/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
/***
This file is part of systemd.
Copyright 2010 Lennart Poettering
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see .
***/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#undef basename
#ifdef HAVE_SYS_AUXV_H
#include
#endif
#include "macro.h"
#include "util.h"
#include "ioprio.h"
#include "missing.h"
#include "log.h"
#include "strv.h"
#include "label.h"
#include "mkdir.h"
#include "path-util.h"
#include "exit-status.h"
#include "hashmap.h"
#include "env-util.h"
#include "fileio.h"
#include "device-nodes.h"
#include "utf8.h"
#include "gunicode.h"
#include "virt.h"
#include "def.h"
#include "sparse-endian.h"
int saved_argc = 0;
char **saved_argv = NULL;
static volatile unsigned cached_columns = 0;
static volatile unsigned cached_lines = 0;
size_t page_size(void) {
static thread_local size_t pgsz = 0;
long r;
if (_likely_(pgsz > 0))
return pgsz;
r = sysconf(_SC_PAGESIZE);
assert(r > 0);
pgsz = (size_t) r;
return pgsz;
}
bool streq_ptr(const char *a, const char *b) {
/* Like streq(), but tries to make sense of NULL pointers */
if (a && b)
return streq(a, b);
if (!a && !b)
return true;
return false;
}
char* endswith(const char *s, const char *postfix) {
size_t sl, pl;
assert(s);
assert(postfix);
sl = strlen(s);
pl = strlen(postfix);
if (pl == 0)
return (char*) s + sl;
if (sl < pl)
return NULL;
if (memcmp(s + sl - pl, postfix, pl) != 0)
return NULL;
return (char*) s + sl - pl;
}
char* first_word(const char *s, const char *word) {
size_t sl, wl;
const char *p;
assert(s);
assert(word);
/* Checks if the string starts with the specified word, either
* followed by NUL or by whitespace. Returns a pointer to the
* NUL or the first character after the whitespace. */
sl = strlen(s);
wl = strlen(word);
if (sl < wl)
return NULL;
if (wl == 0)
return (char*) s;
if (memcmp(s, word, wl) != 0)
return NULL;
p = s + wl;
if (*p == 0)
return (char*) p;
if (!strchr(WHITESPACE, *p))
return NULL;
p += strspn(p, WHITESPACE);
return (char*) p;
}
static size_t cescape_char(char c, char *buf) {
char * buf_old = buf;
switch (c) {
case '\a':
*(buf++) = '\\';
*(buf++) = 'a';
break;
case '\b':
*(buf++) = '\\';
*(buf++) = 'b';
break;
case '\f':
*(buf++) = '\\';
*(buf++) = 'f';
break;
case '\n':
*(buf++) = '\\';
*(buf++) = 'n';
break;
case '\r':
*(buf++) = '\\';
*(buf++) = 'r';
break;
case '\t':
*(buf++) = '\\';
*(buf++) = 't';
break;
case '\v':
*(buf++) = '\\';
*(buf++) = 'v';
break;
case '\\':
*(buf++) = '\\';
*(buf++) = '\\';
break;
case '"':
*(buf++) = '\\';
*(buf++) = '"';
break;
case '\'':
*(buf++) = '\\';
*(buf++) = '\'';
break;
default:
/* For special chars we prefer octal over
* hexadecimal encoding, simply because glib's
* g_strescape() does the same */
if ((c < ' ') || (c >= 127)) {
*(buf++) = '\\';
*(buf++) = octchar((unsigned char) c >> 6);
*(buf++) = octchar((unsigned char) c >> 3);
*(buf++) = octchar((unsigned char) c);
} else
*(buf++) = c;
break;
}
return buf - buf_old;
}
int close_nointr(int fd) {
assert(fd >= 0);
if (close(fd) >= 0)
return 0;
/*
* Just ignore EINTR; a retry loop is the wrong thing to do on
* Linux.
*
* http://lkml.indiana.edu/hypermail/linux/kernel/0509.1/0877.html
* https://bugzilla.gnome.org/show_bug.cgi?id=682819
* http://utcc.utoronto.ca/~cks/space/blog/unix/CloseEINTR
* https://sites.google.com/site/michaelsafyan/software-engineering/checkforeintrwheninvokingclosethinkagain
*/
if (errno == EINTR)
return 0;
return -errno;
}
int safe_close(int fd) {
/*
* Like close_nointr() but cannot fail. Guarantees errno is
* unchanged. Is a NOP with negative fds passed, and returns
* -1, so that it can be used in this syntax:
*
* fd = safe_close(fd);
*/
if (fd >= 0) {
PROTECT_ERRNO;
/* The kernel might return pretty much any error code
* via close(), but the fd will be closed anyway. The
* only condition we want to check for here is whether
* the fd was invalid at all... */
assert_se(close_nointr(fd) != -EBADF);
}
return -1;
}
void close_many(const int fds[], unsigned n_fd) {
unsigned i;
assert(fds || n_fd <= 0);
for (i = 0; i < n_fd; i++)
safe_close(fds[i]);
}
int unlink_noerrno(const char *path) {
PROTECT_ERRNO;
int r;
r = unlink(path);
if (r < 0)
return -errno;
return 0;
}
int parse_boolean(const char *v) {
assert(v);
if (streq(v, "1") || strcaseeq(v, "yes") || strcaseeq(v, "y") || strcaseeq(v, "true") || strcaseeq(v, "t") || strcaseeq(v, "on"))
return 1;
else if (streq(v, "0") || strcaseeq(v, "no") || strcaseeq(v, "n") || strcaseeq(v, "false") || strcaseeq(v, "f") || strcaseeq(v, "off"))
return 0;
return -EINVAL;
}
int parse_pid(const char *s, pid_t* ret_pid) {
unsigned long ul = 0;
pid_t pid;
int r;
assert(s);
assert(ret_pid);
r = safe_atolu(s, &ul);
if (r < 0)
return r;
pid = (pid_t) ul;
if ((unsigned long) pid != ul)
return -ERANGE;
if (pid <= 0)
return -ERANGE;
*ret_pid = pid;
return 0;
}
int parse_uid(const char *s, uid_t* ret_uid) {
unsigned long ul = 0;
uid_t uid;
int r;
assert(s);
assert(ret_uid);
r = safe_atolu(s, &ul);
if (r < 0)
return r;
uid = (uid_t) ul;
if ((unsigned long) uid != ul)
return -ERANGE;
/* Some libc APIs use UID_INVALID as special placeholder */
if (uid == (uid_t) 0xFFFFFFFF)
return -ENXIO;
/* A long time ago UIDs where 16bit, hence explicitly avoid the 16bit -1 too */
if (uid == (uid_t) 0xFFFF)
return -ENXIO;
*ret_uid = uid;
return 0;
}
int safe_atou(const char *s, unsigned *ret_u) {
char *x = NULL;
unsigned long l;
assert(s);
assert(ret_u);
errno = 0;
l = strtoul(s, &x, 0);
if (!x || x == s || *x || errno)
return errno > 0 ? -errno : -EINVAL;
if ((unsigned long) (unsigned) l != l)
return -ERANGE;
*ret_u = (unsigned) l;
return 0;
}
int safe_atoi(const char *s, int *ret_i) {
char *x = NULL;
long l;
assert(s);
assert(ret_i);
errno = 0;
l = strtol(s, &x, 0);
if (!x || x == s || *x || errno)
return errno > 0 ? -errno : -EINVAL;
if ((long) (int) l != l)
return -ERANGE;
*ret_i = (int) l;
return 0;
}
int safe_atou8(const char *s, uint8_t *ret) {
char *x = NULL;
unsigned long l;
assert(s);
assert(ret);
errno = 0;
l = strtoul(s, &x, 0);
if (!x || x == s || *x || errno)
return errno > 0 ? -errno : -EINVAL;
if ((unsigned long) (uint8_t) l != l)
return -ERANGE;
*ret = (uint8_t) l;
return 0;
}
int safe_atou16(const char *s, uint16_t *ret) {
char *x = NULL;
unsigned long l;
assert(s);
assert(ret);
errno = 0;
l = strtoul(s, &x, 0);
if (!x || x == s || *x || errno)
return errno > 0 ? -errno : -EINVAL;
if ((unsigned long) (uint16_t) l != l)
return -ERANGE;
*ret = (uint16_t) l;
return 0;
}
int safe_atoi16(const char *s, int16_t *ret) {
char *x = NULL;
long l;
assert(s);
assert(ret);
errno = 0;
l = strtol(s, &x, 0);
if (!x || x == s || *x || errno)
return errno > 0 ? -errno : -EINVAL;
if ((long) (int16_t) l != l)
return -ERANGE;
*ret = (int16_t) l;
return 0;
}
int safe_atollu(const char *s, long long unsigned *ret_llu) {
char *x = NULL;
unsigned long long l;
assert(s);
assert(ret_llu);
errno = 0;
l = strtoull(s, &x, 0);
if (!x || x == s || *x || errno)
return errno ? -errno : -EINVAL;
*ret_llu = l;
return 0;
}
int safe_atolli(const char *s, long long int *ret_lli) {
char *x = NULL;
long long l;
assert(s);
assert(ret_lli);
errno = 0;
l = strtoll(s, &x, 0);
if (!x || x == s || *x || errno)
return errno ? -errno : -EINVAL;
*ret_lli = l;
return 0;
}
int safe_atod(const char *s, double *ret_d) {
char *x = NULL;
double d = 0;
assert(s);
assert(ret_d);
RUN_WITH_LOCALE(LC_NUMERIC_MASK, "C") {
errno = 0;
d = strtod(s, &x);
}
if (!x || x == s || *x || errno)
return errno ? -errno : -EINVAL;
*ret_d = (double) d;
return 0;
}
static size_t strcspn_escaped(const char *s, const char *reject) {
bool escaped = false;
int n;
for (n=0; s[n]; n++) {
if (escaped)
escaped = false;
else if (s[n] == '\\')
escaped = true;
else if (strchr(reject, s[n]))
break;
}
/* if s ends in \, return index of previous char */
return n - escaped;
}
/* Split a string into words. */
const char* split(const char **state, size_t *l, const char *separator, bool quoted) {
const char *current;
current = *state;
if (!*current) {
assert(**state == '\0');
return NULL;
}
current += strspn(current, separator);
if (!*current) {
*state = current;
return NULL;
}
if (quoted && strchr("\'\"", *current)) {
char quotechars[2] = {*current, '\0'};
*l = strcspn_escaped(current + 1, quotechars);
if (current[*l + 1] == '\0' ||
(current[*l + 2] && !strchr(separator, current[*l + 2]))) {
/* right quote missing or garbage at the end */
*state = current;
return NULL;
}
assert(current[*l + 1] == quotechars[0]);
*state = current++ + *l + 2;
} else if (quoted) {
*l = strcspn_escaped(current, separator);
if (current[*l] && !strchr(separator, current[*l])) {
/* unfinished escape */
*state = current;
return NULL;
}
*state = current + *l;
} else {
*l = strcspn(current, separator);
*state = current + *l;
}
return current;
}
int get_parent_of_pid(pid_t pid, pid_t *_ppid) {
int r;
_cleanup_free_ char *line = NULL;
long unsigned ppid;
const char *p;
assert(pid >= 0);
assert(_ppid);
if (pid == 0) {
*_ppid = getppid();
return 0;
}
p = procfs_file_alloca(pid, "stat");
r = read_one_line_file(p, &line);
if (r < 0)
return r;
/* Let's skip the pid and comm fields. The latter is enclosed
* in () but does not escape any () in its value, so let's
* skip over it manually */
p = strrchr(line, ')');
if (!p)
return -EIO;
p++;
if (sscanf(p, " "
"%*c " /* state */
"%lu ", /* ppid */
&ppid) != 1)
return -EIO;
if ((long unsigned) (pid_t) ppid != ppid)
return -ERANGE;
*_ppid = (pid_t) ppid;
return 0;
}
int fchmod_umask(int fd, mode_t m) {
mode_t u;
int r;
u = umask(0777);
r = fchmod(fd, m & (~u)) < 0 ? -errno : 0;
umask(u);
return r;
}
char *truncate_nl(char *s) {
assert(s);
s[strcspn(s, NEWLINE)] = 0;
return s;
}
int get_process_state(pid_t pid) {
const char *p;
char state;
int r;
_cleanup_free_ char *line = NULL;
assert(pid >= 0);
p = procfs_file_alloca(pid, "stat");
r = read_one_line_file(p, &line);
if (r < 0)
return r;
p = strrchr(line, ')');
if (!p)
return -EIO;
p++;
if (sscanf(p, " %c", &state) != 1)
return -EIO;
return (unsigned char) state;
}
int get_process_comm(pid_t pid, char **name) {
const char *p;
int r;
assert(name);
assert(pid >= 0);
p = procfs_file_alloca(pid, "comm");
r = read_one_line_file(p, name);
if (r == -ENOENT)
return -ESRCH;
return r;
}
int get_process_cmdline(pid_t pid, size_t max_length, bool comm_fallback, char **line) {
_cleanup_fclose_ FILE *f = NULL;
char *r = NULL, *k;
const char *p;
int c;
assert(line);
assert(pid >= 0);
p = procfs_file_alloca(pid, "cmdline");
f = fopen(p, "re");
if (!f)
return -errno;
if (max_length == 0) {
size_t len = 0, allocated = 0;
while ((c = getc(f)) != EOF) {
if (!GREEDY_REALLOC(r, allocated, len+2)) {
free(r);
return -ENOMEM;
}
r[len++] = isprint(c) ? c : ' ';
}
if (len > 0)
r[len-1] = 0;
} else {
bool space = false;
size_t left;
r = new(char, max_length);
if (!r)
return -ENOMEM;
k = r;
left = max_length;
while ((c = getc(f)) != EOF) {
if (isprint(c)) {
if (space) {
if (left <= 4)
break;
*(k++) = ' ';
left--;
space = false;
}
if (left <= 4)
break;
*(k++) = (char) c;
left--;
} else
space = true;
}
if (left <= 4) {
size_t n = MIN(left-1, 3U);
memcpy(k, "...", n);
k[n] = 0;
} else
*k = 0;
}
/* Kernel threads have no argv[] */
if (isempty(r)) {
_cleanup_free_ char *t = NULL;
int h;
free(r);
if (!comm_fallback)
return -ENOENT;
h = get_process_comm(pid, &t);
if (h < 0)
return h;
r = strjoin("[", t, "]", NULL);
if (!r)
return -ENOMEM;
}
*line = r;
return 0;
}
int is_kernel_thread(pid_t pid) {
const char *p;
size_t count;
char c;
bool eof;
FILE *f;
if (pid == 0)
return 0;
assert(pid > 0);
p = procfs_file_alloca(pid, "cmdline");
f = fopen(p, "re");
if (!f)
return -errno;
count = fread(&c, 1, 1, f);
eof = feof(f);
fclose(f);
/* Kernel threads have an empty cmdline */
if (count <= 0)
return eof ? 1 : -errno;
return 0;
}
int get_process_capeff(pid_t pid, char **capeff) {
const char *p;
assert(capeff);
assert(pid >= 0);
p = procfs_file_alloca(pid, "status");
return get_status_field(p, "\nCapEff:", capeff);
}
static int get_process_link_contents(const char *proc_file, char **name) {
int r;
assert(proc_file);
assert(name);
r = readlink_malloc(proc_file, name);
if (r < 0)
return r == -ENOENT ? -ESRCH : r;
return 0;
}
int get_process_exe(pid_t pid, char **name) {
const char *p;
char *d;
int r;
assert(pid >= 0);
p = procfs_file_alloca(pid, "exe");
r = get_process_link_contents(p, name);
if (r < 0)
return r;
d = endswith(*name, " (deleted)");
if (d)
*d = '\0';
return 0;
}
static int get_process_id(pid_t pid, const char *field, uid_t *uid) {
_cleanup_fclose_ FILE *f = NULL;
char line[LINE_MAX];
const char *p;
assert(field);
assert(uid);
if (pid == 0)
return getuid();
p = procfs_file_alloca(pid, "status");
f = fopen(p, "re");
if (!f)
return -errno;
FOREACH_LINE(line, f, return -errno) {
char *l;
l = strstrip(line);
if (startswith(l, field)) {
l += strlen(field);
l += strspn(l, WHITESPACE);
l[strcspn(l, WHITESPACE)] = 0;
return parse_uid(l, uid);
}
}
return -EIO;
}
int get_process_uid(pid_t pid, uid_t *uid) {
return get_process_id(pid, "Uid:", uid);
}
int get_process_gid(pid_t pid, gid_t *gid) {
assert_cc(sizeof(uid_t) == sizeof(gid_t));
return get_process_id(pid, "Gid:", gid);
}
int get_process_cwd(pid_t pid, char **cwd) {
const char *p;
assert(pid >= 0);
p = procfs_file_alloca(pid, "cwd");
return get_process_link_contents(p, cwd);
}
int get_process_root(pid_t pid, char **root) {
const char *p;
assert(pid >= 0);
p = procfs_file_alloca(pid, "root");
return get_process_link_contents(p, root);
}
int get_process_environ(pid_t pid, char **env) {
_cleanup_fclose_ FILE *f = NULL;
_cleanup_free_ char *outcome = NULL;
int c;
const char *p;
size_t allocated = 0, sz = 0;
assert(pid >= 0);
assert(env);
p = procfs_file_alloca(pid, "environ");
f = fopen(p, "re");
if (!f)
return -errno;
while ((c = fgetc(f)) != EOF) {
if (!GREEDY_REALLOC(outcome, allocated, sz + 5))
return -ENOMEM;
if (c == '\0')
outcome[sz++] = '\n';
else
sz += cescape_char(c, outcome + sz);
}
outcome[sz] = '\0';
*env = outcome;
outcome = NULL;
return 0;
}
char *strnappend(const char *s, const char *suffix, size_t b) {
size_t a;
char *r;
if (!s && !suffix)
return strdup("");
if (!s)
return strndup(suffix, b);
if (!suffix)
return strdup(s);
assert(s);
assert(suffix);
a = strlen(s);
if (b > ((size_t) -1) - a)
return NULL;
r = new(char, a+b+1);
if (!r)
return NULL;
memcpy(r, s, a);
memcpy(r+a, suffix, b);
r[a+b] = 0;
return r;
}
char *strappend(const char *s, const char *suffix) {
return strnappend(s, suffix, suffix ? strlen(suffix) : 0);
}
int readlinkat_malloc(int fd, const char *p, char **ret) {
size_t l = 100;
int r;
assert(p);
assert(ret);
for (;;) {
char *c;
ssize_t n;
c = new(char, l);
if (!c)
return -ENOMEM;
n = readlinkat(fd, p, c, l-1);
if (n < 0) {
r = -errno;
free(c);
return r;
}
if ((size_t) n < l-1) {
c[n] = 0;
*ret = c;
return 0;
}
free(c);
l *= 2;
}
}
int readlink_malloc(const char *p, char **ret) {
return readlinkat_malloc(AT_FDCWD, p, ret);
}
int readlink_value(const char *p, char **ret) {
_cleanup_free_ char *link = NULL;
char *value;
int r;
r = readlink_malloc(p, &link);
if (r < 0)
return r;
value = basename(link);
if (!value)
return -ENOENT;
value = strdup(value);
if (!value)
return -ENOMEM;
*ret = value;
return 0;
}
int readlink_and_make_absolute(const char *p, char **r) {
_cleanup_free_ char *target = NULL;
char *k;
int j;
assert(p);
assert(r);
j = readlink_malloc(p, &target);
if (j < 0)
return j;
k = file_in_same_dir(p, target);
if (!k)
return -ENOMEM;
*r = k;
return 0;
}
int readlink_and_canonicalize(const char *p, char **r) {
char *t, *s;
int j;
assert(p);
assert(r);
j = readlink_and_make_absolute(p, &t);
if (j < 0)
return j;
s = canonicalize_file_name(t);
if (s) {
free(t);
*r = s;
} else
*r = t;
path_kill_slashes(*r);
return 0;
}
int reset_all_signal_handlers(void) {
int sig, r = 0;
for (sig = 1; sig < _NSIG; sig++) {
struct sigaction sa = {
.sa_handler = SIG_DFL,
.sa_flags = SA_RESTART,
};
/* These two cannot be caught... */
if (sig == SIGKILL || sig == SIGSTOP)
continue;
/* On Linux the first two RT signals are reserved by
* glibc, and sigaction() will return EINVAL for them. */
if ((sigaction(sig, &sa, NULL) < 0))
if (errno != EINVAL && r == 0)
r = -errno;
}
return r;
}
int reset_signal_mask(void) {
sigset_t ss;
if (sigemptyset(&ss) < 0)
return -errno;
if (sigprocmask(SIG_SETMASK, &ss, NULL) < 0)
return -errno;
return 0;
}
char *strstrip(char *s) {
char *e;
/* Drops trailing whitespace. Modifies the string in
* place. Returns pointer to first non-space character */
s += strspn(s, WHITESPACE);
for (e = strchr(s, 0); e > s; e --)
if (!strchr(WHITESPACE, e[-1]))
break;
*e = 0;
return s;
}
char *delete_chars(char *s, const char *bad) {
char *f, *t;
/* Drops all whitespace, regardless where in the string */
for (f = s, t = s; *f; f++) {
if (strchr(bad, *f))
continue;
*(t++) = *f;
}
*t = 0;
return s;
}
char *file_in_same_dir(const char *path, const char *filename) {
char *e, *ret;
size_t k;
assert(path);
assert(filename);
/* This removes the last component of path and appends
* filename, unless the latter is absolute anyway or the
* former isn't */
if (path_is_absolute(filename))
return strdup(filename);
e = strrchr(path, '/');
if (!e)
return strdup(filename);
k = strlen(filename);
ret = new(char, (e + 1 - path) + k + 1);
if (!ret)
return NULL;
memcpy(mempcpy(ret, path, e + 1 - path), filename, k + 1);
return ret;
}
int rmdir_parents(const char *path, const char *stop) {
size_t l;
int r = 0;
assert(path);
assert(stop);
l = strlen(path);
/* Skip trailing slashes */
while (l > 0 && path[l-1] == '/')
l--;
while (l > 0) {
char *t;
/* Skip last component */
while (l > 0 && path[l-1] != '/')
l--;
/* Skip trailing slashes */
while (l > 0 && path[l-1] == '/')
l--;
if (l <= 0)
break;
if (!(t = strndup(path, l)))
return -ENOMEM;
if (path_startswith(stop, t)) {
free(t);
return 0;
}
r = rmdir(t);
free(t);
if (r < 0)
if (errno != ENOENT)
return -errno;
}
return 0;
}
char hexchar(int x) {
static const char table[16] = "0123456789abcdef";
return table[x & 15];
}
int unhexchar(char c) {
if (c >= '0' && c <= '9')
return c - '0';
if (c >= 'a' && c <= 'f')
return c - 'a' + 10;
if (c >= 'A' && c <= 'F')
return c - 'A' + 10;
return -EINVAL;
}
char *hexmem(const void *p, size_t l) {
char *r, *z;
const uint8_t *x;
z = r = malloc(l * 2 + 1);
if (!r)
return NULL;
for (x = p; x < (const uint8_t*) p + l; x++) {
*(z++) = hexchar(*x >> 4);
*(z++) = hexchar(*x & 15);
}
*z = 0;
return r;
}
void *unhexmem(const char *p, size_t l) {
uint8_t *r, *z;
const char *x;
assert(p);
z = r = malloc((l + 1) / 2 + 1);
if (!r)
return NULL;
for (x = p; x < p + l; x += 2) {
int a, b;
a = unhexchar(x[0]);
if (x+1 < p + l)
b = unhexchar(x[1]);
else
b = 0;
*(z++) = (uint8_t) a << 4 | (uint8_t) b;
}
*z = 0;
return r;
}
char octchar(int x) {
return '0' + (x & 7);
}
int unoctchar(char c) {
if (c >= '0' && c <= '7')
return c - '0';
return -EINVAL;
}
char decchar(int x) {
return '0' + (x % 10);
}
int undecchar(char c) {
if (c >= '0' && c <= '9')
return c - '0';
return -EINVAL;
}
char *cescape(const char *s) {
char *r, *t;
const char *f;
assert(s);
/* Does C style string escaping. */
r = new(char, strlen(s)*4 + 1);
if (!r)
return NULL;
for (f = s, t = r; *f; f++)
t += cescape_char(*f, t);
*t = 0;
return r;
}
char *cunescape_length_with_prefix(const char *s, size_t length, const char *prefix) {
char *r, *t;
const char *f;
size_t pl;
assert(s);
/* Undoes C style string escaping, and optionally prefixes it. */
pl = prefix ? strlen(prefix) : 0;
r = new(char, pl+length+1);
if (!r)
return NULL;
if (prefix)
memcpy(r, prefix, pl);
for (f = s, t = r + pl; f < s + length; f++) {
if (*f != '\\') {
*(t++) = *f;
continue;
}
f++;
switch (*f) {
case 'a':
*(t++) = '\a';
break;
case 'b':
*(t++) = '\b';
break;
case 'f':
*(t++) = '\f';
break;
case 'n':
*(t++) = '\n';
break;
case 'r':
*(t++) = '\r';
break;
case 't':
*(t++) = '\t';
break;
case 'v':
*(t++) = '\v';
break;
case '\\':
*(t++) = '\\';
break;
case '"':
*(t++) = '"';
break;
case '\'':
*(t++) = '\'';
break;
case 's':
/* This is an extension of the XDG syntax files */
*(t++) = ' ';
break;
case 'x': {
/* hexadecimal encoding */
int a, b;
a = unhexchar(f[1]);
b = unhexchar(f[2]);
if (a < 0 || b < 0 || (a == 0 && b == 0)) {
/* Invalid escape code, let's take it literal then */
*(t++) = '\\';
*(t++) = 'x';
} else {
*(t++) = (char) ((a << 4) | b);
f += 2;
}
break;
}
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7': {
/* octal encoding */
int a, b, c;
a = unoctchar(f[0]);
b = unoctchar(f[1]);
c = unoctchar(f[2]);
if (a < 0 || b < 0 || c < 0 || (a == 0 && b == 0 && c == 0)) {
/* Invalid escape code, let's take it literal then */
*(t++) = '\\';
*(t++) = f[0];
} else {
*(t++) = (char) ((a << 6) | (b << 3) | c);
f += 2;
}
break;
}
case 0:
/* premature end of string. */
*(t++) = '\\';
goto finish;
default:
/* Invalid escape code, let's take it literal then */
*(t++) = '\\';
*(t++) = *f;
break;
}
}
finish:
*t = 0;
return r;
}
char *cunescape_length(const char *s, size_t length) {
return cunescape_length_with_prefix(s, length, NULL);
}
char *cunescape(const char *s) {
assert(s);
return cunescape_length(s, strlen(s));
}
char *xescape(const char *s, const char *bad) {
char *r, *t;
const char *f;
/* Escapes all chars in bad, in addition to \ and all special
* chars, in \xFF style escaping. May be reversed with
* cunescape. */
r = new(char, strlen(s) * 4 + 1);
if (!r)
return NULL;
for (f = s, t = r; *f; f++) {
if ((*f < ' ') || (*f >= 127) ||
(*f == '\\') || strchr(bad, *f)) {
*(t++) = '\\';
*(t++) = 'x';
*(t++) = hexchar(*f >> 4);
*(t++) = hexchar(*f);
} else
*(t++) = *f;
}
*t = 0;
return r;
}
char *ascii_strlower(char *t) {
char *p;
assert(t);
for (p = t; *p; p++)
if (*p >= 'A' && *p <= 'Z')
*p = *p - 'A' + 'a';
return t;
}
_pure_ static bool hidden_file_allow_backup(const char *filename) {
assert(filename);
return
filename[0] == '.' ||
streq(filename, "lost+found") ||
streq(filename, "aquota.user") ||
streq(filename, "aquota.group") ||
endswith(filename, ".rpmnew") ||
endswith(filename, ".rpmsave") ||
endswith(filename, ".rpmorig") ||
endswith(filename, ".dpkg-old") ||
endswith(filename, ".dpkg-new") ||
endswith(filename, ".dpkg-tmp") ||
endswith(filename, ".swp");
}
bool hidden_file(const char *filename) {
assert(filename);
if (endswith(filename, "~"))
return true;
return hidden_file_allow_backup(filename);
}
int fd_nonblock(int fd, bool nonblock) {
int flags, nflags;
assert(fd >= 0);
flags = fcntl(fd, F_GETFL, 0);
if (flags < 0)
return -errno;
if (nonblock)
nflags = flags | O_NONBLOCK;
else
nflags = flags & ~O_NONBLOCK;
if (nflags == flags)
return 0;
if (fcntl(fd, F_SETFL, nflags) < 0)
return -errno;
return 0;
}
int fd_cloexec(int fd, bool cloexec) {
int flags, nflags;
assert(fd >= 0);
flags = fcntl(fd, F_GETFD, 0);
if (flags < 0)
return -errno;
if (cloexec)
nflags = flags | FD_CLOEXEC;
else
nflags = flags & ~FD_CLOEXEC;
if (nflags == flags)
return 0;
if (fcntl(fd, F_SETFD, nflags) < 0)
return -errno;
return 0;
}
_pure_ static bool fd_in_set(int fd, const int fdset[], unsigned n_fdset) {
unsigned i;
assert(n_fdset == 0 || fdset);
for (i = 0; i < n_fdset; i++)
if (fdset[i] == fd)
return true;
return false;
}
int close_all_fds(const int except[], unsigned n_except) {
_cleanup_closedir_ DIR *d = NULL;
struct dirent *de;
int r = 0;
assert(n_except == 0 || except);
d = opendir("/proc/self/fd");
if (!d) {
int fd;
struct rlimit rl;
/* When /proc isn't available (for example in chroots)
* the fallback is brute forcing through the fd
* table */
assert_se(getrlimit(RLIMIT_NOFILE, &rl) >= 0);
for (fd = 3; fd < (int) rl.rlim_max; fd ++) {
if (fd_in_set(fd, except, n_except))
continue;
if (close_nointr(fd) < 0)
if (errno != EBADF && r == 0)
r = -errno;
}
return r;
}
while ((de = readdir(d))) {
int fd = -1;
if (hidden_file(de->d_name))
continue;
if (safe_atoi(de->d_name, &fd) < 0)
/* Let's better ignore this, just in case */
continue;
if (fd < 3)
continue;
if (fd == dirfd(d))
continue;
if (fd_in_set(fd, except, n_except))
continue;
if (close_nointr(fd) < 0) {
/* Valgrind has its own FD and doesn't want to have it closed */
if (errno != EBADF && r == 0)
r = -errno;
}
}
return r;
}
bool chars_intersect(const char *a, const char *b) {
const char *p;
/* Returns true if any of the chars in a are in b. */
for (p = a; *p; p++)
if (strchr(b, *p))
return true;
return false;
}
bool fstype_is_network(const char *fstype) {
static const char table[] =
"cifs\0"
"smbfs\0"
"sshfs\0"
"ncpfs\0"
"ncp\0"
"nfs\0"
"nfs4\0"
"gfs\0"
"gfs2\0"
"glusterfs\0";
const char *x;
x = startswith(fstype, "fuse.");
if (x)
fstype = x;
return nulstr_contains(table, fstype);
}
int chvt(int vt) {
_cleanup_close_ int fd;
fd = open_terminal("/dev/tty0", O_RDWR|O_NOCTTY|O_CLOEXEC);
if (fd < 0)
return -errno;
if (vt < 0) {
int tiocl[2] = {
TIOCL_GETKMSGREDIRECT,
0
};
if (ioctl(fd, TIOCLINUX, tiocl) < 0)
return -errno;
vt = tiocl[0] <= 0 ? 1 : tiocl[0];
}
if (ioctl(fd, VT_ACTIVATE, vt) < 0)
return -errno;
return 0;
}
int read_one_char(FILE *f, char *ret, usec_t t, bool *need_nl) {
struct termios old_termios, new_termios;
char c, line[LINE_MAX];
assert(f);
assert(ret);
if (tcgetattr(fileno(f), &old_termios) >= 0) {
new_termios = old_termios;
new_termios.c_lflag &= ~ICANON;
new_termios.c_cc[VMIN] = 1;
new_termios.c_cc[VTIME] = 0;
if (tcsetattr(fileno(f), TCSADRAIN, &new_termios) >= 0) {
size_t k;
if (t != USEC_INFINITY) {
if (fd_wait_for_event(fileno(f), POLLIN, t) <= 0) {
tcsetattr(fileno(f), TCSADRAIN, &old_termios);
return -ETIMEDOUT;
}
}
k = fread(&c, 1, 1, f);
tcsetattr(fileno(f), TCSADRAIN, &old_termios);
if (k <= 0)
return -EIO;
if (need_nl)
*need_nl = c != '\n';
*ret = c;
return 0;
}
}
if (t != USEC_INFINITY) {
if (fd_wait_for_event(fileno(f), POLLIN, t) <= 0)
return -ETIMEDOUT;
}
errno = 0;
if (!fgets(line, sizeof(line), f))
return errno ? -errno : -EIO;
truncate_nl(line);
if (strlen(line) != 1)
return -EBADMSG;
if (need_nl)
*need_nl = false;
*ret = line[0];
return 0;
}
int ask_char(char *ret, const char *replies, const char *text, ...) {
int r;
assert(ret);
assert(replies);
assert(text);
for (;;) {
va_list ap;
char c;
bool need_nl = true;
if (on_tty())
fputs(ANSI_HIGHLIGHT_ON, stdout);
va_start(ap, text);
vprintf(text, ap);
va_end(ap);
if (on_tty())
fputs(ANSI_HIGHLIGHT_OFF, stdout);
fflush(stdout);
r = read_one_char(stdin, &c, USEC_INFINITY, &need_nl);
if (r < 0) {
if (r == -EBADMSG) {
puts("Bad input, please try again.");
continue;
}
putchar('\n');
return r;
}
if (need_nl)
putchar('\n');
if (strchr(replies, c)) {
*ret = c;
return 0;
}
puts("Read unexpected character, please try again.");
}
}
int ask_string(char **ret, const char *text, ...) {
assert(ret);
assert(text);
for (;;) {
char line[LINE_MAX];
va_list ap;
if (on_tty())
fputs(ANSI_HIGHLIGHT_ON, stdout);
va_start(ap, text);
vprintf(text, ap);
va_end(ap);
if (on_tty())
fputs(ANSI_HIGHLIGHT_OFF, stdout);
fflush(stdout);
errno = 0;
if (!fgets(line, sizeof(line), stdin))
return errno ? -errno : -EIO;
if (!endswith(line, "\n"))
putchar('\n');
else {
char *s;
if (isempty(line))
continue;
truncate_nl(line);
s = strdup(line);
if (!s)
return -ENOMEM;
*ret = s;
return 0;
}
}
}
int reset_terminal_fd(int fd, bool switch_to_text) {
struct termios termios;
int r = 0;
/* Set terminal to some sane defaults */
assert(fd >= 0);
/* We leave locked terminal attributes untouched, so that
* Plymouth may set whatever it wants to set, and we don't
* interfere with that. */
/* Disable exclusive mode, just in case */
ioctl(fd, TIOCNXCL);
/* Switch to text mode */
if (switch_to_text)
ioctl(fd, KDSETMODE, KD_TEXT);
/* Enable console unicode mode */
ioctl(fd, KDSKBMODE, K_UNICODE);
if (tcgetattr(fd, &termios) < 0) {
r = -errno;
goto finish;
}
/* We only reset the stuff that matters to the software. How
* hardware is set up we don't touch assuming that somebody
* else will do that for us */
termios.c_iflag &= ~(IGNBRK | BRKINT | ISTRIP | INLCR | IGNCR | IUCLC);
termios.c_iflag |= ICRNL | IMAXBEL | IUTF8;
termios.c_oflag |= ONLCR;
termios.c_cflag |= CREAD;
termios.c_lflag = ISIG | ICANON | IEXTEN | ECHO | ECHOE | ECHOK | ECHOCTL | ECHOPRT | ECHOKE;
termios.c_cc[VINTR] = 03; /* ^C */
termios.c_cc[VQUIT] = 034; /* ^\ */
termios.c_cc[VERASE] = 0177;
termios.c_cc[VKILL] = 025; /* ^X */
termios.c_cc[VEOF] = 04; /* ^D */
termios.c_cc[VSTART] = 021; /* ^Q */
termios.c_cc[VSTOP] = 023; /* ^S */
termios.c_cc[VSUSP] = 032; /* ^Z */
termios.c_cc[VLNEXT] = 026; /* ^V */
termios.c_cc[VWERASE] = 027; /* ^W */
termios.c_cc[VREPRINT] = 022; /* ^R */
termios.c_cc[VEOL] = 0;
termios.c_cc[VEOL2] = 0;
termios.c_cc[VTIME] = 0;
termios.c_cc[VMIN] = 1;
if (tcsetattr(fd, TCSANOW, &termios) < 0)
r = -errno;
finish:
/* Just in case, flush all crap out */
tcflush(fd, TCIOFLUSH);
return r;
}
int reset_terminal(const char *name) {
_cleanup_close_ int fd = -1;
fd = open_terminal(name, O_RDWR|O_NOCTTY|O_CLOEXEC);
if (fd < 0)
return fd;
return reset_terminal_fd(fd, true);
}
int open_terminal(const char *name, int mode) {
int fd, r;
unsigned c = 0;
/*
* If a TTY is in the process of being closed opening it might
* cause EIO. This is horribly awful, but unlikely to be
* changed in the kernel. Hence we work around this problem by
* retrying a couple of times.
*
* https://bugs.launchpad.net/ubuntu/+source/linux/+bug/554172/comments/245
*/
assert(!(mode & O_CREAT));
for (;;) {
fd = open(name, mode, 0);
if (fd >= 0)
break;
if (errno != EIO)
return -errno;
/* Max 1s in total */
if (c >= 20)
return -errno;
usleep(50 * USEC_PER_MSEC);
c++;
}
r = isatty(fd);
if (r < 0) {
safe_close(fd);
return -errno;
}
if (!r) {
safe_close(fd);
return -ENOTTY;
}
return fd;
}
int flush_fd(int fd) {
struct pollfd pollfd = {
.fd = fd,
.events = POLLIN,
};
for (;;) {
char buf[LINE_MAX];
ssize_t l;
int r;
r = poll(&pollfd, 1, 0);
if (r < 0) {
if (errno == EINTR)
continue;
return -errno;
} else if (r == 0)
return 0;
l = read(fd, buf, sizeof(buf));
if (l < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN)
return 0;
return -errno;
} else if (l == 0)
return 0;
}
}
int acquire_terminal(
const char *name,
bool fail,
bool force,
bool ignore_tiocstty_eperm,
usec_t timeout) {
int fd = -1, notify = -1, r = 0, wd = -1;
usec_t ts = 0;
assert(name);
/* We use inotify to be notified when the tty is closed. We
* create the watch before checking if we can actually acquire
* it, so that we don't lose any event.
*
* Note: strictly speaking this actually watches for the
* device being closed, it does *not* really watch whether a
* tty loses its controlling process. However, unless some
* rogue process uses TIOCNOTTY on /dev/tty *after* closing
* its tty otherwise this will not become a problem. As long
* as the administrator makes sure not configure any service
* on the same tty as an untrusted user this should not be a
* problem. (Which he probably should not do anyway.) */
if (timeout != USEC_INFINITY)
ts = now(CLOCK_MONOTONIC);
if (!fail && !force) {
notify = inotify_init1(IN_CLOEXEC | (timeout != USEC_INFINITY ? IN_NONBLOCK : 0));
if (notify < 0) {
r = -errno;
goto fail;
}
wd = inotify_add_watch(notify, name, IN_CLOSE);
if (wd < 0) {
r = -errno;
goto fail;
}
}
for (;;) {
struct sigaction sa_old, sa_new = {
.sa_handler = SIG_IGN,
.sa_flags = SA_RESTART,
};
if (notify >= 0) {
r = flush_fd(notify);
if (r < 0)
goto fail;
}
/* We pass here O_NOCTTY only so that we can check the return
* value TIOCSCTTY and have a reliable way to figure out if we
* successfully became the controlling process of the tty */
fd = open_terminal(name, O_RDWR|O_NOCTTY|O_CLOEXEC);
if (fd < 0)
return fd;
/* Temporarily ignore SIGHUP, so that we don't get SIGHUP'ed
* if we already own the tty. */
assert_se(sigaction(SIGHUP, &sa_new, &sa_old) == 0);
/* First, try to get the tty */
if (ioctl(fd, TIOCSCTTY, force) < 0)
r = -errno;
assert_se(sigaction(SIGHUP, &sa_old, NULL) == 0);
/* Sometimes it makes sense to ignore TIOCSCTTY
* returning EPERM, i.e. when very likely we already
* are have this controlling terminal. */
if (r < 0 && r == -EPERM && ignore_tiocstty_eperm)
r = 0;
if (r < 0 && (force || fail || r != -EPERM)) {
goto fail;
}
if (r >= 0)
break;
assert(!fail);
assert(!force);
assert(notify >= 0);
for (;;) {
union inotify_event_buffer buffer;
struct inotify_event *e;
ssize_t l;
if (timeout != USEC_INFINITY) {
usec_t n;
n = now(CLOCK_MONOTONIC);
if (ts + timeout < n) {
r = -ETIMEDOUT;
goto fail;
}
r = fd_wait_for_event(fd, POLLIN, ts + timeout - n);
if (r < 0)
goto fail;
if (r == 0) {
r = -ETIMEDOUT;
goto fail;
}
}
l = read(notify, &buffer, sizeof(buffer));
if (l < 0) {
if (errno == EINTR || errno == EAGAIN)
continue;
r = -errno;
goto fail;
}
FOREACH_INOTIFY_EVENT(e, buffer, l) {
if (e->wd != wd || !(e->mask & IN_CLOSE)) {
r = -EIO;
goto fail;
}
}
break;
}
/* We close the tty fd here since if the old session
* ended our handle will be dead. It's important that
* we do this after sleeping, so that we don't enter
* an endless loop. */
fd = safe_close(fd);
}
safe_close(notify);
r = reset_terminal_fd(fd, true);
if (r < 0)
log_warning_errno(r, "Failed to reset terminal: %m");
return fd;
fail:
safe_close(fd);
safe_close(notify);
return r;
}
int release_terminal(void) {
static const struct sigaction sa_new = {
.sa_handler = SIG_IGN,
.sa_flags = SA_RESTART,
};
_cleanup_close_ int fd = -1;
struct sigaction sa_old;
int r = 0;
fd = open("/dev/tty", O_RDWR|O_NOCTTY|O_NDELAY|O_CLOEXEC);
if (fd < 0)
return -errno;
/* Temporarily ignore SIGHUP, so that we don't get SIGHUP'ed
* by our own TIOCNOTTY */
assert_se(sigaction(SIGHUP, &sa_new, &sa_old) == 0);
if (ioctl(fd, TIOCNOTTY) < 0)
r = -errno;
assert_se(sigaction(SIGHUP, &sa_old, NULL) == 0);
return r;
}
int sigaction_many(const struct sigaction *sa, ...) {
va_list ap;
int r = 0, sig;
va_start(ap, sa);
while ((sig = va_arg(ap, int)) > 0)
if (sigaction(sig, sa, NULL) < 0)
r = -errno;
va_end(ap);
return r;
}
int ignore_signals(int sig, ...) {
struct sigaction sa = {
.sa_handler = SIG_IGN,
.sa_flags = SA_RESTART,
};
va_list ap;
int r = 0;
if (sigaction(sig, &sa, NULL) < 0)
r = -errno;
va_start(ap, sig);
while ((sig = va_arg(ap, int)) > 0)
if (sigaction(sig, &sa, NULL) < 0)
r = -errno;
va_end(ap);
return r;
}
int default_signals(int sig, ...) {
struct sigaction sa = {
.sa_handler = SIG_DFL,
.sa_flags = SA_RESTART,
};
va_list ap;
int r = 0;
if (sigaction(sig, &sa, NULL) < 0)
r = -errno;
va_start(ap, sig);
while ((sig = va_arg(ap, int)) > 0)
if (sigaction(sig, &sa, NULL) < 0)
r = -errno;
va_end(ap);
return r;
}
void safe_close_pair(int p[]) {
assert(p);
if (p[0] == p[1]) {
/* Special case pairs which use the same fd in both
* directions... */
p[0] = p[1] = safe_close(p[0]);
return;
}
p[0] = safe_close(p[0]);
p[1] = safe_close(p[1]);
}
ssize_t loop_read(int fd, void *buf, size_t nbytes, bool do_poll) {
uint8_t *p = buf;
ssize_t n = 0;
assert(fd >= 0);
assert(buf);
while (nbytes > 0) {
ssize_t k;
k = read(fd, p, nbytes);
if (k < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN && do_poll) {
/* We knowingly ignore any return value here,
* and expect that any error/EOF is reported
* via read() */
fd_wait_for_event(fd, POLLIN, USEC_INFINITY);
continue;
}
return n > 0 ? n : -errno;
}
if (k == 0)
return n;
p += k;
nbytes -= k;
n += k;
}
return n;
}
int loop_write(int fd, const void *buf, size_t nbytes, bool do_poll) {
const uint8_t *p = buf;
assert(fd >= 0);
assert(buf);
errno = 0;
while (nbytes > 0) {
ssize_t k;
k = write(fd, p, nbytes);
if (k < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN && do_poll) {
/* We knowingly ignore any return value here,
* and expect that any error/EOF is reported
* via write() */
fd_wait_for_event(fd, POLLOUT, USEC_INFINITY);
continue;
}
return -errno;
}
if (k == 0) /* Can't really happen */
return -EIO;
p += k;
nbytes -= k;
}
return 0;
}
int parse_size(const char *t, off_t base, off_t *size) {
/* Soo, sometimes we want to parse IEC binary suffxies, and
* sometimes SI decimal suffixes. This function can parse
* both. Which one is the right way depends on the
* context. Wikipedia suggests that SI is customary for
* hardrware metrics and network speeds, while IEC is
* customary for most data sizes used by software and volatile
* (RAM) memory. Hence be careful which one you pick!
*
* In either case we use just K, M, G as suffix, and not Ki,
* Mi, Gi or so (as IEC would suggest). That's because that's
* frickin' ugly. But this means you really need to make sure
* to document which base you are parsing when you use this
* call. */
struct table {
const char *suffix;
unsigned long long factor;
};
static const struct table iec[] = {
{ "E", 1024ULL*1024ULL*1024ULL*1024ULL*1024ULL*1024ULL },
{ "P", 1024ULL*1024ULL*1024ULL*1024ULL*1024ULL },
{ "T", 1024ULL*1024ULL*1024ULL*1024ULL },
{ "G", 1024ULL*1024ULL*1024ULL },
{ "M", 1024ULL*1024ULL },
{ "K", 1024ULL },
{ "B", 1 },
{ "", 1 },
};
static const struct table si[] = {
{ "E", 1000ULL*1000ULL*1000ULL*1000ULL*1000ULL*1000ULL },
{ "P", 1000ULL*1000ULL*1000ULL*1000ULL*1000ULL },
{ "T", 1000ULL*1000ULL*1000ULL*1000ULL },
{ "G", 1000ULL*1000ULL*1000ULL },
{ "M", 1000ULL*1000ULL },
{ "K", 1000ULL },
{ "B", 1 },
{ "", 1 },
};
const struct table *table;
const char *p;
unsigned long long r = 0;
unsigned n_entries, start_pos = 0;
assert(t);
assert(base == 1000 || base == 1024);
assert(size);
if (base == 1000) {
table = si;
n_entries = ELEMENTSOF(si);
} else {
table = iec;
n_entries = ELEMENTSOF(iec);
}
p = t;
do {
long long l;
unsigned long long l2;
double frac = 0;
char *e;
unsigned i;
errno = 0;
l = strtoll(p, &e, 10);
if (errno > 0)
return -errno;
if (l < 0)
return -ERANGE;
if (e == p)
return -EINVAL;
if (*e == '.') {
e++;
if (*e >= '0' && *e <= '9') {
char *e2;
/* strotoull itself would accept space/+/- */
l2 = strtoull(e, &e2, 10);
if (errno == ERANGE)
return -errno;
/* Ignore failure. E.g. 10.M is valid */
frac = l2;
for (; e < e2; e++)
frac /= 10;
}
}
e += strspn(e, WHITESPACE);
for (i = start_pos; i < n_entries; i++)
if (startswith(e, table[i].suffix)) {
unsigned long long tmp;
if ((unsigned long long) l + (frac > 0) > ULLONG_MAX / table[i].factor)
return -ERANGE;
tmp = l * table[i].factor + (unsigned long long) (frac * table[i].factor);
if (tmp > ULLONG_MAX - r)
return -ERANGE;
r += tmp;
if ((unsigned long long) (off_t) r != r)
return -ERANGE;
p = e + strlen(table[i].suffix);
start_pos = i + 1;
break;
}
if (i >= n_entries)
return -EINVAL;
} while (*p);
*size = r;
return 0;
}
int make_stdio(int fd) {
int r, s, t;
assert(fd >= 0);
r = dup2(fd, STDIN_FILENO);
s = dup2(fd, STDOUT_FILENO);
t = dup2(fd, STDERR_FILENO);
if (fd >= 3)
safe_close(fd);
if (r < 0 || s < 0 || t < 0)
return -errno;
/* Explicitly unset O_CLOEXEC, since if fd was < 3, then
* dup2() was a NOP and the bit hence possibly set. */
fd_cloexec(STDIN_FILENO, false);
fd_cloexec(STDOUT_FILENO, false);
fd_cloexec(STDERR_FILENO, false);
return 0;
}
int make_null_stdio(void) {
int null_fd;
null_fd = open("/dev/null", O_RDWR|O_NOCTTY);
if (null_fd < 0)
return -errno;
return make_stdio(null_fd);
}
bool is_device_path(const char *path) {
/* Returns true on paths that refer to a device, either in
* sysfs or in /dev */
return
path_startswith(path, "/dev/") ||
path_startswith(path, "/sys/");
}
int dir_is_empty(const char *path) {
_cleanup_closedir_ DIR *d;
d = opendir(path);
if (!d)
return -errno;
for (;;) {
struct dirent *de;
errno = 0;
de = readdir(d);
if (!de && errno != 0)
return -errno;
if (!de)
return 1;
if (!hidden_file(de->d_name))
return 0;
}
}
char* dirname_malloc(const char *path) {
char *d, *dir, *dir2;
d = strdup(path);
if (!d)
return NULL;
dir = dirname(d);
assert(dir);
if (dir != d) {
dir2 = strdup(dir);
free(d);
return dir2;
}
return dir;
}
int dev_urandom(void *p, size_t n) {
static int have_syscall = -1;
int r, fd;
ssize_t k;
/* Gathers some randomness from the kernel. This call will
* never block, and will always return some data from the
* kernel, regardless if the random pool is fully initialized
* or not. It thus makes no guarantee for the quality of the
* returned entropy, but is good enough for or usual usecases
* of seeding the hash functions for hashtable */
/* Use the getrandom() syscall unless we know we don't have
* it, or when the requested size is too large for it. */
if (have_syscall != 0 || (size_t) (int) n != n) {
r = getrandom(p, n, GRND_NONBLOCK);
if (r == (int) n) {
have_syscall = true;
return 0;
}
if (r < 0) {
if (errno == ENOSYS)
/* we lack the syscall, continue with
* reading from /dev/urandom */
have_syscall = false;
else if (errno == EAGAIN)
/* not enough entropy for now. Let's
* remember to use the syscall the
* next time, again, but also read
* from /dev/urandom for now, which
* doesn't care about the current
* amount of entropy. */
have_syscall = true;
else
return -errno;
} else
/* too short read? */
return -EIO;
}
fd = open("/dev/urandom", O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (fd < 0)
return errno == ENOENT ? -ENOSYS : -errno;
k = loop_read(fd, p, n, true);
safe_close(fd);
if (k < 0)
return (int) k;
if ((size_t) k != n)
return -EIO;
return 0;
}
void initialize_srand(void) {
static bool srand_called = false;
unsigned x;
#ifdef HAVE_SYS_AUXV_H
void *auxv;
#endif
if (srand_called)
return;
x = 0;
#ifdef HAVE_SYS_AUXV_H
/* The kernel provides us with a bit of entropy in auxv, so
* let's try to make use of that to seed the pseudo-random
* generator. It's better than nothing... */
auxv = (void*) getauxval(AT_RANDOM);
if (auxv)
x ^= *(unsigned*) auxv;
#endif
x ^= (unsigned) now(CLOCK_REALTIME);
x ^= (unsigned) gettid();
srand(x);
srand_called = true;
}
void random_bytes(void *p, size_t n) {
uint8_t *q;
int r;
r = dev_urandom(p, n);
if (r >= 0)
return;
/* If some idiot made /dev/urandom unavailable to us, he'll
* get a PRNG instead. */
initialize_srand();
for (q = p; q < (uint8_t*) p + n; q ++)
*q = rand();
}
void rename_process(const char name[8]) {
assert(name);
/* This is a like a poor man's setproctitle(). It changes the
* comm field, argv[0], and also the glibc's internally used
* name of the process. For the first one a limit of 16 chars
* applies, to the second one usually one of 10 (i.e. length
* of "/sbin/init"), to the third one one of 7 (i.e. length of
* "systemd"). If you pass a longer string it will be
* truncated */
prctl(PR_SET_NAME, name);
if (program_invocation_name)
strncpy(program_invocation_name, name, strlen(program_invocation_name));
if (saved_argc > 0) {
int i;
if (saved_argv[0])
strncpy(saved_argv[0], name, strlen(saved_argv[0]));
for (i = 1; i < saved_argc; i++) {
if (!saved_argv[i])
break;
memzero(saved_argv[i], strlen(saved_argv[i]));
}
}
}
void sigset_add_many(sigset_t *ss, ...) {
va_list ap;
int sig;
assert(ss);
va_start(ap, ss);
while ((sig = va_arg(ap, int)) > 0)
assert_se(sigaddset(ss, sig) == 0);
va_end(ap);
}
int sigprocmask_many(int how, ...) {
va_list ap;
sigset_t ss;
int sig;
assert_se(sigemptyset(&ss) == 0);
va_start(ap, how);
while ((sig = va_arg(ap, int)) > 0)
assert_se(sigaddset(&ss, sig) == 0);
va_end(ap);
if (sigprocmask(how, &ss, NULL) < 0)
return -errno;
return 0;
}
char* gethostname_malloc(void) {
struct utsname u;
assert_se(uname(&u) >= 0);
if (!isempty(u.nodename) && !streq(u.nodename, "(none)"))
return strdup(u.nodename);
return strdup(u.sysname);
}
bool hostname_is_set(void) {
struct utsname u;
assert_se(uname(&u) >= 0);
return !isempty(u.nodename) && !streq(u.nodename, "(none)");
}
char *lookup_uid(uid_t uid) {
long bufsize;
char *name;
_cleanup_free_ char *buf = NULL;
struct passwd pwbuf, *pw = NULL;
/* Shortcut things to avoid NSS lookups */
if (uid == 0)
return strdup("root");
bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
if (bufsize <= 0)
bufsize = 4096;
buf = malloc(bufsize);
if (!buf)
return NULL;
if (getpwuid_r(uid, &pwbuf, buf, bufsize, &pw) == 0 && pw)
return strdup(pw->pw_name);
if (asprintf(&name, UID_FMT, uid) < 0)
return NULL;
return name;
}
char* getlogname_malloc(void) {
uid_t uid;
struct stat st;
if (isatty(STDIN_FILENO) && fstat(STDIN_FILENO, &st) >= 0)
uid = st.st_uid;
else
uid = getuid();
return lookup_uid(uid);
}
char *getusername_malloc(void) {
const char *e;
e = getenv("USER");
if (e)
return strdup(e);
return lookup_uid(getuid());
}
int getttyname_malloc(int fd, char **ret) {
size_t l = 100;
int r;
assert(fd >= 0);
assert(ret);
for (;;) {
char path[l];
r = ttyname_r(fd, path, sizeof(path));
if (r == 0) {
const char *p;
char *c;
p = startswith(path, "/dev/");
c = strdup(p ?: path);
if (!c)
return -ENOMEM;
*ret = c;
return 0;
}
if (r != ERANGE)
return -r;
l *= 2;
}
return 0;
}
int getttyname_harder(int fd, char **r) {
int k;
char *s;
k = getttyname_malloc(fd, &s);
if (k < 0)
return k;
if (streq(s, "tty")) {
free(s);
return get_ctty(0, NULL, r);
}
*r = s;
return 0;
}
int get_ctty_devnr(pid_t pid, dev_t *d) {
int r;
_cleanup_free_ char *line = NULL;
const char *p;
unsigned long ttynr;
assert(pid >= 0);
p = procfs_file_alloca(pid, "stat");
r = read_one_line_file(p, &line);
if (r < 0)
return r;
p = strrchr(line, ')');
if (!p)
return -EIO;
p++;
if (sscanf(p, " "
"%*c " /* state */
"%*d " /* ppid */
"%*d " /* pgrp */
"%*d " /* session */
"%lu ", /* ttynr */
&ttynr) != 1)
return -EIO;
if (major(ttynr) == 0 && minor(ttynr) == 0)
return -ENOENT;
if (d)
*d = (dev_t) ttynr;
return 0;
}
int get_ctty(pid_t pid, dev_t *_devnr, char **r) {
char fn[sizeof("/dev/char/")-1 + 2*DECIMAL_STR_MAX(unsigned) + 1 + 1], *b = NULL;
_cleanup_free_ char *s = NULL;
const char *p;
dev_t devnr;
int k;
assert(r);
k = get_ctty_devnr(pid, &devnr);
if (k < 0)
return k;
sprintf(fn, "/dev/char/%u:%u", major(devnr), minor(devnr));
k = readlink_malloc(fn, &s);
if (k < 0) {
if (k != -ENOENT)
return k;
/* This is an ugly hack */
if (major(devnr) == 136) {
asprintf(&b, "pts/%u", minor(devnr));
goto finish;
}
/* Probably something like the ptys which have no
* symlink in /dev/char. Let's return something
* vaguely useful. */
b = strdup(fn + 5);
goto finish;
}
if (startswith(s, "/dev/"))
p = s + 5;
else if (startswith(s, "../"))
p = s + 3;
else
p = s;
b = strdup(p);
finish:
if (!b)
return -ENOMEM;
*r = b;
if (_devnr)
*_devnr = devnr;
return 0;
}
int rm_rf_children_dangerous(int fd, bool only_dirs, bool honour_sticky, struct stat *root_dev) {
_cleanup_closedir_ DIR *d = NULL;
int ret = 0;
assert(fd >= 0);
/* This returns the first error we run into, but nevertheless
* tries to go on. This closes the passed fd. */
d = fdopendir(fd);
if (!d) {
safe_close(fd);
return errno == ENOENT ? 0 : -errno;
}
for (;;) {
struct dirent *de;
bool is_dir, keep_around;
struct stat st;
int r;
errno = 0;
de = readdir(d);
if (!de) {
if (errno != 0 && ret == 0)
ret = -errno;
return ret;
}
if (streq(de->d_name, ".") || streq(de->d_name, ".."))
continue;
if (de->d_type == DT_UNKNOWN ||
honour_sticky ||
(de->d_type == DT_DIR && root_dev)) {
if (fstatat(fd, de->d_name, &st, AT_SYMLINK_NOFOLLOW) < 0) {
if (ret == 0 && errno != ENOENT)
ret = -errno;
continue;
}
is_dir = S_ISDIR(st.st_mode);
keep_around =
honour_sticky &&
(st.st_uid == 0 || st.st_uid == getuid()) &&
(st.st_mode & S_ISVTX);
} else {
is_dir = de->d_type == DT_DIR;
keep_around = false;
}
if (is_dir) {
int subdir_fd;
/* if root_dev is set, remove subdirectories only, if device is same as dir */
if (root_dev && st.st_dev != root_dev->st_dev)
continue;
subdir_fd = openat(fd, de->d_name,
O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC|O_NOFOLLOW|O_NOATIME);
if (subdir_fd < 0) {
if (ret == 0 && errno != ENOENT)
ret = -errno;
continue;
}
r = rm_rf_children_dangerous(subdir_fd, only_dirs, honour_sticky, root_dev);
if (r < 0 && ret == 0)
ret = r;
if (!keep_around)
if (unlinkat(fd, de->d_name, AT_REMOVEDIR) < 0) {
if (ret == 0 && errno != ENOENT)
ret = -errno;
}
} else if (!only_dirs && !keep_around) {
if (unlinkat(fd, de->d_name, 0) < 0) {
if (ret == 0 && errno != ENOENT)
ret = -errno;
}
}
}
}
_pure_ static int is_temporary_fs(struct statfs *s) {
assert(s);
return F_TYPE_EQUAL(s->f_type, TMPFS_MAGIC) ||
F_TYPE_EQUAL(s->f_type, RAMFS_MAGIC);
}
int is_fd_on_temporary_fs(int fd) {
struct statfs s;
if (fstatfs(fd, &s) < 0)
return -errno;
return is_temporary_fs(&s);
}
int rm_rf_children(int fd, bool only_dirs, bool honour_sticky, struct stat *root_dev) {
struct statfs s;
assert(fd >= 0);
if (fstatfs(fd, &s) < 0) {
safe_close(fd);
return -errno;
}
/* We refuse to clean disk file systems with this call. This
* is extra paranoia just to be sure we never ever remove
* non-state data */
if (!is_temporary_fs(&s)) {
log_error("Attempted to remove disk file system, and we can't allow that.");
safe_close(fd);
return -EPERM;
}
return rm_rf_children_dangerous(fd, only_dirs, honour_sticky, root_dev);
}
static int file_is_priv_sticky(const char *p) {
struct stat st;
assert(p);
if (lstat(p, &st) < 0)
return -errno;
return
(st.st_uid == 0 || st.st_uid == getuid()) &&
(st.st_mode & S_ISVTX);
}
static int rm_rf_internal(const char *path, bool only_dirs, bool delete_root, bool honour_sticky, bool dangerous) {
int fd, r;
struct statfs s;
assert(path);
/* We refuse to clean the root file system with this
* call. This is extra paranoia to never cause a really
* seriously broken system. */
if (path_equal(path, "/")) {
log_error("Attempted to remove entire root file system, and we can't allow that.");
return -EPERM;
}
fd = open(path, O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC|O_NOFOLLOW|O_NOATIME);
if (fd < 0) {
if (errno != ENOTDIR && errno != ELOOP)
return -errno;
if (!dangerous) {
if (statfs(path, &s) < 0)
return -errno;
if (!is_temporary_fs(&s)) {
log_error("Attempted to remove disk file system, and we can't allow that.");
return -EPERM;
}
}
if (delete_root && !only_dirs)
if (unlink(path) < 0 && errno != ENOENT)
return -errno;
return 0;
}
if (!dangerous) {
if (fstatfs(fd, &s) < 0) {
safe_close(fd);
return -errno;
}
if (!is_temporary_fs(&s)) {
log_error("Attempted to remove disk file system, and we can't allow that.");
safe_close(fd);
return -EPERM;
}
}
r = rm_rf_children_dangerous(fd, only_dirs, honour_sticky, NULL);
if (delete_root) {
if (honour_sticky && file_is_priv_sticky(path) > 0)
return r;
if (rmdir(path) < 0 && errno != ENOENT) {
if (r == 0)
r = -errno;
}
}
return r;
}
int rm_rf(const char *path, bool only_dirs, bool delete_root, bool honour_sticky) {
return rm_rf_internal(path, only_dirs, delete_root, honour_sticky, false);
}
int rm_rf_dangerous(const char *path, bool only_dirs, bool delete_root, bool honour_sticky) {
return rm_rf_internal(path, only_dirs, delete_root, honour_sticky, true);
}
int chmod_and_chown(const char *path, mode_t mode, uid_t uid, gid_t gid) {
assert(path);
/* Under the assumption that we are running privileged we
* first change the access mode and only then hand out
* ownership to avoid a window where access is too open. */
if (mode != MODE_INVALID)
if (chmod(path, mode) < 0)
return -errno;
if (uid != UID_INVALID || gid != GID_INVALID)
if (chown(path, uid, gid) < 0)
return -errno;
return 0;
}
int fchmod_and_fchown(int fd, mode_t mode, uid_t uid, gid_t gid) {
assert(fd >= 0);
/* Under the assumption that we are running privileged we
* first change the access mode and only then hand out
* ownership to avoid a window where access is too open. */
if (mode != MODE_INVALID)
if (fchmod(fd, mode) < 0)
return -errno;
if (uid != UID_INVALID || gid != GID_INVALID)
if (fchown(fd, uid, gid) < 0)
return -errno;
return 0;
}
cpu_set_t* cpu_set_malloc(unsigned *ncpus) {
cpu_set_t *r;
unsigned n = 1024;
/* Allocates the cpuset in the right size */
for (;;) {
if (!(r = CPU_ALLOC(n)))
return NULL;
if (sched_getaffinity(0, CPU_ALLOC_SIZE(n), r) >= 0) {
CPU_ZERO_S(CPU_ALLOC_SIZE(n), r);
if (ncpus)
*ncpus = n;
return r;
}
CPU_FREE(r);
if (errno != EINVAL)
return NULL;
n *= 2;
}
}
int status_vprintf(const char *status, bool ellipse, bool ephemeral, const char *format, va_list ap) {
static const char status_indent[] = " "; /* "[" STATUS "] " */
_cleanup_free_ char *s = NULL;
_cleanup_close_ int fd = -1;
struct iovec iovec[6] = {};
int n = 0;
static bool prev_ephemeral;
assert(format);
/* This is independent of logging, as status messages are
* optional and go exclusively to the console. */
if (vasprintf(&s, format, ap) < 0)
return log_oom();
fd = open_terminal("/dev/console", O_WRONLY|O_NOCTTY|O_CLOEXEC);
if (fd < 0)
return fd;
if (ellipse) {
char *e;
size_t emax, sl;
int c;
c = fd_columns(fd);
if (c <= 0)
c = 80;
sl = status ? sizeof(status_indent)-1 : 0;
emax = c - sl - 1;
if (emax < 3)
emax = 3;
e = ellipsize(s, emax, 50);
if (e) {
free(s);
s = e;
}
}
if (prev_ephemeral)
IOVEC_SET_STRING(iovec[n++], "\r" ANSI_ERASE_TO_END_OF_LINE);
prev_ephemeral = ephemeral;
if (status) {
if (!isempty(status)) {
IOVEC_SET_STRING(iovec[n++], "[");
IOVEC_SET_STRING(iovec[n++], status);
IOVEC_SET_STRING(iovec[n++], "] ");
} else
IOVEC_SET_STRING(iovec[n++], status_indent);
}
IOVEC_SET_STRING(iovec[n++], s);
if (!ephemeral)
IOVEC_SET_STRING(iovec[n++], "\n");
if (writev(fd, iovec, n) < 0)
return -errno;
return 0;
}
int status_printf(const char *status, bool ellipse, bool ephemeral, const char *format, ...) {
va_list ap;
int r;
assert(format);
va_start(ap, format);
r = status_vprintf(status, ellipse, ephemeral, format, ap);
va_end(ap);
return r;
}
char *replace_env(const char *format, char **env) {
enum {
WORD,
CURLY,
VARIABLE
} state = WORD;
const char *e, *word = format;
char *r = NULL, *k;
assert(format);
for (e = format; *e; e ++) {
switch (state) {
case WORD:
if (*e == '$')
state = CURLY;
break;
case CURLY:
if (*e == '{') {
k = strnappend(r, word, e-word-1);
if (!k)
goto fail;
free(r);
r = k;
word = e-1;
state = VARIABLE;
} else if (*e == '$') {
k = strnappend(r, word, e-word);
if (!k)
goto fail;
free(r);
r = k;
word = e+1;
state = WORD;
} else
state = WORD;
break;
case VARIABLE:
if (*e == '}') {
const char *t;
t = strempty(strv_env_get_n(env, word+2, e-word-2));
k = strappend(r, t);
if (!k)
goto fail;
free(r);
r = k;
word = e+1;
state = WORD;
}
break;
}
}
k = strnappend(r, word, e-word);
if (!k)
goto fail;
free(r);
return k;
fail:
free(r);
return NULL;
}
char **replace_env_argv(char **argv, char **env) {
char **ret, **i;
unsigned k = 0, l = 0;
l = strv_length(argv);
ret = new(char*, l+1);
if (!ret)
return NULL;
STRV_FOREACH(i, argv) {
/* If $FOO appears as single word, replace it by the split up variable */
if ((*i)[0] == '$' && (*i)[1] != '{') {
char *e;
char **w, **m;
unsigned q;
e = strv_env_get(env, *i+1);
if (e) {
int r;
r = strv_split_quoted(&m, e, true);
if (r < 0) {
ret[k] = NULL;
strv_free(ret);
return NULL;
}
} else
m = NULL;
q = strv_length(m);
l = l + q - 1;
w = realloc(ret, sizeof(char*) * (l+1));
if (!w) {
ret[k] = NULL;
strv_free(ret);
strv_free(m);
return NULL;
}
ret = w;
if (m) {
memcpy(ret + k, m, q * sizeof(char*));
free(m);
}
k += q;
continue;
}
/* If ${FOO} appears as part of a word, replace it by the variable as-is */
ret[k] = replace_env(*i, env);
if (!ret[k]) {
strv_free(ret);
return NULL;
}
k++;
}
ret[k] = NULL;
return ret;
}
int fd_columns(int fd) {
struct winsize ws = {};
if (ioctl(fd, TIOCGWINSZ, &ws) < 0)
return -errno;
if (ws.ws_col <= 0)
return -EIO;
return ws.ws_col;
}
unsigned columns(void) {
const char *e;
int c;
if (_likely_(cached_columns > 0))
return cached_columns;
c = 0;
e = getenv("COLUMNS");
if (e)
(void) safe_atoi(e, &c);
if (c <= 0)
c = fd_columns(STDOUT_FILENO);
if (c <= 0)
c = 80;
cached_columns = c;
return cached_columns;
}
int fd_lines(int fd) {
struct winsize ws = {};
if (ioctl(fd, TIOCGWINSZ, &ws) < 0)
return -errno;
if (ws.ws_row <= 0)
return -EIO;
return ws.ws_row;
}
unsigned lines(void) {
const char *e;
int l;
if (_likely_(cached_lines > 0))
return cached_lines;
l = 0;
e = getenv("LINES");
if (e)
(void) safe_atoi(e, &l);
if (l <= 0)
l = fd_lines(STDOUT_FILENO);
if (l <= 0)
l = 24;
cached_lines = l;
return cached_lines;
}
/* intended to be used as a SIGWINCH sighandler */
void columns_lines_cache_reset(int signum) {
cached_columns = 0;
cached_lines = 0;
}
bool on_tty(void) {
static int cached_on_tty = -1;
if (_unlikely_(cached_on_tty < 0))
cached_on_tty = isatty(STDOUT_FILENO) > 0;
return cached_on_tty;
}
int files_same(const char *filea, const char *fileb) {
struct stat a, b;
if (stat(filea, &a) < 0)
return -errno;
if (stat(fileb, &b) < 0)
return -errno;
return a.st_dev == b.st_dev &&
a.st_ino == b.st_ino;
}
int running_in_chroot(void) {
int ret;
ret = files_same("/proc/1/root", "/");
if (ret < 0)
return ret;
return ret == 0;
}
static char *ascii_ellipsize_mem(const char *s, size_t old_length, size_t new_length, unsigned percent) {
size_t x;
char *r;
assert(s);
assert(percent <= 100);
assert(new_length >= 3);
if (old_length <= 3 || old_length <= new_length)
return strndup(s, old_length);
r = new0(char, new_length+1);
if (!r)
return NULL;
x = (new_length * percent) / 100;
if (x > new_length - 3)
x = new_length - 3;
memcpy(r, s, x);
r[x] = '.';
r[x+1] = '.';
r[x+2] = '.';
memcpy(r + x + 3,
s + old_length - (new_length - x - 3),
new_length - x - 3);
return r;
}
char *ellipsize_mem(const char *s, size_t old_length, size_t new_length, unsigned percent) {
size_t x;
char *e;
const char *i, *j;
unsigned k, len, len2;
assert(s);
assert(percent <= 100);
assert(new_length >= 3);
/* if no multibyte characters use ascii_ellipsize_mem for speed */
if (ascii_is_valid(s))
return ascii_ellipsize_mem(s, old_length, new_length, percent);
if (old_length <= 3 || old_length <= new_length)
return strndup(s, old_length);
x = (new_length * percent) / 100;
if (x > new_length - 3)
x = new_length - 3;
k = 0;
for (i = s; k < x && i < s + old_length; i = utf8_next_char(i)) {
int c;
c = utf8_encoded_to_unichar(i);
if (c < 0)
return NULL;
k += unichar_iswide(c) ? 2 : 1;
}
if (k > x) /* last character was wide and went over quota */
x ++;
for (j = s + old_length; k < new_length && j > i; ) {
int c;
j = utf8_prev_char(j);
c = utf8_encoded_to_unichar(j);
if (c < 0)
return NULL;
k += unichar_iswide(c) ? 2 : 1;
}
assert(i <= j);
/* we don't actually need to ellipsize */
if (i == j)
return memdup(s, old_length + 1);
/* make space for ellipsis */
j = utf8_next_char(j);
len = i - s;
len2 = s + old_length - j;
e = new(char, len + 3 + len2 + 1);
if (!e)
return NULL;
/*
printf("old_length=%zu new_length=%zu x=%zu len=%u len2=%u k=%u\n",
old_length, new_length, x, len, len2, k);
*/
memcpy(e, s, len);
e[len] = 0xe2; /* tri-dot ellipsis: … */
e[len + 1] = 0x80;
e[len + 2] = 0xa6;
memcpy(e + len + 3, j, len2 + 1);
return e;
}
char *ellipsize(const char *s, size_t length, unsigned percent) {
return ellipsize_mem(s, strlen(s), length, percent);
}
int touch_file(const char *path, bool parents, usec_t stamp, uid_t uid, gid_t gid, mode_t mode) {
_cleanup_close_ int fd;
int r;
assert(path);
if (parents)
mkdir_parents(path, 0755);
fd = open(path, O_WRONLY|O_CREAT|O_CLOEXEC|O_NOCTTY, mode > 0 ? mode : 0644);
if (fd < 0)
return -errno;
if (mode > 0) {
r = fchmod(fd, mode);
if (r < 0)
return -errno;
}
if (uid != UID_INVALID || gid != GID_INVALID) {
r = fchown(fd, uid, gid);
if (r < 0)
return -errno;
}
if (stamp != USEC_INFINITY) {
struct timespec ts[2];
timespec_store(&ts[0], stamp);
ts[1] = ts[0];
r = futimens(fd, ts);
} else
r = futimens(fd, NULL);
if (r < 0)
return -errno;
return 0;
}
int touch(const char *path) {
return touch_file(path, false, USEC_INFINITY, UID_INVALID, GID_INVALID, 0);
}
char *unquote(const char *s, const char* quotes) {
size_t l;
assert(s);
/* This is rather stupid, simply removes the heading and
* trailing quotes if there is one. Doesn't care about
* escaping or anything. We should make this smarter one
* day... */
l = strlen(s);
if (l < 2)
return strdup(s);
if (strchr(quotes, s[0]) && s[l-1] == s[0])
return strndup(s+1, l-2);
return strdup(s);
}
char *normalize_env_assignment(const char *s) {
_cleanup_free_ char *value = NULL;
const char *eq;
char *p, *name;
eq = strchr(s, '=');
if (!eq) {
char *r, *t;
r = strdup(s);
if (!r)
return NULL;
t = strstrip(r);
if (t != r)
memmove(r, t, strlen(t) + 1);
return r;
}
name = strndupa(s, eq - s);
p = strdupa(eq + 1);
value = unquote(strstrip(p), QUOTES);
if (!value)
return NULL;
return strjoin(strstrip(name), "=", value, NULL);
}
int wait_for_terminate(pid_t pid, siginfo_t *status) {
siginfo_t dummy;
assert(pid >= 1);
if (!status)
status = &dummy;
for (;;) {
zero(*status);
if (waitid(P_PID, pid, status, WEXITED) < 0) {
if (errno == EINTR)
continue;
return -errno;
}
return 0;
}
}
/*
* Return values:
* < 0 : wait_for_terminate() failed to get the state of the
* process, the process was terminated by a signal, or
* failed for an unknown reason.
* >=0 : The process terminated normally, and its exit code is
* returned.
*
* That is, success is indicated by a return value of zero, and an
* error is indicated by a non-zero value.
*
* A warning is emitted if the process terminates abnormally,
* and also if it returns non-zero unless check_exit_code is true.
*/
int wait_for_terminate_and_warn(const char *name, pid_t pid, bool check_exit_code) {
int r;
siginfo_t status;
assert(name);
assert(pid > 1);
r = wait_for_terminate(pid, &status);
if (r < 0)
return log_warning_errno(r, "Failed to wait for %s: %m", name);
if (status.si_code == CLD_EXITED) {
if (status.si_status != 0)
log_full(check_exit_code ? LOG_WARNING : LOG_DEBUG,
"%s failed with error code %i.", name, status.si_status);
else
log_debug("%s succeeded.", name);
return status.si_status;
} else if (status.si_code == CLD_KILLED ||
status.si_code == CLD_DUMPED) {
log_warning("%s terminated by signal %s.", name, signal_to_string(status.si_status));
return -EPROTO;
}
log_warning("%s failed due to unknown reason.", name);
return -EPROTO;
}
noreturn void freeze(void) {
/* Make sure nobody waits for us on a socket anymore */
close_all_fds(NULL, 0);
sync();
for (;;)
pause();
}
bool null_or_empty(struct stat *st) {
assert(st);
if (S_ISREG(st->st_mode) && st->st_size <= 0)
return true;
if (S_ISCHR(st->st_mode) || S_ISBLK(st->st_mode))
return true;
return false;
}
int null_or_empty_path(const char *fn) {
struct stat st;
assert(fn);
if (stat(fn, &st) < 0)
return -errno;
return null_or_empty(&st);
}
int null_or_empty_fd(int fd) {
struct stat st;
assert(fd >= 0);
if (fstat(fd, &st) < 0)
return -errno;
return null_or_empty(&st);
}
DIR *xopendirat(int fd, const char *name, int flags) {
int nfd;
DIR *d;
assert(!(flags & O_CREAT));
nfd = openat(fd, name, O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC|flags, 0);
if (nfd < 0)
return NULL;
d = fdopendir(nfd);
if (!d) {
safe_close(nfd);
return NULL;
}
return d;
}
int signal_from_string_try_harder(const char *s) {
int signo;
assert(s);
signo = signal_from_string(s);
if (signo <= 0)
if (startswith(s, "SIG"))
return signal_from_string(s+3);
return signo;
}
static char *tag_to_udev_node(const char *tagvalue, const char *by) {
_cleanup_free_ char *t = NULL, *u = NULL;
size_t enc_len;
u = unquote(tagvalue, "\"\'");
if (!u)
return NULL;
enc_len = strlen(u) * 4 + 1;
t = new(char, enc_len);
if (!t)
return NULL;
if (encode_devnode_name(u, t, enc_len) < 0)
return NULL;
return strjoin("/dev/disk/by-", by, "/", t, NULL);
}
char *fstab_node_to_udev_node(const char *p) {
assert(p);
if (startswith(p, "LABEL="))
return tag_to_udev_node(p+6, "label");
if (startswith(p, "UUID="))
return tag_to_udev_node(p+5, "uuid");
if (startswith(p, "PARTUUID="))
return tag_to_udev_node(p+9, "partuuid");
if (startswith(p, "PARTLABEL="))
return tag_to_udev_node(p+10, "partlabel");
return strdup(p);
}
bool tty_is_vc(const char *tty) {
assert(tty);
return vtnr_from_tty(tty) >= 0;
}
bool tty_is_console(const char *tty) {
assert(tty);
if (startswith(tty, "/dev/"))
tty += 5;
return streq(tty, "console");
}
int vtnr_from_tty(const char *tty) {
int i, r;
assert(tty);
if (startswith(tty, "/dev/"))
tty += 5;
if (!startswith(tty, "tty") )
return -EINVAL;
if (tty[3] < '0' || tty[3] > '9')
return -EINVAL;
r = safe_atoi(tty+3, &i);
if (r < 0)
return r;
if (i < 0 || i > 63)
return -EINVAL;
return i;
}
char *resolve_dev_console(char **active) {
char *tty;
/* Resolve where /dev/console is pointing to, if /sys is actually ours
* (i.e. not read-only-mounted which is a sign for container setups) */
if (path_is_read_only_fs("/sys") > 0)
return NULL;
if (read_one_line_file("/sys/class/tty/console/active", active) < 0)
return NULL;
/* If multiple log outputs are configured the last one is what
* /dev/console points to */
tty = strrchr(*active, ' ');
if (tty)
tty++;
else
tty = *active;
if (streq(tty, "tty0")) {
char *tmp;
/* Get the active VC (e.g. tty1) */
if (read_one_line_file("/sys/class/tty/tty0/active", &tmp) >= 0) {
free(*active);
tty = *active = tmp;
}
}
return tty;
}
bool tty_is_vc_resolve(const char *tty) {
_cleanup_free_ char *active = NULL;
assert(tty);
if (startswith(tty, "/dev/"))
tty += 5;
if (streq(tty, "console")) {
tty = resolve_dev_console(&active);
if (!tty)
return false;
}
return tty_is_vc(tty);
}
const char *default_term_for_tty(const char *tty) {
assert(tty);
return tty_is_vc_resolve(tty) ? "TERM=linux" : "TERM=vt102";
}
bool dirent_is_file(const struct dirent *de) {
assert(de);
if (hidden_file(de->d_name))
return false;
if (de->d_type != DT_REG &&
de->d_type != DT_LNK &&
de->d_type != DT_UNKNOWN)
return false;
return true;
}
bool dirent_is_file_with_suffix(const struct dirent *de, const char *suffix) {
assert(de);
if (de->d_type != DT_REG &&
de->d_type != DT_LNK &&
de->d_type != DT_UNKNOWN)
return false;
if (hidden_file_allow_backup(de->d_name))
return false;
return endswith(de->d_name, suffix);
}
void execute_directory(const char *directory, DIR *d, usec_t timeout, char *argv[]) {
pid_t executor_pid;
int r;
assert(directory);
/* Executes all binaries in a directory in parallel and waits
* for them to finish. Optionally a timeout is applied. */
executor_pid = fork();
if (executor_pid < 0) {
log_error_errno(errno, "Failed to fork: %m");
return;
} else if (executor_pid == 0) {
_cleanup_hashmap_free_free_ Hashmap *pids = NULL;
_cleanup_closedir_ DIR *_d = NULL;
struct dirent *de;
/* We fork this all off from a child process so that
* we can somewhat cleanly make use of SIGALRM to set
* a time limit */
reset_all_signal_handlers();
reset_signal_mask();
assert_se(prctl(PR_SET_PDEATHSIG, SIGTERM) == 0);
if (!d) {
d = _d = opendir(directory);
if (!d) {
if (errno == ENOENT)
_exit(EXIT_SUCCESS);
log_error_errno(errno, "Failed to enumerate directory %s: %m", directory);
_exit(EXIT_FAILURE);
}
}
pids = hashmap_new(NULL);
if (!pids) {
log_oom();
_exit(EXIT_FAILURE);
}
FOREACH_DIRENT(de, d, break) {
_cleanup_free_ char *path = NULL;
pid_t pid;
if (!dirent_is_file(de))
continue;
path = strjoin(directory, "/", de->d_name, NULL);
if (!path) {
log_oom();
_exit(EXIT_FAILURE);
}
pid = fork();
if (pid < 0) {
log_error_errno(errno, "Failed to fork: %m");
continue;
} else if (pid == 0) {
char *_argv[2];
assert_se(prctl(PR_SET_PDEATHSIG, SIGTERM) == 0);
if (!argv) {
_argv[0] = path;
_argv[1] = NULL;
argv = _argv;
} else
argv[0] = path;
execv(path, argv);
log_error_errno(errno, "Failed to execute %s: %m", path);
_exit(EXIT_FAILURE);
}
log_debug("Spawned %s as " PID_FMT ".", path, pid);
r = hashmap_put(pids, UINT_TO_PTR(pid), path);
if (r < 0) {
log_oom();
_exit(EXIT_FAILURE);
}
path = NULL;
}
/* Abort execution of this process after the
* timout. We simply rely on SIGALRM as default action
* terminating the process, and turn on alarm(). */
if (timeout != USEC_INFINITY)
alarm((timeout + USEC_PER_SEC - 1) / USEC_PER_SEC);
while (!hashmap_isempty(pids)) {
_cleanup_free_ char *path = NULL;
pid_t pid;
pid = PTR_TO_UINT(hashmap_first_key(pids));
assert(pid > 0);
path = hashmap_remove(pids, UINT_TO_PTR(pid));
assert(path);
wait_for_terminate_and_warn(path, pid, true);
}
_exit(EXIT_SUCCESS);
}
wait_for_terminate_and_warn(directory, executor_pid, true);
}
int kill_and_sigcont(pid_t pid, int sig) {
int r;
r = kill(pid, sig) < 0 ? -errno : 0;
if (r >= 0)
kill(pid, SIGCONT);
return r;
}
bool nulstr_contains(const char*nulstr, const char *needle) {
const char *i;
if (!nulstr)
return false;
NULSTR_FOREACH(i, nulstr)
if (streq(i, needle))
return true;
return false;
}
bool plymouth_running(void) {
return access("/run/plymouth/pid", F_OK) >= 0;
}
char* strshorten(char *s, size_t l) {
assert(s);
if (l < strlen(s))
s[l] = 0;
return s;
}
static bool hostname_valid_char(char c) {
return
(c >= 'a' && c <= 'z') ||
(c >= 'A' && c <= 'Z') ||
(c >= '0' && c <= '9') ||
c == '-' ||
c == '_' ||
c == '.';
}
bool hostname_is_valid(const char *s) {
const char *p;
bool dot;
if (isempty(s))
return false;
for (p = s, dot = true; *p; p++) {
if (*p == '.') {
if (dot)
return false;
dot = true;
} else {
if (!hostname_valid_char(*p))
return false;
dot = false;
}
}
if (dot)
return false;
if (p-s > HOST_NAME_MAX)
return false;
return true;
}
char* hostname_cleanup(char *s, bool lowercase) {
char *p, *d;
bool dot;
for (p = s, d = s, dot = true; *p; p++) {
if (*p == '.') {
if (dot)
continue;
*(d++) = '.';
dot = true;
} else if (hostname_valid_char(*p)) {
*(d++) = lowercase ? tolower(*p) : *p;
dot = false;
}
}
if (dot && d > s)
d[-1] = 0;
else
*d = 0;
strshorten(s, HOST_NAME_MAX);
return s;
}
bool machine_name_is_valid(const char *s) {
if (!hostname_is_valid(s))
return false;
/* Machine names should be useful hostnames, but also be
* useful in unit names, hence we enforce a stricter length
* limitation. */
if (strlen(s) > 64)
return false;
return true;
}
bool image_name_is_valid(const char *s) {
if (!filename_is_valid(s))
return false;
if (string_has_cc(s, NULL))
return false;
if (!utf8_is_valid(s))
return false;
/* Temporary files for atomically creating new files */
if (startswith(s, ".#"))
return false;
return true;
}
int pipe_eof(int fd) {
struct pollfd pollfd = {
.fd = fd,
.events = POLLIN|POLLHUP,
};
int r;
r = poll(&pollfd, 1, 0);
if (r < 0)
return -errno;
if (r == 0)
return 0;
return pollfd.revents & POLLHUP;
}
int fd_wait_for_event(int fd, int event, usec_t t) {
struct pollfd pollfd = {
.fd = fd,
.events = event,
};
struct timespec ts;
int r;
r = ppoll(&pollfd, 1, t == USEC_INFINITY ? NULL : timespec_store(&ts, t), NULL);
if (r < 0)
return -errno;
if (r == 0)
return 0;
return pollfd.revents;
}
int fopen_temporary(const char *path, FILE **_f, char **_temp_path) {
FILE *f;
char *t;
int r, fd;
assert(path);
assert(_f);
assert(_temp_path);
r = tempfn_xxxxxx(path, &t);
if (r < 0)
return r;
fd = mkostemp_safe(t, O_WRONLY|O_CLOEXEC);
if (fd < 0) {
free(t);
return -errno;
}
f = fdopen(fd, "we");
if (!f) {
unlink(t);
free(t);
return -errno;
}
*_f = f;
*_temp_path = t;
return 0;
}
int terminal_vhangup_fd(int fd) {
assert(fd >= 0);
if (ioctl(fd, TIOCVHANGUP) < 0)
return -errno;
return 0;
}
int terminal_vhangup(const char *name) {
_cleanup_close_ int fd;
fd = open_terminal(name, O_RDWR|O_NOCTTY|O_CLOEXEC);
if (fd < 0)
return fd;
return terminal_vhangup_fd(fd);
}
int vt_disallocate(const char *name) {
int fd, r;
unsigned u;
/* Deallocate the VT if possible. If not possible
* (i.e. because it is the active one), at least clear it
* entirely (including the scrollback buffer) */
if (!startswith(name, "/dev/"))
return -EINVAL;
if (!tty_is_vc(name)) {
/* So this is not a VT. I guess we cannot deallocate
* it then. But let's at least clear the screen */
fd = open_terminal(name, O_RDWR|O_NOCTTY|O_CLOEXEC);
if (fd < 0)
return fd;
loop_write(fd,
"\033[r" /* clear scrolling region */
"\033[H" /* move home */
"\033[2J", /* clear screen */
10, false);
safe_close(fd);
return 0;
}
if (!startswith(name, "/dev/tty"))
return -EINVAL;
r = safe_atou(name+8, &u);
if (r < 0)
return r;
if (u <= 0)
return -EINVAL;
/* Try to deallocate */
fd = open_terminal("/dev/tty0", O_RDWR|O_NOCTTY|O_CLOEXEC);
if (fd < 0)
return fd;
r = ioctl(fd, VT_DISALLOCATE, u);
safe_close(fd);
if (r >= 0)
return 0;
if (errno != EBUSY)
return -errno;
/* Couldn't deallocate, so let's clear it fully with
* scrollback */
fd = open_terminal(name, O_RDWR|O_NOCTTY|O_CLOEXEC);
if (fd < 0)
return fd;
loop_write(fd,
"\033[r" /* clear scrolling region */
"\033[H" /* move home */
"\033[3J", /* clear screen including scrollback, requires Linux 2.6.40 */
10, false);
safe_close(fd);
return 0;
}
int symlink_atomic(const char *from, const char *to) {
_cleanup_free_ char *t = NULL;
int r;
assert(from);
assert(to);
r = tempfn_random(to, &t);
if (r < 0)
return r;
if (symlink(from, t) < 0)
return -errno;
if (rename(t, to) < 0) {
unlink_noerrno(t);
return -errno;
}
return 0;
}
int mknod_atomic(const char *path, mode_t mode, dev_t dev) {
_cleanup_free_ char *t = NULL;
int r;
assert(path);
r = tempfn_random(path, &t);
if (r < 0)
return r;
if (mknod(t, mode, dev) < 0)
return -errno;
if (rename(t, path) < 0) {
unlink_noerrno(t);
return -errno;
}
return 0;
}
int mkfifo_atomic(const char *path, mode_t mode) {
_cleanup_free_ char *t = NULL;
int r;
assert(path);
r = tempfn_random(path, &t);
if (r < 0)
return r;
if (mkfifo(t, mode) < 0)
return -errno;
if (rename(t, path) < 0) {
unlink_noerrno(t);
return -errno;
}
return 0;
}
bool display_is_local(const char *display) {
assert(display);
return
display[0] == ':' &&
display[1] >= '0' &&
display[1] <= '9';
}
int socket_from_display(const char *display, char **path) {
size_t k;
char *f, *c;
assert(display);
assert(path);
if (!display_is_local(display))
return -EINVAL;
k = strspn(display+1, "0123456789");
f = new(char, strlen("/tmp/.X11-unix/X") + k + 1);
if (!f)
return -ENOMEM;
c = stpcpy(f, "/tmp/.X11-unix/X");
memcpy(c, display+1, k);
c[k] = 0;
*path = f;
return 0;
}
int get_user_creds(
const char **username,
uid_t *uid, gid_t *gid,
const char **home,
const char **shell) {
struct passwd *p;
uid_t u;
assert(username);
assert(*username);
/* We enforce some special rules for uid=0: in order to avoid
* NSS lookups for root we hardcode its data. */
if (streq(*username, "root") || streq(*username, "0")) {
*username = "root";
if (uid)
*uid = 0;
if (gid)
*gid = 0;
if (home)
*home = "/root";
if (shell)
*shell = "/bin/sh";
return 0;
}
if (parse_uid(*username, &u) >= 0) {
errno = 0;
p = getpwuid(u);
/* If there are multiple users with the same id, make
* sure to leave $USER to the configured value instead
* of the first occurrence in the database. However if
* the uid was configured by a numeric uid, then let's
* pick the real username from /etc/passwd. */
if (p)
*username = p->pw_name;
} else {
errno = 0;
p = getpwnam(*username);
}
if (!p)
return errno > 0 ? -errno : -ESRCH;
if (uid)
*uid = p->pw_uid;
if (gid)
*gid = p->pw_gid;
if (home)
*home = p->pw_dir;
if (shell)
*shell = p->pw_shell;
return 0;
}
char* uid_to_name(uid_t uid) {
struct passwd *p;
char *r;
if (uid == 0)
return strdup("root");
p = getpwuid(uid);
if (p)
return strdup(p->pw_name);
if (asprintf(&r, UID_FMT, uid) < 0)
return NULL;
return r;
}
char* gid_to_name(gid_t gid) {
struct group *p;
char *r;
if (gid == 0)
return strdup("root");
p = getgrgid(gid);
if (p)
return strdup(p->gr_name);
if (asprintf(&r, GID_FMT, gid) < 0)
return NULL;
return r;
}
int get_group_creds(const char **groupname, gid_t *gid) {
struct group *g;
gid_t id;
assert(groupname);
/* We enforce some special rules for gid=0: in order to avoid
* NSS lookups for root we hardcode its data. */
if (streq(*groupname, "root") || streq(*groupname, "0")) {
*groupname = "root";
if (gid)
*gid = 0;
return 0;
}
if (parse_gid(*groupname, &id) >= 0) {
errno = 0;
g = getgrgid(id);
if (g)
*groupname = g->gr_name;
} else {
errno = 0;
g = getgrnam(*groupname);
}
if (!g)
return errno > 0 ? -errno : -ESRCH;
if (gid)
*gid = g->gr_gid;
return 0;
}
int in_gid(gid_t gid) {
gid_t *gids;
int ngroups_max, r, i;
if (getgid() == gid)
return 1;
if (getegid() == gid)
return 1;
ngroups_max = sysconf(_SC_NGROUPS_MAX);
assert(ngroups_max > 0);
gids = alloca(sizeof(gid_t) * ngroups_max);
r = getgroups(ngroups_max, gids);
if (r < 0)
return -errno;
for (i = 0; i < r; i++)
if (gids[i] == gid)
return 1;
return 0;
}
int in_group(const char *name) {
int r;
gid_t gid;
r = get_group_creds(&name, &gid);
if (r < 0)
return r;
return in_gid(gid);
}
int glob_exists(const char *path) {
_cleanup_globfree_ glob_t g = {};
int k;
assert(path);
errno = 0;
k = glob(path, GLOB_NOSORT|GLOB_BRACE, NULL, &g);
if (k == GLOB_NOMATCH)
return 0;
else if (k == GLOB_NOSPACE)
return -ENOMEM;
else if (k == 0)
return !strv_isempty(g.gl_pathv);
else
return errno ? -errno : -EIO;
}
int glob_extend(char ***strv, const char *path) {
_cleanup_globfree_ glob_t g = {};
int k;
char **p;
errno = 0;
k = glob(path, GLOB_NOSORT|GLOB_BRACE, NULL, &g);
if (k == GLOB_NOMATCH)
return -ENOENT;
else if (k == GLOB_NOSPACE)
return -ENOMEM;
else if (k != 0 || strv_isempty(g.gl_pathv))
return errno ? -errno : -EIO;
STRV_FOREACH(p, g.gl_pathv) {
k = strv_extend(strv, *p);
if (k < 0)
break;
}
return k;
}
int dirent_ensure_type(DIR *d, struct dirent *de) {
struct stat st;
assert(d);
assert(de);
if (de->d_type != DT_UNKNOWN)
return 0;
if (fstatat(dirfd(d), de->d_name, &st, AT_SYMLINK_NOFOLLOW) < 0)
return -errno;
de->d_type =
S_ISREG(st.st_mode) ? DT_REG :
S_ISDIR(st.st_mode) ? DT_DIR :
S_ISLNK(st.st_mode) ? DT_LNK :
S_ISFIFO(st.st_mode) ? DT_FIFO :
S_ISSOCK(st.st_mode) ? DT_SOCK :
S_ISCHR(st.st_mode) ? DT_CHR :
S_ISBLK(st.st_mode) ? DT_BLK :
DT_UNKNOWN;
return 0;
}
int get_files_in_directory(const char *path, char ***list) {
_cleanup_closedir_ DIR *d = NULL;
size_t bufsize = 0, n = 0;
_cleanup_strv_free_ char **l = NULL;
assert(path);
/* Returns all files in a directory in *list, and the number
* of files as return value. If list is NULL returns only the
* number. */
d = opendir(path);
if (!d)
return -errno;
for (;;) {
struct dirent *de;
errno = 0;
de = readdir(d);
if (!de && errno != 0)
return -errno;
if (!de)
break;
dirent_ensure_type(d, de);
if (!dirent_is_file(de))
continue;
if (list) {
/* one extra slot is needed for the terminating NULL */
if (!GREEDY_REALLOC(l, bufsize, n + 2))
return -ENOMEM;
l[n] = strdup(de->d_name);
if (!l[n])
return -ENOMEM;
l[++n] = NULL;
} else
n++;
}
if (list) {
*list = l;
l = NULL; /* avoid freeing */
}
return n;
}
char *strjoin(const char *x, ...) {
va_list ap;
size_t l;
char *r, *p;
va_start(ap, x);
if (x) {
l = strlen(x);
for (;;) {
const char *t;
size_t n;
t = va_arg(ap, const char *);
if (!t)
break;
n = strlen(t);
if (n > ((size_t) -1) - l) {
va_end(ap);
return NULL;
}
l += n;
}
} else
l = 0;
va_end(ap);
r = new(char, l+1);
if (!r)
return NULL;
if (x) {
p = stpcpy(r, x);
va_start(ap, x);
for (;;) {
const char *t;
t = va_arg(ap, const char *);
if (!t)
break;
p = stpcpy(p, t);
}
va_end(ap);
} else
r[0] = 0;
return r;
}
bool is_main_thread(void) {
static thread_local int cached = 0;
if (_unlikely_(cached == 0))
cached = getpid() == gettid() ? 1 : -1;
return cached > 0;
}
int block_get_whole_disk(dev_t d, dev_t *ret) {
char *p, *s;
int r;
unsigned n, m;
assert(ret);
/* If it has a queue this is good enough for us */
if (asprintf(&p, "/sys/dev/block/%u:%u/queue", major(d), minor(d)) < 0)
return -ENOMEM;
r = access(p, F_OK);
free(p);
if (r >= 0) {
*ret = d;
return 0;
}
/* If it is a partition find the originating device */
if (asprintf(&p, "/sys/dev/block/%u:%u/partition", major(d), minor(d)) < 0)
return -ENOMEM;
r = access(p, F_OK);
free(p);
if (r < 0)
return -ENOENT;
/* Get parent dev_t */
if (asprintf(&p, "/sys/dev/block/%u:%u/../dev", major(d), minor(d)) < 0)
return -ENOMEM;
r = read_one_line_file(p, &s);
free(p);
if (r < 0)
return r;
r = sscanf(s, "%u:%u", &m, &n);
free(s);
if (r != 2)
return -EINVAL;
/* Only return this if it is really good enough for us. */
if (asprintf(&p, "/sys/dev/block/%u:%u/queue", m, n) < 0)
return -ENOMEM;
r = access(p, F_OK);
free(p);
if (r >= 0) {
*ret = makedev(m, n);
return 0;
}
return -ENOENT;
}
static const char *const ioprio_class_table[] = {
[IOPRIO_CLASS_NONE] = "none",
[IOPRIO_CLASS_RT] = "realtime",
[IOPRIO_CLASS_BE] = "best-effort",
[IOPRIO_CLASS_IDLE] = "idle"
};
DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ioprio_class, int, INT_MAX);
static const char *const sigchld_code_table[] = {
[CLD_EXITED] = "exited",
[CLD_KILLED] = "killed",
[CLD_DUMPED] = "dumped",
[CLD_TRAPPED] = "trapped",
[CLD_STOPPED] = "stopped",
[CLD_CONTINUED] = "continued",
};
DEFINE_STRING_TABLE_LOOKUP(sigchld_code, int);
static const char *const log_facility_unshifted_table[LOG_NFACILITIES] = {
[LOG_FAC(LOG_KERN)] = "kern",
[LOG_FAC(LOG_USER)] = "user",
[LOG_FAC(LOG_MAIL)] = "mail",
[LOG_FAC(LOG_DAEMON)] = "daemon",
[LOG_FAC(LOG_AUTH)] = "auth",
[LOG_FAC(LOG_SYSLOG)] = "syslog",
[LOG_FAC(LOG_LPR)] = "lpr",
[LOG_FAC(LOG_NEWS)] = "news",
[LOG_FAC(LOG_UUCP)] = "uucp",
[LOG_FAC(LOG_CRON)] = "cron",
[LOG_FAC(LOG_AUTHPRIV)] = "authpriv",
[LOG_FAC(LOG_FTP)] = "ftp",
[LOG_FAC(LOG_LOCAL0)] = "local0",
[LOG_FAC(LOG_LOCAL1)] = "local1",
[LOG_FAC(LOG_LOCAL2)] = "local2",
[LOG_FAC(LOG_LOCAL3)] = "local3",
[LOG_FAC(LOG_LOCAL4)] = "local4",
[LOG_FAC(LOG_LOCAL5)] = "local5",
[LOG_FAC(LOG_LOCAL6)] = "local6",
[LOG_FAC(LOG_LOCAL7)] = "local7"
};
DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(log_facility_unshifted, int, LOG_FAC(~0));
static const char *const log_level_table[] = {
[LOG_EMERG] = "emerg",
[LOG_ALERT] = "alert",
[LOG_CRIT] = "crit",
[LOG_ERR] = "err",
[LOG_WARNING] = "warning",
[LOG_NOTICE] = "notice",
[LOG_INFO] = "info",
[LOG_DEBUG] = "debug"
};
DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(log_level, int, LOG_DEBUG);
static const char* const sched_policy_table[] = {
[SCHED_OTHER] = "other",
[SCHED_BATCH] = "batch",
[SCHED_IDLE] = "idle",
[SCHED_FIFO] = "fifo",
[SCHED_RR] = "rr"
};
DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(sched_policy, int, INT_MAX);
static const char* const rlimit_table[_RLIMIT_MAX] = {
[RLIMIT_CPU] = "LimitCPU",
[RLIMIT_FSIZE] = "LimitFSIZE",
[RLIMIT_DATA] = "LimitDATA",
[RLIMIT_STACK] = "LimitSTACK",
[RLIMIT_CORE] = "LimitCORE",
[RLIMIT_RSS] = "LimitRSS",
[RLIMIT_NOFILE] = "LimitNOFILE",
[RLIMIT_AS] = "LimitAS",
[RLIMIT_NPROC] = "LimitNPROC",
[RLIMIT_MEMLOCK] = "LimitMEMLOCK",
[RLIMIT_LOCKS] = "LimitLOCKS",
[RLIMIT_SIGPENDING] = "LimitSIGPENDING",
[RLIMIT_MSGQUEUE] = "LimitMSGQUEUE",
[RLIMIT_NICE] = "LimitNICE",
[RLIMIT_RTPRIO] = "LimitRTPRIO",
[RLIMIT_RTTIME] = "LimitRTTIME"
};
DEFINE_STRING_TABLE_LOOKUP(rlimit, int);
static const char* const ip_tos_table[] = {
[IPTOS_LOWDELAY] = "low-delay",
[IPTOS_THROUGHPUT] = "throughput",
[IPTOS_RELIABILITY] = "reliability",
[IPTOS_LOWCOST] = "low-cost",
};
DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ip_tos, int, 0xff);
static const char *const __signal_table[] = {
[SIGHUP] = "HUP",
[SIGINT] = "INT",
[SIGQUIT] = "QUIT",
[SIGILL] = "ILL",
[SIGTRAP] = "TRAP",
[SIGABRT] = "ABRT",
[SIGBUS] = "BUS",
[SIGFPE] = "FPE",
[SIGKILL] = "KILL",
[SIGUSR1] = "USR1",
[SIGSEGV] = "SEGV",
[SIGUSR2] = "USR2",
[SIGPIPE] = "PIPE",
[SIGALRM] = "ALRM",
[SIGTERM] = "TERM",
#ifdef SIGSTKFLT
[SIGSTKFLT] = "STKFLT", /* Linux on SPARC doesn't know SIGSTKFLT */
#endif
[SIGCHLD] = "CHLD",
[SIGCONT] = "CONT",
[SIGSTOP] = "STOP",
[SIGTSTP] = "TSTP",
[SIGTTIN] = "TTIN",
[SIGTTOU] = "TTOU",
[SIGURG] = "URG",
[SIGXCPU] = "XCPU",
[SIGXFSZ] = "XFSZ",
[SIGVTALRM] = "VTALRM",
[SIGPROF] = "PROF",
[SIGWINCH] = "WINCH",
[SIGIO] = "IO",
[SIGPWR] = "PWR",
[SIGSYS] = "SYS"
};
DEFINE_PRIVATE_STRING_TABLE_LOOKUP(__signal, int);
const char *signal_to_string(int signo) {
static thread_local char buf[sizeof("RTMIN+")-1 + DECIMAL_STR_MAX(int) + 1];
const char *name;
name = __signal_to_string(signo);
if (name)
return name;
if (signo >= SIGRTMIN && signo <= SIGRTMAX)
snprintf(buf, sizeof(buf), "RTMIN+%d", signo - SIGRTMIN);
else
snprintf(buf, sizeof(buf), "%d", signo);
return buf;
}
int signal_from_string(const char *s) {
int signo;
int offset = 0;
unsigned u;
signo = __signal_from_string(s);
if (signo > 0)
return signo;
if (startswith(s, "RTMIN+")) {
s += 6;
offset = SIGRTMIN;
}
if (safe_atou(s, &u) >= 0) {
signo = (int) u + offset;
if (signo > 0 && signo < _NSIG)
return signo;
}
return -EINVAL;
}
bool kexec_loaded(void) {
bool loaded = false;
char *s;
if (read_one_line_file("/sys/kernel/kexec_loaded", &s) >= 0) {
if (s[0] == '1')
loaded = true;
free(s);
}
return loaded;
}
int prot_from_flags(int flags) {
switch (flags & O_ACCMODE) {
case O_RDONLY:
return PROT_READ;
case O_WRONLY:
return PROT_WRITE;
case O_RDWR:
return PROT_READ|PROT_WRITE;
default:
return -EINVAL;
}
}
char *format_bytes(char *buf, size_t l, off_t t) {
unsigned i;
static const struct {
const char *suffix;
off_t factor;
} table[] = {
{ "E", 1024ULL*1024ULL*1024ULL*1024ULL*1024ULL*1024ULL },
{ "P", 1024ULL*1024ULL*1024ULL*1024ULL*1024ULL },
{ "T", 1024ULL*1024ULL*1024ULL*1024ULL },
{ "G", 1024ULL*1024ULL*1024ULL },
{ "M", 1024ULL*1024ULL },
{ "K", 1024ULL },
};
if (t == (off_t) -1)
return NULL;
for (i = 0; i < ELEMENTSOF(table); i++) {
if (t >= table[i].factor) {
snprintf(buf, l,
"%llu.%llu%s",
(unsigned long long) (t / table[i].factor),
(unsigned long long) (((t*10ULL) / table[i].factor) % 10ULL),
table[i].suffix);
goto finish;
}
}
snprintf(buf, l, "%lluB", (unsigned long long) t);
finish:
buf[l-1] = 0;
return buf;
}
void* memdup(const void *p, size_t l) {
void *r;
assert(p);
r = malloc(l);
if (!r)
return NULL;
memcpy(r, p, l);
return r;
}
int fd_inc_sndbuf(int fd, size_t n) {
int r, value;
socklen_t l = sizeof(value);
r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l);
if (r >= 0 && l == sizeof(value) && (size_t) value >= n*2)
return 0;
/* If we have the privileges we will ignore the kernel limit. */
value = (int) n;
if (setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &value, sizeof(value)) < 0)
if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, sizeof(value)) < 0)
return -errno;
return 1;
}
int fd_inc_rcvbuf(int fd, size_t n) {
int r, value;
socklen_t l = sizeof(value);
r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l);
if (r >= 0 && l == sizeof(value) && (size_t) value >= n*2)
return 0;
/* If we have the privileges we will ignore the kernel limit. */
value = (int) n;
if (setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &value, sizeof(value)) < 0)
if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, sizeof(value)) < 0)
return -errno;
return 1;
}
int fork_agent(pid_t *pid, const int except[], unsigned n_except, const char *path, ...) {
bool stdout_is_tty, stderr_is_tty;
pid_t parent_pid, agent_pid;
sigset_t ss, saved_ss;
unsigned n, i;
va_list ap;
char **l;
assert(pid);
assert(path);
/* Spawns a temporary TTY agent, making sure it goes away when
* we go away */
parent_pid = getpid();
/* First we temporarily block all signals, so that the new
* child has them blocked initially. This way, we can be sure
* that SIGTERMs are not lost we might send to the agent. */
assert_se(sigfillset(&ss) >= 0);
assert_se(sigprocmask(SIG_SETMASK, &ss, &saved_ss) >= 0);
agent_pid = fork();
if (agent_pid < 0) {
assert_se(sigprocmask(SIG_SETMASK, &saved_ss, NULL) >= 0);
return -errno;
}
if (agent_pid != 0) {
assert_se(sigprocmask(SIG_SETMASK, &saved_ss, NULL) >= 0);
*pid = agent_pid;
return 0;
}
/* In the child:
*
* Make sure the agent goes away when the parent dies */
if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
_exit(EXIT_FAILURE);
/* Make sure we actually can kill the agent, if we need to, in
* case somebody invoked us from a shell script that trapped
* SIGTERM or so... */
reset_all_signal_handlers();
reset_signal_mask();
/* Check whether our parent died before we were able
* to set the death signal and unblock the signals */
if (getppid() != parent_pid)
_exit(EXIT_SUCCESS);
/* Don't leak fds to the agent */
close_all_fds(except, n_except);
stdout_is_tty = isatty(STDOUT_FILENO);
stderr_is_tty = isatty(STDERR_FILENO);
if (!stdout_is_tty || !stderr_is_tty) {
int fd;
/* Detach from stdout/stderr. and reopen
* /dev/tty for them. This is important to
* ensure that when systemctl is started via
* popen() or a similar call that expects to
* read EOF we actually do generate EOF and
* not delay this indefinitely by because we
* keep an unused copy of stdin around. */
fd = open("/dev/tty", O_WRONLY);
if (fd < 0) {
log_error_errno(errno, "Failed to open /dev/tty: %m");
_exit(EXIT_FAILURE);
}
if (!stdout_is_tty)
dup2(fd, STDOUT_FILENO);
if (!stderr_is_tty)
dup2(fd, STDERR_FILENO);
if (fd > 2)
close(fd);
}
/* Count arguments */
va_start(ap, path);
for (n = 0; va_arg(ap, char*); n++)
;
va_end(ap);
/* Allocate strv */
l = alloca(sizeof(char *) * (n + 1));
/* Fill in arguments */
va_start(ap, path);
for (i = 0; i <= n; i++)
l[i] = va_arg(ap, char*);
va_end(ap);
execv(path, l);
_exit(EXIT_FAILURE);
}
int setrlimit_closest(int resource, const struct rlimit *rlim) {
struct rlimit highest, fixed;
assert(rlim);
if (setrlimit(resource, rlim) >= 0)
return 0;
if (errno != EPERM)
return -errno;
/* So we failed to set the desired setrlimit, then let's try
* to get as close as we can */
assert_se(getrlimit(resource, &highest) == 0);
fixed.rlim_cur = MIN(rlim->rlim_cur, highest.rlim_max);
fixed.rlim_max = MIN(rlim->rlim_max, highest.rlim_max);
if (setrlimit(resource, &fixed) < 0)
return -errno;
return 0;
}
int getenv_for_pid(pid_t pid, const char *field, char **_value) {
_cleanup_fclose_ FILE *f = NULL;
char *value = NULL;
int r;
bool done = false;
size_t l;
const char *path;
assert(pid >= 0);
assert(field);
assert(_value);
path = procfs_file_alloca(pid, "environ");
f = fopen(path, "re");
if (!f)
return -errno;
l = strlen(field);
r = 0;
do {
char line[LINE_MAX];
unsigned i;
for (i = 0; i < sizeof(line)-1; i++) {
int c;
c = getc(f);
if (_unlikely_(c == EOF)) {
done = true;
break;
} else if (c == 0)
break;
line[i] = c;
}
line[i] = 0;
if (memcmp(line, field, l) == 0 && line[l] == '=') {
value = strdup(line + l + 1);
if (!value)
return -ENOMEM;
r = 1;
break;
}
} while (!done);
*_value = value;
return r;
}
bool is_valid_documentation_url(const char *url) {
assert(url);
if (startswith(url, "http://") && url[7])
return true;
if (startswith(url, "https://") && url[8])
return true;
if (startswith(url, "file:") && url[5])
return true;
if (startswith(url, "info:") && url[5])
return true;
if (startswith(url, "man:") && url[4])
return true;
return false;
}
bool in_initrd(void) {
static int saved = -1;
struct statfs s;
if (saved >= 0)
return saved;
/* We make two checks here:
*
* 1. the flag file /etc/initrd-release must exist
* 2. the root file system must be a memory file system
*
* The second check is extra paranoia, since misdetecting an
* initrd can have bad bad consequences due the initrd
* emptying when transititioning to the main systemd.
*/
saved = access("/etc/initrd-release", F_OK) >= 0 &&
statfs("/", &s) >= 0 &&
is_temporary_fs(&s);
return saved;
}
void warn_melody(void) {
_cleanup_close_ int fd = -1;
fd = open("/dev/console", O_WRONLY|O_CLOEXEC|O_NOCTTY);
if (fd < 0)
return;
/* Yeah, this is synchronous. Kinda sucks. But well... */
ioctl(fd, KIOCSOUND, (int)(1193180/440));
usleep(125*USEC_PER_MSEC);
ioctl(fd, KIOCSOUND, (int)(1193180/220));
usleep(125*USEC_PER_MSEC);
ioctl(fd, KIOCSOUND, (int)(1193180/220));
usleep(125*USEC_PER_MSEC);
ioctl(fd, KIOCSOUND, 0);
}
int make_console_stdio(void) {
int fd, r;
/* Make /dev/console the controlling terminal and stdin/stdout/stderr */
fd = acquire_terminal("/dev/console", false, true, true, USEC_INFINITY);
if (fd < 0)
return log_error_errno(fd, "Failed to acquire terminal: %m");
r = make_stdio(fd);
if (r < 0)
return log_error_errno(r, "Failed to duplicate terminal fd: %m");
return 0;
}
int get_home_dir(char **_h) {
struct passwd *p;
const char *e;
char *h;
uid_t u;
assert(_h);
/* Take the user specified one */
e = secure_getenv("HOME");
if (e && path_is_absolute(e)) {
h = strdup(e);
if (!h)
return -ENOMEM;
*_h = h;
return 0;
}
/* Hardcode home directory for root to avoid NSS */
u = getuid();
if (u == 0) {
h = strdup("/root");
if (!h)
return -ENOMEM;
*_h = h;
return 0;
}
/* Check the database... */
errno = 0;
p = getpwuid(u);
if (!p)
return errno > 0 ? -errno : -ESRCH;
if (!path_is_absolute(p->pw_dir))
return -EINVAL;
h = strdup(p->pw_dir);
if (!h)
return -ENOMEM;
*_h = h;
return 0;
}
int get_shell(char **_s) {
struct passwd *p;
const char *e;
char *s;
uid_t u;
assert(_s);
/* Take the user specified one */
e = getenv("SHELL");
if (e) {
s = strdup(e);
if (!s)
return -ENOMEM;
*_s = s;
return 0;
}
/* Hardcode home directory for root to avoid NSS */
u = getuid();
if (u == 0) {
s = strdup("/bin/sh");
if (!s)
return -ENOMEM;
*_s = s;
return 0;
}
/* Check the database... */
errno = 0;
p = getpwuid(u);
if (!p)
return errno > 0 ? -errno : -ESRCH;
if (!path_is_absolute(p->pw_shell))
return -EINVAL;
s = strdup(p->pw_shell);
if (!s)
return -ENOMEM;
*_s = s;
return 0;
}
bool filename_is_valid(const char *p) {
if (isempty(p))
return false;
if (strchr(p, '/'))
return false;
if (streq(p, "."))
return false;
if (streq(p, ".."))
return false;
if (strlen(p) > FILENAME_MAX)
return false;
return true;
}
bool string_is_safe(const char *p) {
const char *t;
if (!p)
return false;
for (t = p; *t; t++) {
if (*t > 0 && *t < ' ')
return false;
if (strchr("\\\"\'\0x7f", *t))
return false;
}
return true;
}
/**
* Check if a string contains control characters. If 'ok' is non-NULL
* it may be a string containing additional CCs to be considered OK.
*/
bool string_has_cc(const char *p, const char *ok) {
const char *t;
assert(p);
for (t = p; *t; t++) {
if (ok && strchr(ok, *t))
continue;
if (*t > 0 && *t < ' ')
return true;
if (*t == 127)
return true;
}
return false;
}
bool path_is_safe(const char *p) {
if (isempty(p))
return false;
if (streq(p, "..") || startswith(p, "../") || endswith(p, "/..") || strstr(p, "/../"))
return false;
if (strlen(p) > PATH_MAX)
return false;
/* The following two checks are not really dangerous, but hey, they still are confusing */
if (streq(p, ".") || startswith(p, "./") || endswith(p, "/.") || strstr(p, "/./"))
return false;
if (strstr(p, "//"))
return false;
return true;
}
/* hey glibc, APIs with callbacks without a user pointer are so useless */
void *xbsearch_r(const void *key, const void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *, void *), void *arg) {
size_t l, u, idx;
const void *p;
int comparison;
l = 0;
u = nmemb;
while (l < u) {
idx = (l + u) / 2;
p = (void *)(((const char *) base) + (idx * size));
comparison = compar(key, p, arg);
if (comparison < 0)
u = idx;
else if (comparison > 0)
l = idx + 1;
else
return (void *)p;
}
return NULL;
}
bool is_locale_utf8(void) {
const char *set;
static int cached_answer = -1;
if (cached_answer >= 0)
goto out;
if (!setlocale(LC_ALL, "")) {
cached_answer = true;
goto out;
}
set = nl_langinfo(CODESET);
if (!set) {
cached_answer = true;
goto out;
}
if (streq(set, "UTF-8")) {
cached_answer = true;
goto out;
}
/* For LC_CTYPE=="C" return true, because CTYPE is effectly
* unset and everything can do to UTF-8 nowadays. */
set = setlocale(LC_CTYPE, NULL);
if (!set) {
cached_answer = true;
goto out;
}
/* Check result, but ignore the result if C was set
* explicitly. */
cached_answer =
streq(set, "C") &&
!getenv("LC_ALL") &&
!getenv("LC_CTYPE") &&
!getenv("LANG");
out:
return (bool) cached_answer;
}
const char *draw_special_char(DrawSpecialChar ch) {
static const char *draw_table[2][_DRAW_SPECIAL_CHAR_MAX] = {
/* UTF-8 */ {
[DRAW_TREE_VERTICAL] = "\342\224\202 ", /* │ */
[DRAW_TREE_BRANCH] = "\342\224\234\342\224\200", /* ├─ */
[DRAW_TREE_RIGHT] = "\342\224\224\342\224\200", /* └─ */
[DRAW_TREE_SPACE] = " ", /* */
[DRAW_TRIANGULAR_BULLET] = "\342\200\243", /* ‣ */
[DRAW_BLACK_CIRCLE] = "\342\227\217", /* ● */
[DRAW_ARROW] = "\342\206\222", /* → */
[DRAW_DASH] = "\342\200\223", /* – */
},
/* ASCII fallback */ {
[DRAW_TREE_VERTICAL] = "| ",
[DRAW_TREE_BRANCH] = "|-",
[DRAW_TREE_RIGHT] = "`-",
[DRAW_TREE_SPACE] = " ",
[DRAW_TRIANGULAR_BULLET] = ">",
[DRAW_BLACK_CIRCLE] = "*",
[DRAW_ARROW] = "->",
[DRAW_DASH] = "-",
}
};
return draw_table[!is_locale_utf8()][ch];
}
char *strreplace(const char *text, const char *old_string, const char *new_string) {
const char *f;
char *t, *r;
size_t l, old_len, new_len;
assert(text);
assert(old_string);
assert(new_string);
old_len = strlen(old_string);
new_len = strlen(new_string);
l = strlen(text);
r = new(char, l+1);
if (!r)
return NULL;
f = text;
t = r;
while (*f) {
char *a;
size_t d, nl;
if (!startswith(f, old_string)) {
*(t++) = *(f++);
continue;
}
d = t - r;
nl = l - old_len + new_len;
a = realloc(r, nl + 1);
if (!a)
goto oom;
l = nl;
r = a;
t = r + d;
t = stpcpy(t, new_string);
f += old_len;
}
*t = 0;
return r;
oom:
free(r);
return NULL;
}
char *strip_tab_ansi(char **ibuf, size_t *_isz) {
const char *i, *begin = NULL;
enum {
STATE_OTHER,
STATE_ESCAPE,
STATE_BRACKET
} state = STATE_OTHER;
char *obuf = NULL;
size_t osz = 0, isz;
FILE *f;
assert(ibuf);
assert(*ibuf);
/* Strips ANSI color and replaces TABs by 8 spaces */
isz = _isz ? *_isz : strlen(*ibuf);
f = open_memstream(&obuf, &osz);
if (!f)
return NULL;
for (i = *ibuf; i < *ibuf + isz + 1; i++) {
switch (state) {
case STATE_OTHER:
if (i >= *ibuf + isz) /* EOT */
break;
else if (*i == '\x1B')
state = STATE_ESCAPE;
else if (*i == '\t')
fputs(" ", f);
else
fputc(*i, f);
break;
case STATE_ESCAPE:
if (i >= *ibuf + isz) { /* EOT */
fputc('\x1B', f);
break;
} else if (*i == '[') {
state = STATE_BRACKET;
begin = i + 1;
} else {
fputc('\x1B', f);
fputc(*i, f);
state = STATE_OTHER;
}
break;
case STATE_BRACKET:
if (i >= *ibuf + isz || /* EOT */
(!(*i >= '0' && *i <= '9') && *i != ';' && *i != 'm')) {
fputc('\x1B', f);
fputc('[', f);
state = STATE_OTHER;
i = begin-1;
} else if (*i == 'm')
state = STATE_OTHER;
break;
}
}
if (ferror(f)) {
fclose(f);
free(obuf);
return NULL;
}
fclose(f);
free(*ibuf);
*ibuf = obuf;
if (_isz)
*_isz = osz;
return obuf;
}
int on_ac_power(void) {
bool found_offline = false, found_online = false;
_cleanup_closedir_ DIR *d = NULL;
d = opendir("/sys/class/power_supply");
if (!d)
return -errno;
for (;;) {
struct dirent *de;
_cleanup_close_ int fd = -1, device = -1;
char contents[6];
ssize_t n;
errno = 0;
de = readdir(d);
if (!de && errno != 0)
return -errno;
if (!de)
break;
if (hidden_file(de->d_name))
continue;
device = openat(dirfd(d), de->d_name, O_DIRECTORY|O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (device < 0) {
if (errno == ENOENT || errno == ENOTDIR)
continue;
return -errno;
}
fd = openat(device, "type", O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (fd < 0) {
if (errno == ENOENT)
continue;
return -errno;
}
n = read(fd, contents, sizeof(contents));
if (n < 0)
return -errno;
if (n != 6 || memcmp(contents, "Mains\n", 6))
continue;
safe_close(fd);
fd = openat(device, "online", O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (fd < 0) {
if (errno == ENOENT)
continue;
return -errno;
}
n = read(fd, contents, sizeof(contents));
if (n < 0)
return -errno;
if (n != 2 || contents[1] != '\n')
return -EIO;
if (contents[0] == '1') {
found_online = true;
break;
} else if (contents[0] == '0')
found_offline = true;
else
return -EIO;
}
return found_online || !found_offline;
}
static int search_and_fopen_internal(const char *path, const char *mode, const char *root, char **search, FILE **_f) {
char **i;
assert(path);
assert(mode);
assert(_f);
if (!path_strv_resolve_uniq(search, root))
return -ENOMEM;
STRV_FOREACH(i, search) {
_cleanup_free_ char *p = NULL;
FILE *f;
if (root)
p = strjoin(root, *i, "/", path, NULL);
else
p = strjoin(*i, "/", path, NULL);
if (!p)
return -ENOMEM;
f = fopen(p, mode);
if (f) {
*_f = f;
return 0;
}
if (errno != ENOENT)
return -errno;
}
return -ENOENT;
}
int search_and_fopen(const char *path, const char *mode, const char *root, const char **search, FILE **_f) {
_cleanup_strv_free_ char **copy = NULL;
assert(path);
assert(mode);
assert(_f);
if (path_is_absolute(path)) {
FILE *f;
f = fopen(path, mode);
if (f) {
*_f = f;
return 0;
}
return -errno;
}
copy = strv_copy((char**) search);
if (!copy)
return -ENOMEM;
return search_and_fopen_internal(path, mode, root, copy, _f);
}
int search_and_fopen_nulstr(const char *path, const char *mode, const char *root, const char *search, FILE **_f) {
_cleanup_strv_free_ char **s = NULL;
if (path_is_absolute(path)) {
FILE *f;
f = fopen(path, mode);
if (f) {
*_f = f;
return 0;
}
return -errno;
}
s = strv_split_nulstr(search);
if (!s)
return -ENOMEM;
return search_and_fopen_internal(path, mode, root, s, _f);
}
char *strextend(char **x, ...) {
va_list ap;
size_t f, l;
char *r, *p;
assert(x);
l = f = *x ? strlen(*x) : 0;
va_start(ap, x);
for (;;) {
const char *t;
size_t n;
t = va_arg(ap, const char *);
if (!t)
break;
n = strlen(t);
if (n > ((size_t) -1) - l) {
va_end(ap);
return NULL;
}
l += n;
}
va_end(ap);
r = realloc(*x, l+1);
if (!r)
return NULL;
p = r + f;
va_start(ap, x);
for (;;) {
const char *t;
t = va_arg(ap, const char *);
if (!t)
break;
p = stpcpy(p, t);
}
va_end(ap);
*p = 0;
*x = r;
return r + l;
}
char *strrep(const char *s, unsigned n) {
size_t l;
char *r, *p;
unsigned i;
assert(s);
l = strlen(s);
p = r = malloc(l * n + 1);
if (!r)
return NULL;
for (i = 0; i < n; i++)
p = stpcpy(p, s);
*p = 0;
return r;
}
void* greedy_realloc(void **p, size_t *allocated, size_t need, size_t size) {
size_t a, newalloc;
void *q;
assert(p);
assert(allocated);
if (*allocated >= need)
return *p;
newalloc = MAX(need * 2, 64u / size);
a = newalloc * size;
/* check for overflows */
if (a < size * need)
return NULL;
q = realloc(*p, a);
if (!q)
return NULL;
*p = q;
*allocated = newalloc;
return q;
}
void* greedy_realloc0(void **p, size_t *allocated, size_t need, size_t size) {
size_t prev;
uint8_t *q;
assert(p);
assert(allocated);
prev = *allocated;
q = greedy_realloc(p, allocated, need, size);
if (!q)
return NULL;
if (*allocated > prev)
memzero(q + prev * size, (*allocated - prev) * size);
return q;
}
bool id128_is_valid(const char *s) {
size_t i, l;
l = strlen(s);
if (l == 32) {
/* Simple formatted 128bit hex string */
for (i = 0; i < l; i++) {
char c = s[i];
if (!(c >= '0' && c <= '9') &&
!(c >= 'a' && c <= 'z') &&
!(c >= 'A' && c <= 'Z'))
return false;
}
} else if (l == 36) {
/* Formatted UUID */
for (i = 0; i < l; i++) {
char c = s[i];
if ((i == 8 || i == 13 || i == 18 || i == 23)) {
if (c != '-')
return false;
} else {
if (!(c >= '0' && c <= '9') &&
!(c >= 'a' && c <= 'z') &&
!(c >= 'A' && c <= 'Z'))
return false;
}
}
} else
return false;
return true;
}
int split_pair(const char *s, const char *sep, char **l, char **r) {
char *x, *a, *b;
assert(s);
assert(sep);
assert(l);
assert(r);
if (isempty(sep))
return -EINVAL;
x = strstr(s, sep);
if (!x)
return -EINVAL;
a = strndup(s, x - s);
if (!a)
return -ENOMEM;
b = strdup(x + strlen(sep));
if (!b) {
free(a);
return -ENOMEM;
}
*l = a;
*r = b;
return 0;
}
int shall_restore_state(void) {
_cleanup_free_ char *value = NULL;
int r;
r = get_proc_cmdline_key("systemd.restore_state=", &value);
if (r < 0)
return r;
if (r == 0)
return true;
return parse_boolean(value) != 0;
}
int proc_cmdline(char **ret) {
assert(ret);
if (detect_container(NULL) > 0)
return get_process_cmdline(1, 0, false, ret);
else
return read_one_line_file("/proc/cmdline", ret);
}
int parse_proc_cmdline(int (*parse_item)(const char *key, const char *value)) {
_cleanup_free_ char *line = NULL;
const char *p;
int r;
assert(parse_item);
r = proc_cmdline(&line);
if (r < 0)
return r;
p = line;
for (;;) {
_cleanup_free_ char *word = NULL;
char *value = NULL;
r = unquote_first_word(&p, &word, true);
if (r < 0)
return r;
if (r == 0)
break;
/* Filter out arguments that are intended only for the
* initrd */
if (!in_initrd() && startswith(word, "rd."))
continue;
value = strchr(word, '=');
if (value)
*(value++) = 0;
r = parse_item(word, value);
if (r < 0)
return r;
}
return 0;
}
int get_proc_cmdline_key(const char *key, char **value) {
_cleanup_free_ char *line = NULL, *ret = NULL;
bool found = false;
const char *p;
int r;
assert(key);
r = proc_cmdline(&line);
if (r < 0)
return r;
p = line;
for (;;) {
_cleanup_free_ char *word = NULL;
const char *e;
r = unquote_first_word(&p, &word, true);
if (r < 0)
return r;
if (r == 0)
break;
/* Filter out arguments that are intended only for the
* initrd */
if (!in_initrd() && startswith(word, "rd."))
continue;
if (value) {
e = startswith(word, key);
if (!e)
continue;
r = free_and_strdup(&ret, e);
if (r < 0)
return r;
found = true;
} else {
if (streq(word, key))
found = true;
}
}
if (value) {
*value = ret;
ret = NULL;
}
return found;
}
int container_get_leader(const char *machine, pid_t *pid) {
_cleanup_free_ char *s = NULL, *class = NULL;
const char *p;
pid_t leader;
int r;
assert(machine);
assert(pid);
p = strappenda("/run/systemd/machines/", machine);
r = parse_env_file(p, NEWLINE, "LEADER", &s, "CLASS", &class, NULL);
if (r == -ENOENT)
return -EHOSTDOWN;
if (r < 0)
return r;
if (!s)
return -EIO;
if (!streq_ptr(class, "container"))
return -EIO;
r = parse_pid(s, &leader);
if (r < 0)
return r;
if (leader <= 1)
return -EIO;
*pid = leader;
return 0;
}
int namespace_open(pid_t pid, int *pidns_fd, int *mntns_fd, int *netns_fd, int *root_fd) {
_cleanup_close_ int pidnsfd = -1, mntnsfd = -1, netnsfd = -1;
int rfd = -1;
assert(pid >= 0);
if (mntns_fd) {
const char *mntns;
mntns = procfs_file_alloca(pid, "ns/mnt");
mntnsfd = open(mntns, O_RDONLY|O_NOCTTY|O_CLOEXEC);
if (mntnsfd < 0)
return -errno;
}
if (pidns_fd) {
const char *pidns;
pidns = procfs_file_alloca(pid, "ns/pid");
pidnsfd = open(pidns, O_RDONLY|O_NOCTTY|O_CLOEXEC);
if (pidnsfd < 0)
return -errno;
}
if (netns_fd) {
const char *netns;
netns = procfs_file_alloca(pid, "ns/net");
netnsfd = open(netns, O_RDONLY|O_NOCTTY|O_CLOEXEC);
if (netnsfd < 0)
return -errno;
}
if (root_fd) {
const char *root;
root = procfs_file_alloca(pid, "root");
rfd = open(root, O_RDONLY|O_NOCTTY|O_CLOEXEC|O_DIRECTORY);
if (rfd < 0)
return -errno;
}
if (pidns_fd)
*pidns_fd = pidnsfd;
if (mntns_fd)
*mntns_fd = mntnsfd;
if (netns_fd)
*netns_fd = netnsfd;
if (root_fd)
*root_fd = rfd;
pidnsfd = mntnsfd = netnsfd = -1;
return 0;
}
int namespace_enter(int pidns_fd, int mntns_fd, int netns_fd, int root_fd) {
if (pidns_fd >= 0)
if (setns(pidns_fd, CLONE_NEWPID) < 0)
return -errno;
if (mntns_fd >= 0)
if (setns(mntns_fd, CLONE_NEWNS) < 0)
return -errno;
if (netns_fd >= 0)
if (setns(netns_fd, CLONE_NEWNET) < 0)
return -errno;
if (root_fd >= 0) {
if (fchdir(root_fd) < 0)
return -errno;
if (chroot(".") < 0)
return -errno;
}
if (setresgid(0, 0, 0) < 0)
return -errno;
if (setgroups(0, NULL) < 0)
return -errno;
if (setresuid(0, 0, 0) < 0)
return -errno;
return 0;
}
bool pid_is_unwaited(pid_t pid) {
/* Checks whether a PID is still valid at all, including a zombie */
if (pid <= 0)
return false;
if (kill(pid, 0) >= 0)
return true;
return errno != ESRCH;
}
bool pid_is_alive(pid_t pid) {
int r;
/* Checks whether a PID is still valid and not a zombie */
if (pid <= 0)
return false;
r = get_process_state(pid);
if (r == -ENOENT || r == 'Z')
return false;
return true;
}
int getpeercred(int fd, struct ucred *ucred) {
socklen_t n = sizeof(struct ucred);
struct ucred u;
int r;
assert(fd >= 0);
assert(ucred);
r = getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &u, &n);
if (r < 0)
return -errno;
if (n != sizeof(struct ucred))
return -EIO;
/* Check if the data is actually useful and not suppressed due
* to namespacing issues */
if (u.pid <= 0)
return -ENODATA;
if (u.uid == UID_INVALID)
return -ENODATA;
if (u.gid == GID_INVALID)
return -ENODATA;
*ucred = u;
return 0;
}
int getpeersec(int fd, char **ret) {
socklen_t n = 64;
char *s;
int r;
assert(fd >= 0);
assert(ret);
s = new0(char, n);
if (!s)
return -ENOMEM;
r = getsockopt(fd, SOL_SOCKET, SO_PEERSEC, s, &n);
if (r < 0) {
free(s);
if (errno != ERANGE)
return -errno;
s = new0(char, n);
if (!s)
return -ENOMEM;
r = getsockopt(fd, SOL_SOCKET, SO_PEERSEC, s, &n);
if (r < 0) {
free(s);
return -errno;
}
}
if (isempty(s)) {
free(s);
return -ENOTSUP;
}
*ret = s;
return 0;
}
/* This is much like like mkostemp() but is subject to umask(). */
int mkostemp_safe(char *pattern, int flags) {
_cleanup_umask_ mode_t u;
int fd;
assert(pattern);
u = umask(077);
fd = mkostemp(pattern, flags);
if (fd < 0)
return -errno;
return fd;
}
int open_tmpfile(const char *path, int flags) {
char *p;
int fd;
assert(path);
#ifdef O_TMPFILE
/* Try O_TMPFILE first, if it is supported */
fd = open(path, flags|O_TMPFILE, S_IRUSR|S_IWUSR);
if (fd >= 0)
return fd;
#endif
/* Fall back to unguessable name + unlinking */
p = strappenda(path, "/systemd-tmp-XXXXXX");
fd = mkostemp_safe(p, flags);
if (fd < 0)
return fd;
unlink(p);
return fd;
}
int fd_warn_permissions(const char *path, int fd) {
struct stat st;
if (fstat(fd, &st) < 0)
return -errno;
if (st.st_mode & 0111)
log_warning("Configuration file %s is marked executable. Please remove executable permission bits. Proceeding anyway.", path);
if (st.st_mode & 0002)
log_warning("Configuration file %s is marked world-writable. Please remove world writability permission bits. Proceeding anyway.", path);
if (getpid() == 1 && (st.st_mode & 0044) != 0044)
log_warning("Configuration file %s is marked world-inaccessible. This has no effect as configuration data is accessible via APIs without restrictions. Proceeding anyway.", path);
return 0;
}
unsigned long personality_from_string(const char *p) {
/* Parse a personality specifier. We introduce our own
* identifiers that indicate specific ABIs, rather than just
* hints regarding the register size, since we want to keep
* things open for multiple locally supported ABIs for the
* same register size. We try to reuse the ABI identifiers
* used by libseccomp. */
#if defined(__x86_64__)
if (streq(p, "x86"))
return PER_LINUX32;
if (streq(p, "x86-64"))
return PER_LINUX;
#elif defined(__i386__)
if (streq(p, "x86"))
return PER_LINUX;
#endif
/* personality(7) documents that 0xffffffffUL is used for
* querying the current personality, hence let's use that here
* as error indicator. */
return 0xffffffffUL;
}
const char* personality_to_string(unsigned long p) {
#if defined(__x86_64__)
if (p == PER_LINUX32)
return "x86";
if (p == PER_LINUX)
return "x86-64";
#elif defined(__i386__)
if (p == PER_LINUX)
return "x86";
#endif
return NULL;
}
uint64_t physical_memory(void) {
long mem;
/* We return this as uint64_t in case we are running as 32bit
* process on a 64bit kernel with huge amounts of memory */
mem = sysconf(_SC_PHYS_PAGES);
assert(mem > 0);
return (uint64_t) mem * (uint64_t) page_size();
}
char* mount_test_option(const char *haystack, const char *needle) {
struct mntent me = {
.mnt_opts = (char*) haystack
};
assert(needle);
/* Like glibc's hasmntopt(), but works on a string, not a
* struct mntent */
if (!haystack)
return NULL;
return hasmntopt(&me, needle);
}
void hexdump(FILE *f, const void *p, size_t s) {
const uint8_t *b = p;
unsigned n = 0;
assert(s == 0 || b);
while (s > 0) {
size_t i;
fprintf(f, "%04x ", n);
for (i = 0; i < 16; i++) {
if (i >= s)
fputs(" ", f);
else
fprintf(f, "%02x ", b[i]);
if (i == 7)
fputc(' ', f);
}
fputc(' ', f);
for (i = 0; i < 16; i++) {
if (i >= s)
fputc(' ', f);
else
fputc(isprint(b[i]) ? (char) b[i] : '.', f);
}
fputc('\n', f);
if (s < 16)
break;
n += 16;
b += 16;
s -= 16;
}
}
int update_reboot_param_file(const char *param) {
int r = 0;
if (param) {
r = write_string_file(REBOOT_PARAM_FILE, param);
if (r < 0)
log_error("Failed to write reboot param to "
REBOOT_PARAM_FILE": %s", strerror(-r));
} else
unlink(REBOOT_PARAM_FILE);
return r;
}
int umount_recursive(const char *prefix, int flags) {
bool again;
int n = 0, r;
/* Try to umount everything recursively below a
* directory. Also, take care of stacked mounts, and keep
* unmounting them until they are gone. */
do {
_cleanup_fclose_ FILE *proc_self_mountinfo = NULL;
again = false;
r = 0;
proc_self_mountinfo = fopen("/proc/self/mountinfo", "re");
if (!proc_self_mountinfo)
return -errno;
for (;;) {
_cleanup_free_ char *path = NULL, *p = NULL;
int k;
k = fscanf(proc_self_mountinfo,
"%*s " /* (1) mount id */
"%*s " /* (2) parent id */
"%*s " /* (3) major:minor */
"%*s " /* (4) root */
"%ms " /* (5) mount point */
"%*s" /* (6) mount options */
"%*[^-]" /* (7) optional fields */
"- " /* (8) separator */
"%*s " /* (9) file system type */
"%*s" /* (10) mount source */
"%*s" /* (11) mount options 2 */
"%*[^\n]", /* some rubbish at the end */
&path);
if (k != 1) {
if (k == EOF)
break;
continue;
}
p = cunescape(path);
if (!p)
return -ENOMEM;
if (!path_startswith(p, prefix))
continue;
if (umount2(p, flags) < 0) {
r = -errno;
continue;
}
again = true;
n++;
break;
}
} while (again);
return r ? r : n;
}
static int get_mount_flags(const char *path, unsigned long *flags) {
struct statvfs buf;
if (statvfs(path, &buf) < 0)
return -errno;
*flags = buf.f_flag;
return 0;
}
int bind_remount_recursive(const char *prefix, bool ro) {
_cleanup_set_free_free_ Set *done = NULL;
_cleanup_free_ char *cleaned = NULL;
int r;
/* Recursively remount a directory (and all its submounts)
* read-only or read-write. If the directory is already
* mounted, we reuse the mount and simply mark it
* MS_BIND|MS_RDONLY (or remove the MS_RDONLY for read-write
* operation). If it isn't we first make it one. Afterwards we
* apply MS_BIND|MS_RDONLY (or remove MS_RDONLY) to all
* submounts we can access, too. When mounts are stacked on
* the same mount point we only care for each individual
* "top-level" mount on each point, as we cannot
* influence/access the underlying mounts anyway. We do not
* have any effect on future submounts that might get
* propagated, they migt be writable. This includes future
* submounts that have been triggered via autofs. */
cleaned = strdup(prefix);
if (!cleaned)
return -ENOMEM;
path_kill_slashes(cleaned);
done = set_new(&string_hash_ops);
if (!done)
return -ENOMEM;
for (;;) {
_cleanup_fclose_ FILE *proc_self_mountinfo = NULL;
_cleanup_set_free_free_ Set *todo = NULL;
bool top_autofs = false;
char *x;
unsigned long orig_flags;
todo = set_new(&string_hash_ops);
if (!todo)
return -ENOMEM;
proc_self_mountinfo = fopen("/proc/self/mountinfo", "re");
if (!proc_self_mountinfo)
return -errno;
for (;;) {
_cleanup_free_ char *path = NULL, *p = NULL, *type = NULL;
int k;
k = fscanf(proc_self_mountinfo,
"%*s " /* (1) mount id */
"%*s " /* (2) parent id */
"%*s " /* (3) major:minor */
"%*s " /* (4) root */
"%ms " /* (5) mount point */
"%*s" /* (6) mount options (superblock) */
"%*[^-]" /* (7) optional fields */
"- " /* (8) separator */
"%ms " /* (9) file system type */
"%*s" /* (10) mount source */
"%*s" /* (11) mount options (bind mount) */
"%*[^\n]", /* some rubbish at the end */
&path,
&type);
if (k != 2) {
if (k == EOF)
break;
continue;
}
p = cunescape(path);
if (!p)
return -ENOMEM;
/* Let's ignore autofs mounts. If they aren't
* triggered yet, we want to avoid triggering
* them, as we don't make any guarantees for
* future submounts anyway. If they are
* already triggered, then we will find
* another entry for this. */
if (streq(type, "autofs")) {
top_autofs = top_autofs || path_equal(cleaned, p);
continue;
}
if (path_startswith(p, cleaned) &&
!set_contains(done, p)) {
r = set_consume(todo, p);
p = NULL;
if (r == -EEXIST)
continue;
if (r < 0)
return r;
}
}
/* If we have no submounts to process anymore and if
* the root is either already done, or an autofs, we
* are done */
if (set_isempty(todo) &&
(top_autofs || set_contains(done, cleaned)))
return 0;
if (!set_contains(done, cleaned) &&
!set_contains(todo, cleaned)) {
/* The prefix directory itself is not yet a
* mount, make it one. */
if (mount(cleaned, cleaned, NULL, MS_BIND|MS_REC, NULL) < 0)
return -errno;
r = get_mount_flags(prefix, &orig_flags);
if (r < 0)
return r;
orig_flags &= ~MS_RDONLY;
if (mount(NULL, prefix, NULL, orig_flags|MS_BIND|MS_REMOUNT|(ro ? MS_RDONLY : 0), NULL) < 0)
return -errno;
x = strdup(cleaned);
if (!x)
return -ENOMEM;
r = set_consume(done, x);
if (r < 0)
return r;
}
while ((x = set_steal_first(todo))) {
r = set_consume(done, x);
if (r == -EEXIST)
continue;
if (r < 0)
return r;
r = get_mount_flags(x, &orig_flags);
if (r < 0)
return r;
orig_flags &= ~MS_RDONLY;
if (mount(NULL, x, NULL, orig_flags|MS_BIND|MS_REMOUNT|(ro ? MS_RDONLY : 0), NULL) < 0) {
/* Deal with mount points that are
* obstructed by a later mount */
if (errno != ENOENT)
return -errno;
}
}
}
}
int fflush_and_check(FILE *f) {
assert(f);
errno = 0;
fflush(f);
if (ferror(f))
return errno ? -errno : -EIO;
return 0;
}
int tempfn_xxxxxx(const char *p, char **ret) {
const char *fn;
char *t;
assert(p);
assert(ret);
/*
* Turns this:
* /foo/bar/waldo
*
* Into this:
* /foo/bar/.#waldoXXXXXX
*/
fn = basename(p);
if (!filename_is_valid(fn))
return -EINVAL;
t = new(char, strlen(p) + 2 + 6 + 1);
if (!t)
return -ENOMEM;
strcpy(stpcpy(stpcpy(mempcpy(t, p, fn - p), ".#"), fn), "XXXXXX");
*ret = path_kill_slashes(t);
return 0;
}
int tempfn_random(const char *p, char **ret) {
const char *fn;
char *t, *x;
uint64_t u;
unsigned i;
assert(p);
assert(ret);
/*
* Turns this:
* /foo/bar/waldo
*
* Into this:
* /foo/bar/.#waldobaa2a261115984a9
*/
fn = basename(p);
if (!filename_is_valid(fn))
return -EINVAL;
t = new(char, strlen(p) + 2 + 16 + 1);
if (!t)
return -ENOMEM;
x = stpcpy(stpcpy(mempcpy(t, p, fn - p), ".#"), fn);
u = random_u64();
for (i = 0; i < 16; i++) {
*(x++) = hexchar(u & 0xF);
u >>= 4;
}
*x = 0;
*ret = path_kill_slashes(t);
return 0;
}
int tempfn_random_child(const char *p, char **ret) {
char *t, *x;
uint64_t u;
unsigned i;
assert(p);
assert(ret);
/* Turns this:
* /foo/bar/waldo
* Into this:
* /foo/bar/waldo/.#3c2b6219aa75d7d0
*/
t = new(char, strlen(p) + 3 + 16 + 1);
if (!t)
return -ENOMEM;
x = stpcpy(stpcpy(t, p), "/.#");
u = random_u64();
for (i = 0; i < 16; i++) {
*(x++) = hexchar(u & 0xF);
u >>= 4;
}
*x = 0;
*ret = path_kill_slashes(t);
return 0;
}
/* make sure the hostname is not "localhost" */
bool is_localhost(const char *hostname) {
assert(hostname);
/* This tries to identify local host and domain names
* described in RFC6761 plus the redhatism of .localdomain */
return streq(hostname, "localhost") ||
streq(hostname, "localhost.") ||
streq(hostname, "localdomain.") ||
streq(hostname, "localdomain") ||
endswith(hostname, ".localhost") ||
endswith(hostname, ".localhost.") ||
endswith(hostname, ".localdomain") ||
endswith(hostname, ".localdomain.");
}
int take_password_lock(const char *root) {
struct flock flock = {
.l_type = F_WRLCK,
.l_whence = SEEK_SET,
.l_start = 0,
.l_len = 0,
};
const char *path;
int fd, r;
/* This is roughly the same as lckpwdf(), but not as awful. We
* don't want to use alarm() and signals, hence we implement
* our own trivial version of this.
*
* Note that shadow-utils also takes per-database locks in
* addition to lckpwdf(). However, we don't given that they
* are redundant as they they invoke lckpwdf() first and keep
* it during everything they do. The per-database locks are
* awfully racy, and thus we just won't do them. */
if (root)
path = strappenda(root, "/etc/.pwd.lock");
else
path = "/etc/.pwd.lock";
fd = open(path, O_WRONLY|O_CREAT|O_CLOEXEC|O_NOCTTY|O_NOFOLLOW, 0600);
if (fd < 0)
return -errno;
r = fcntl(fd, F_SETLKW, &flock);
if (r < 0) {
safe_close(fd);
return -errno;
}
return fd;
}
int is_symlink(const char *path) {
struct stat info;
if (lstat(path, &info) < 0)
return -errno;
return !!S_ISLNK(info.st_mode);
}
int is_dir(const char* path, bool follow) {
struct stat st;
int r;
if (follow)
r = stat(path, &st);
else
r = lstat(path, &st);
if (r < 0)
return -errno;
return !!S_ISDIR(st.st_mode);
}
int unquote_first_word(const char **p, char **ret, bool relax) {
_cleanup_free_ char *s = NULL;
size_t allocated = 0, sz = 0;
enum {
START,
VALUE,
VALUE_ESCAPE,
SINGLE_QUOTE,
SINGLE_QUOTE_ESCAPE,
DOUBLE_QUOTE,
DOUBLE_QUOTE_ESCAPE,
SPACE,
} state = START;
assert(p);
assert(*p);
assert(ret);
/* Parses the first word of a string, and returns it in
* *ret. Removes all quotes in the process. When parsing fails
* (because of an uneven number of quotes or similar), leaves
* the pointer *p at the first invalid character. */
for (;;) {
char c = **p;
switch (state) {
case START:
if (c == 0)
goto finish;
else if (strchr(WHITESPACE, c))
break;
state = VALUE;
/* fallthrough */
case VALUE:
if (c == 0)
goto finish;
else if (c == '\'')
state = SINGLE_QUOTE;
else if (c == '\\')
state = VALUE_ESCAPE;
else if (c == '\"')
state = DOUBLE_QUOTE;
else if (strchr(WHITESPACE, c))
state = SPACE;
else {
if (!GREEDY_REALLOC(s, allocated, sz+2))
return -ENOMEM;
s[sz++] = c;
}
break;
case VALUE_ESCAPE:
if (c == 0) {
if (relax)
goto finish;
return -EINVAL;
}
if (!GREEDY_REALLOC(s, allocated, sz+2))
return -ENOMEM;
s[sz++] = c;
state = VALUE;
break;
case SINGLE_QUOTE:
if (c == 0) {
if (relax)
goto finish;
return -EINVAL;
} else if (c == '\'')
state = VALUE;
else if (c == '\\')
state = SINGLE_QUOTE_ESCAPE;
else {
if (!GREEDY_REALLOC(s, allocated, sz+2))
return -ENOMEM;
s[sz++] = c;
}
break;
case SINGLE_QUOTE_ESCAPE:
if (c == 0) {
if (relax)
goto finish;
return -EINVAL;
}
if (!GREEDY_REALLOC(s, allocated, sz+2))
return -ENOMEM;
s[sz++] = c;
state = SINGLE_QUOTE;
break;
case DOUBLE_QUOTE:
if (c == 0)
return -EINVAL;
else if (c == '\"')
state = VALUE;
else if (c == '\\')
state = DOUBLE_QUOTE_ESCAPE;
else {
if (!GREEDY_REALLOC(s, allocated, sz+2))
return -ENOMEM;
s[sz++] = c;
}
break;
case DOUBLE_QUOTE_ESCAPE:
if (c == 0) {
if (relax)
goto finish;
return -EINVAL;
}
if (!GREEDY_REALLOC(s, allocated, sz+2))
return -ENOMEM;
s[sz++] = c;
state = DOUBLE_QUOTE;
break;
case SPACE:
if (c == 0)
goto finish;
if (!strchr(WHITESPACE, c))
goto finish;
break;
}
(*p) ++;
}
finish:
if (!s) {
*ret = NULL;
return 0;
}
s[sz] = 0;
*ret = s;
s = NULL;
return 1;
}
int unquote_many_words(const char **p, ...) {
va_list ap;
char **l;
int n = 0, i, c, r;
/* Parses a number of words from a string, stripping any
* quotes if necessary. */
assert(p);
/* Count how many words are expected */
va_start(ap, p);
for (;;) {
if (!va_arg(ap, char **))
break;
n++;
}
va_end(ap);
if (n <= 0)
return 0;
/* Read all words into a temporary array */
l = newa0(char*, n);
for (c = 0; c < n; c++) {
r = unquote_first_word(p, &l[c], false);
if (r < 0) {
int j;
for (j = 0; j < c; j++)
free(l[j]);
return r;
}
if (r == 0)
break;
}
/* If we managed to parse all words, return them in the passed
* in parameters */
va_start(ap, p);
for (i = 0; i < n; i++) {
char **v;
v = va_arg(ap, char **);
assert(v);
*v = l[i];
}
va_end(ap);
return c;
}
int free_and_strdup(char **p, const char *s) {
char *t;
assert(p);
/* Replaces a string pointer with an strdup()ed new string,
* possibly freeing the old one. */
if (s) {
t = strdup(s);
if (!t)
return -ENOMEM;
} else
t = NULL;
free(*p);
*p = t;
return 0;
}
int sethostname_idempotent(const char *s) {
int r;
char buf[HOST_NAME_MAX + 1] = {};
assert(s);
r = gethostname(buf, sizeof(buf));
if (r < 0)
return -errno;
if (streq(buf, s))
return 0;
r = sethostname(s, strlen(s));
if (r < 0)
return -errno;
return 1;
}
int ptsname_malloc(int fd, char **ret) {
size_t l = 100;
assert(fd >= 0);
assert(ret);
for (;;) {
char *c;
c = new(char, l);
if (!c)
return -ENOMEM;
if (ptsname_r(fd, c, l) == 0) {
*ret = c;
return 0;
}
if (errno != ERANGE) {
free(c);
return -errno;
}
free(c);
l *= 2;
}
}
int openpt_in_namespace(pid_t pid, int flags) {
_cleanup_close_ int pidnsfd = -1, mntnsfd = -1, rootfd = -1;
_cleanup_close_pair_ int pair[2] = { -1, -1 };
union {
struct cmsghdr cmsghdr;
uint8_t buf[CMSG_SPACE(sizeof(int))];
} control = {};
struct msghdr mh = {
.msg_control = &control,
.msg_controllen = sizeof(control),
};
struct cmsghdr *cmsg;
siginfo_t si;
pid_t child;
int r;
assert(pid > 0);
r = namespace_open(pid, &pidnsfd, &mntnsfd, NULL, &rootfd);
if (r < 0)
return r;
if (socketpair(AF_UNIX, SOCK_DGRAM, 0, pair) < 0)
return -errno;
child = fork();
if (child < 0)
return -errno;
if (child == 0) {
int master;
pair[0] = safe_close(pair[0]);
r = namespace_enter(pidnsfd, mntnsfd, -1, rootfd);
if (r < 0)
_exit(EXIT_FAILURE);
master = posix_openpt(flags);
if (master < 0)
_exit(EXIT_FAILURE);
cmsg = CMSG_FIRSTHDR(&mh);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof(int));
memcpy(CMSG_DATA(cmsg), &master, sizeof(int));
mh.msg_controllen = cmsg->cmsg_len;
if (sendmsg(pair[1], &mh, MSG_NOSIGNAL) < 0)
_exit(EXIT_FAILURE);
_exit(EXIT_SUCCESS);
}
pair[1] = safe_close(pair[1]);
r = wait_for_terminate(child, &si);
if (r < 0)
return r;
if (si.si_code != CLD_EXITED || si.si_status != EXIT_SUCCESS)
return -EIO;
if (recvmsg(pair[0], &mh, MSG_NOSIGNAL|MSG_CMSG_CLOEXEC) < 0)
return -errno;
for (cmsg = CMSG_FIRSTHDR(&mh); cmsg; cmsg = CMSG_NXTHDR(&mh, cmsg))
if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
int *fds;
unsigned n_fds;
fds = (int*) CMSG_DATA(cmsg);
n_fds = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int);
if (n_fds != 1) {
close_many(fds, n_fds);
return -EIO;
}
return fds[0];
}
return -EIO;
}
ssize_t fgetxattrat_fake(int dirfd, const char *filename, const char *attribute, void *value, size_t size, int flags) {
_cleanup_close_ int fd = -1;
ssize_t l;
/* The kernel doesn't have a fgetxattrat() command, hence let's emulate one */
fd = openat(dirfd, filename, O_RDONLY|O_CLOEXEC|O_NOCTTY|O_NOATIME|(flags & AT_SYMLINK_NOFOLLOW ? O_NOFOLLOW : 0));
if (fd < 0)
return -errno;
l = fgetxattr(fd, attribute, value, size);
if (l < 0)
return -errno;
return l;
}
static int parse_crtime(le64_t le, usec_t *usec) {
uint64_t u;
assert(usec);
u = le64toh(le);
if (u == 0 || u == (uint64_t) -1)
return -EIO;
*usec = (usec_t) u;
return 0;
}
int fd_getcrtime(int fd, usec_t *usec) {
le64_t le;
ssize_t n;
assert(fd >= 0);
assert(usec);
/* Until Linux gets a real concept of birthtime/creation time,
* let's fake one with xattrs */
n = fgetxattr(fd, "user.crtime_usec", &le, sizeof(le));
if (n < 0)
return -errno;
if (n != sizeof(le))
return -EIO;
return parse_crtime(le, usec);
}
int fd_getcrtime_at(int dirfd, const char *name, usec_t *usec, int flags) {
le64_t le;
ssize_t n;
n = fgetxattrat_fake(dirfd, name, "user.crtime_usec", &le, sizeof(le), flags);
if (n < 0)
return -errno;
if (n != sizeof(le))
return -EIO;
return parse_crtime(le, usec);
}
int path_getcrtime(const char *p, usec_t *usec) {
le64_t le;
ssize_t n;
assert(p);
assert(usec);
n = getxattr(p, "user.crtime_usec", &le, sizeof(le));
if (n < 0)
return -errno;
if (n != sizeof(le))
return -EIO;
return parse_crtime(le, usec);
}
int fd_setcrtime(int fd, usec_t usec) {
le64_t le;
assert(fd >= 0);
le = htole64((uint64_t) usec);
if (fsetxattr(fd, "user.crtime_usec", &le, sizeof(le), 0) < 0)
return -errno;
return 0;
}
int same_fd(int a, int b) {
struct stat sta, stb;
assert(a >= 0);
assert(b >= 0);
if (a == b)
return true;
if (fstat(a, &sta) < 0)
return -errno;
if (fstat(b, &stb) < 0)
return -errno;
if ((sta.st_mode & S_IFMT) != (stb.st_mode & S_IFMT))
return false;
if (S_ISREG(sta.st_mode) || S_ISDIR(sta.st_mode) || S_ISFIFO(sta.st_mode) || S_ISSOCK(sta.st_mode) || S_ISLNK(sta.st_mode))
return (sta.st_dev == stb.st_dev) && (sta.st_ino == stb.st_ino);
/* We consider all device fds different... */
return false;
}