; DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);