/*** This file is part of eudev, forked from systemd. Copyright 2010 Lennart Poettering systemd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with systemd; If not, see . ***/ #include #include #include #include #include "util.h" #include "hashmap.h" #include "macro.h" #include "siphash24.h" #include "mempool.h" #define INITIAL_N_BUCKETS 31 struct hashmap_entry { const void *key; void *value; struct hashmap_entry *bucket_next, *bucket_previous; struct hashmap_entry *iterate_next, *iterate_previous; }; struct Hashmap { const struct hash_ops *hash_ops; struct hashmap_entry *iterate_list_head, *iterate_list_tail; struct hashmap_entry ** buckets; unsigned n_buckets, n_entries; uint8_t hash_key[HASH_KEY_SIZE]; bool from_pool:1; }; struct hashmap_tile { Hashmap h; struct hashmap_entry *initial_buckets[INITIAL_N_BUCKETS]; }; static DEFINE_MEMPOOL(hashmap_pool, struct hashmap_tile, 8); static DEFINE_MEMPOOL(hashmap_entry_pool, struct hashmap_entry, 64); unsigned long string_hash_func(const void *p, const uint8_t hash_key[HASH_KEY_SIZE]) { uint64_t u; siphash24((uint8_t*) &u, p, strlen(p), hash_key); return (unsigned long) u; } int string_compare_func(const void *a, const void *b) { return strcmp(a, b); } const struct hash_ops string_hash_ops = { .hash = string_hash_func, .compare = string_compare_func }; unsigned long trivial_hash_func(const void *p, const uint8_t hash_key[HASH_KEY_SIZE]) { uint64_t u; siphash24((uint8_t*) &u, &p, sizeof(p), hash_key); return (unsigned long) u; } int trivial_compare_func(const void *a, const void *b) { return a < b ? -1 : (a > b ? 1 : 0); } const struct hash_ops trivial_hash_ops = { .hash = trivial_hash_func, .compare = trivial_compare_func }; static unsigned bucket_hash(Hashmap *h, const void *p) { return (unsigned) (h->hash_ops->hash(p, h->hash_key) % h->n_buckets); } static void get_hash_key(uint8_t hash_key[HASH_KEY_SIZE], bool reuse_is_ok) { static uint8_t current[HASH_KEY_SIZE]; static bool current_initialized = false; /* Returns a hash function key to use. In order to keep things * fast we will not generate a new key each time we allocate a * new hash table. Instead, we'll just reuse the most recently * generated one, except if we never generated one or when we * are rehashing an entire hash table because we reached a * fill level */ if (!current_initialized || !reuse_is_ok) { random_bytes(current, sizeof(current)); current_initialized = true; } memcpy(hash_key, current, sizeof(current)); } Hashmap *hashmap_new(const struct hash_ops *hash_ops) { bool b; struct hashmap_tile *ht; Hashmap *h; b = is_main_thread(); if (b) { ht = mempool_alloc_tile(&hashmap_pool); if (!ht) return NULL; memzero(ht, sizeof(struct hashmap_tile)); } else { ht = malloc0(sizeof(struct hashmap_tile)); if (!ht) return NULL; } h = &ht->h; h->hash_ops = hash_ops ? hash_ops : &trivial_hash_ops; h->n_buckets = INITIAL_N_BUCKETS; h->n_entries = 0; h->iterate_list_head = h->iterate_list_tail = NULL; h->buckets = ht->initial_buckets; h->from_pool = b; get_hash_key(h->hash_key, true); return h; } static void link_entry(Hashmap *h, struct hashmap_entry *e, unsigned hash) { assert(h); assert(e); /* Insert into hash table */ e->bucket_next = h->buckets[hash]; e->bucket_previous = NULL; if (h->buckets[hash]) h->buckets[hash]->bucket_previous = e; h->buckets[hash] = e; /* Insert into iteration list */ e->iterate_previous = h->iterate_list_tail; e->iterate_next = NULL; if (h->iterate_list_tail) { assert(h->iterate_list_head); h->iterate_list_tail->iterate_next = e; } else { assert(!h->iterate_list_head); h->iterate_list_head = e; } h->iterate_list_tail = e; h->n_entries++; assert(h->n_entries >= 1); } static void unlink_entry(Hashmap *h, struct hashmap_entry *e, unsigned hash) { assert(h); assert(e); /* Remove from iteration list */ if (e->iterate_next) e->iterate_next->iterate_previous = e->iterate_previous; else h->iterate_list_tail = e->iterate_previous; if (e->iterate_previous) e->iterate_previous->iterate_next = e->iterate_next; else h->iterate_list_head = e->iterate_next; /* Remove from hash table bucket list */ if (e->bucket_next) e->bucket_next->bucket_previous = e->bucket_previous; if (e->bucket_previous) e->bucket_previous->bucket_next = e->bucket_next; else h->buckets[hash] = e->bucket_next; assert(h->n_entries >= 1); h->n_entries--; } static void remove_entry(Hashmap *h, struct hashmap_entry *e) { unsigned hash; assert(h); assert(e); hash = bucket_hash(h, e->key); unlink_entry(h, e, hash); if (h->from_pool) mempool_free_tile(&hashmap_entry_pool, e); else free(e); } void hashmap_free(Hashmap*h) { /* Free the hashmap, but nothing in it */ if (!h) return; hashmap_clear(h); if (h->buckets != (struct hashmap_entry**) ((uint8_t*) h + ALIGN(sizeof(Hashmap)))) free(h->buckets); if (h->from_pool) mempool_free_tile(&hashmap_pool, container_of(h, struct hashmap_tile, h)); else free(h); } void hashmap_free_free(Hashmap *h) { /* Free the hashmap and all data objects in it, but not the * keys */ if (!h) return; hashmap_clear_free(h); hashmap_free(h); } void hashmap_clear(Hashmap *h) { if (!h) return; while (h->iterate_list_head) remove_entry(h, h->iterate_list_head); } void hashmap_clear_free(Hashmap *h) { void *p; if (!h) return; while ((p = hashmap_steal_first(h))) free(p); } static struct hashmap_entry *hash_scan(Hashmap *h, unsigned hash, const void *key) { struct hashmap_entry *e; assert(h); assert(hash < h->n_buckets); for (e = h->buckets[hash]; e; e = e->bucket_next) if (h->hash_ops->compare(e->key, key) == 0) return e; return NULL; } static int resize_buckets(Hashmap *h) { struct hashmap_entry **n, *i; unsigned m; uint8_t nkey[HASH_KEY_SIZE]; assert(h); if (_likely_(h->n_entries*4 < h->n_buckets*3)) return 0; /* Increase by four */ m = (h->n_entries+1)*4-1; /* If we hit OOM we simply risk packed hashmaps... */ n = new0(struct hashmap_entry*, m); if (!n) return -ENOMEM; /* Let's use a different randomized hash key for the * extension, so that people cannot guess what we are using * here forever */ get_hash_key(nkey, false); for (i = h->iterate_list_head; i; i = i->iterate_next) { unsigned long old_bucket, new_bucket; old_bucket = h->hash_ops->hash(i->key, h->hash_key) % h->n_buckets; /* First, drop from old bucket table */ if (i->bucket_next) i->bucket_next->bucket_previous = i->bucket_previous; if (i->bucket_previous) i->bucket_previous->bucket_next = i->bucket_next; else h->buckets[old_bucket] = i->bucket_next; /* Then, add to new backet table */ new_bucket = h->hash_ops->hash(i->key, nkey) % m; i->bucket_next = n[new_bucket]; i->bucket_previous = NULL; if (n[new_bucket]) n[new_bucket]->bucket_previous = i; n[new_bucket] = i; } if (h->buckets != (struct hashmap_entry**) ((uint8_t*) h + ALIGN(sizeof(Hashmap)))) free(h->buckets); h->buckets = n; h->n_buckets = m; memcpy(h->hash_key, nkey, HASH_KEY_SIZE); return 1; } static int __hashmap_put(Hashmap *h, const void *key, void *value, unsigned hash) { /* For when we know no such entry exists yet */ struct hashmap_entry *e; if (resize_buckets(h) > 0) hash = bucket_hash(h, key); if (h->from_pool) e = mempool_alloc_tile(&hashmap_entry_pool); else e = new(struct hashmap_entry, 1); if (!e) return -ENOMEM; e->key = key; e->value = value; link_entry(h, e, hash); return 1; } int hashmap_put(Hashmap *h, const void *key, void *value) { struct hashmap_entry *e; unsigned hash; assert(h); hash = bucket_hash(h, key); e = hash_scan(h, hash, key); if (e) { if (e->value == value) return 0; return -EEXIST; } return __hashmap_put(h, key, value, hash); } void* hashmap_get(Hashmap *h, const void *key) { unsigned hash; struct hashmap_entry *e; if (!h) return NULL; hash = bucket_hash(h, key); e = hash_scan(h, hash, key); if (!e) return NULL; return e->value; } void* hashmap_get2(Hashmap *h, const void *key, void **key2) { unsigned hash; struct hashmap_entry *e; if (!h) return NULL; hash = bucket_hash(h, key); e = hash_scan(h, hash, key); if (!e) return NULL; if (key2) *key2 = (void*) e->key; return e->value; } bool hashmap_contains(Hashmap *h, const void *key) { unsigned hash; if (!h) return false; hash = bucket_hash(h, key); return !!hash_scan(h, hash, key); } void *hashmap_iterate(Hashmap *h, Iterator *i, const void **key) { struct hashmap_entry *e; assert(i); if (!h) goto at_end; if (*i == ITERATOR_LAST) goto at_end; if (*i == ITERATOR_FIRST && !h->iterate_list_head) goto at_end; e = *i == ITERATOR_FIRST ? h->iterate_list_head : (struct hashmap_entry*) *i; if (e->iterate_next) *i = (Iterator) e->iterate_next; else *i = ITERATOR_LAST; if (key) *key = e->key; return e->value; at_end: *i = ITERATOR_LAST; if (key) *key = NULL; return NULL; } void* hashmap_steal_first(Hashmap *h) { void *data; if (!h) return NULL; if (!h->iterate_list_head) return NULL; data = h->iterate_list_head->value; remove_entry(h, h->iterate_list_head); return data; } unsigned hashmap_size(Hashmap *h) { if (!h) return 0; return h->n_entries; } char **hashmap_get_strv(Hashmap *h) { char **sv; Iterator it; char *item; int n; sv = new(char*, h->n_entries+1); if (!sv) return NULL; n = 0; HASHMAP_FOREACH(item, h, it) sv[n++] = item; sv[n] = NULL; return sv; }