/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/ /*** This file is part of systemd. Copyright 2010 Lennart Poettering systemd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with systemd; If not, see <http://www.gnu.org/licenses/>. ***/ #include <string.h> #include <unistd.h> #include <errno.h> #include <stdlib.h> #include <signal.h> #include <libintl.h> #include <stdio.h> #include <syslog.h> #include <sched.h> #include <sys/resource.h> #include <linux/sched.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <dirent.h> #include <sys/ioctl.h> #include <stdarg.h> #include <poll.h> #include <ctype.h> #include <sys/prctl.h> #include <sys/utsname.h> #include <pwd.h> #include <netinet/ip.h> #include <sys/wait.h> #include <sys/time.h> #include <glob.h> #include <grp.h> #include <sys/mman.h> #include <sys/vfs.h> #include <sys/mount.h> #include <linux/magic.h> #include <limits.h> #include <langinfo.h> #include <locale.h> #include <sys/personality.h> #include <sys/xattr.h> #include <sys/statvfs.h> #include <sys/file.h> #include <linux/fs.h> /* When we include libgen.h because we need dirname() we immediately * undefine basename() since libgen.h defines it as a macro to the XDG * version which is really broken. */ #include <libgen.h> #undef basename #ifdef HAVE_SYS_AUXV_H #include <sys/auxv.h> #endif #include "config.h" #include "macro.h" #include "util.h" #include "ioprio.h" #include "missing.h" #include "log.h" #include "strv.h" #include "mkdir.h" #include "path-util.h" #include "exit-status.h" #include "hashmap.h" #include "env-util.h" #include "fileio.h" #include "device-nodes.h" #include "utf8.h" #include "gunicode.h" #include "virt.h" #include "def.h" #include "sparse-endian.h" #include "formats-util.h" #include "process-util.h" #include "random-util.h" #include "terminal-util.h" /* Put this test here for a lack of better place */ assert_cc(EAGAIN == EWOULDBLOCK); int saved_argc = 0; char **saved_argv = NULL; size_t page_size(void) { static thread_local size_t pgsz = 0; long r; if (_likely_(pgsz > 0)) return pgsz; r = sysconf(_SC_PAGESIZE); assert(r > 0); pgsz = (size_t) r; return pgsz; } bool streq_ptr(const char *a, const char *b) { /* Like streq(), but tries to make sense of NULL pointers */ if (a && b) return streq(a, b); if (!a && !b) return true; return false; } char* endswith(const char *s, const char *postfix) { size_t sl, pl; assert(s); assert(postfix); sl = strlen(s); pl = strlen(postfix); if (pl == 0) return (char*) s + sl; if (sl < pl) return NULL; if (memcmp(s + sl - pl, postfix, pl) != 0) return NULL; return (char*) s + sl - pl; } char* first_word(const char *s, const char *word) { size_t sl, wl; const char *p; assert(s); assert(word); /* Checks if the string starts with the specified word, either * followed by NUL or by whitespace. Returns a pointer to the * NUL or the first character after the whitespace. */ sl = strlen(s); wl = strlen(word); if (sl < wl) return NULL; if (wl == 0) return (char*) s; if (memcmp(s, word, wl) != 0) return NULL; p = s + wl; if (*p == 0) return (char*) p; if (!strchr(WHITESPACE, *p)) return NULL; p += strspn(p, WHITESPACE); return (char*) p; } size_t cescape_char(char c, char *buf) { char * buf_old = buf; switch (c) { case '\a': *(buf++) = '\\'; *(buf++) = 'a'; break; case '\b': *(buf++) = '\\'; *(buf++) = 'b'; break; case '\f': *(buf++) = '\\'; *(buf++) = 'f'; break; case '\n': *(buf++) = '\\'; *(buf++) = 'n'; break; case '\r': *(buf++) = '\\'; *(buf++) = 'r'; break; case '\t': *(buf++) = '\\'; *(buf++) = 't'; break; case '\v': *(buf++) = '\\'; *(buf++) = 'v'; break; case '\\': *(buf++) = '\\'; *(buf++) = '\\'; break; case '"': *(buf++) = '\\'; *(buf++) = '"'; break; case '\'': *(buf++) = '\\'; *(buf++) = '\''; break; default: /* For special chars we prefer octal over * hexadecimal encoding, simply because glib's * g_strescape() does the same */ if ((c < ' ') || (c >= 127)) { *(buf++) = '\\'; *(buf++) = octchar((unsigned char) c >> 6); *(buf++) = octchar((unsigned char) c >> 3); *(buf++) = octchar((unsigned char) c); } else *(buf++) = c; break; } return buf - buf_old; } int close_nointr(int fd) { assert(fd >= 0); if (close(fd) >= 0) return 0; /* * Just ignore EINTR; a retry loop is the wrong thing to do on * Linux. * * http://lkml.indiana.edu/hypermail/linux/kernel/0509.1/0877.html * https://bugzilla.gnome.org/show_bug.cgi?id=682819 * http://utcc.utoronto.ca/~cks/space/blog/unix/CloseEINTR * https://sites.google.com/site/michaelsafyan/software-engineering/checkforeintrwheninvokingclosethinkagain */ if (errno == EINTR) return 0; return -errno; } int safe_close(int fd) { /* * Like close_nointr() but cannot fail. Guarantees errno is * unchanged. Is a NOP with negative fds passed, and returns * -1, so that it can be used in this syntax: * * fd = safe_close(fd); */ if (fd >= 0) { PROTECT_ERRNO; /* The kernel might return pretty much any error code * via close(), but the fd will be closed anyway. The * only condition we want to check for here is whether * the fd was invalid at all... */ assert_se(close_nointr(fd) != -EBADF); } return -1; } void close_many(const int fds[], unsigned n_fd) { unsigned i; assert(fds || n_fd <= 0); for (i = 0; i < n_fd; i++) safe_close(fds[i]); } int unlink_noerrno(const char *path) { PROTECT_ERRNO; int r; r = unlink(path); if (r < 0) return -errno; return 0; } int parse_boolean(const char *v) { assert(v); if (streq(v, "1") || strcaseeq(v, "yes") || strcaseeq(v, "y") || strcaseeq(v, "true") || strcaseeq(v, "t") || strcaseeq(v, "on")) return 1; else if (streq(v, "0") || strcaseeq(v, "no") || strcaseeq(v, "n") || strcaseeq(v, "false") || strcaseeq(v, "f") || strcaseeq(v, "off")) return 0; return -EINVAL; } int parse_pid(const char *s, pid_t* ret_pid) { unsigned long ul = 0; pid_t pid; int r; assert(s); assert(ret_pid); r = safe_atolu(s, &ul); if (r < 0) return r; pid = (pid_t) ul; if ((unsigned long) pid != ul) return -ERANGE; if (pid <= 0) return -ERANGE; *ret_pid = pid; return 0; } int parse_uid(const char *s, uid_t* ret_uid) { unsigned long ul = 0; uid_t uid; int r; assert(s); assert(ret_uid); r = safe_atolu(s, &ul); if (r < 0) return r; uid = (uid_t) ul; if ((unsigned long) uid != ul) return -ERANGE; /* Some libc APIs use UID_INVALID as special placeholder */ if (uid == (uid_t) 0xFFFFFFFF) return -ENXIO; /* A long time ago UIDs where 16bit, hence explicitly avoid the 16bit -1 too */ if (uid == (uid_t) 0xFFFF) return -ENXIO; *ret_uid = uid; return 0; } int safe_atou(const char *s, unsigned *ret_u) { char *x = NULL; unsigned long l; assert(s); assert(ret_u); errno = 0; l = strtoul(s, &x, 0); if (!x || x == s || *x || errno) return errno > 0 ? -errno : -EINVAL; if ((unsigned long) (unsigned) l != l) return -ERANGE; *ret_u = (unsigned) l; return 0; } int safe_atoi(const char *s, int *ret_i) { char *x = NULL; long l; assert(s); assert(ret_i); errno = 0; l = strtol(s, &x, 0); if (!x || x == s || *x || errno) return errno > 0 ? -errno : -EINVAL; if ((long) (int) l != l) return -ERANGE; *ret_i = (int) l; return 0; } int safe_atou8(const char *s, uint8_t *ret) { char *x = NULL; unsigned long l; assert(s); assert(ret); errno = 0; l = strtoul(s, &x, 0); if (!x || x == s || *x || errno) return errno > 0 ? -errno : -EINVAL; if ((unsigned long) (uint8_t) l != l) return -ERANGE; *ret = (uint8_t) l; return 0; } int safe_atou16(const char *s, uint16_t *ret) { char *x = NULL; unsigned long l; assert(s); assert(ret); errno = 0; l = strtoul(s, &x, 0); if (!x || x == s || *x || errno) return errno > 0 ? -errno : -EINVAL; if ((unsigned long) (uint16_t) l != l) return -ERANGE; *ret = (uint16_t) l; return 0; } int safe_atoi16(const char *s, int16_t *ret) { char *x = NULL; long l; assert(s); assert(ret); errno = 0; l = strtol(s, &x, 0); if (!x || x == s || *x || errno) return errno > 0 ? -errno : -EINVAL; if ((long) (int16_t) l != l) return -ERANGE; *ret = (int16_t) l; return 0; } int safe_atollu(const char *s, long long unsigned *ret_llu) { char *x = NULL; unsigned long long l; assert(s); assert(ret_llu); errno = 0; l = strtoull(s, &x, 0); if (!x || x == s || *x || errno) return errno ? -errno : -EINVAL; *ret_llu = l; return 0; } int safe_atolli(const char *s, long long int *ret_lli) { char *x = NULL; long long l; assert(s); assert(ret_lli); errno = 0; l = strtoll(s, &x, 0); if (!x || x == s || *x || errno) return errno ? -errno : -EINVAL; *ret_lli = l; return 0; } int safe_atod(const char *s, double *ret_d) { char *x = NULL; double d = 0; locale_t loc; assert(s); assert(ret_d); loc = newlocale(LC_NUMERIC_MASK, "C", (locale_t) 0); if (loc == (locale_t) 0) return -errno; errno = 0; d = strtod_l(s, &x, loc); if (!x || x == s || *x || errno) { freelocale(loc); return errno ? -errno : -EINVAL; } freelocale(loc); *ret_d = (double) d; return 0; } static size_t strcspn_escaped(const char *s, const char *reject) { bool escaped = false; int n; for (n=0; s[n]; n++) { if (escaped) escaped = false; else if (s[n] == '\\') escaped = true; else if (strchr(reject, s[n])) break; } /* if s ends in \, return index of previous char */ return n - escaped; } /* Split a string into words. */ const char* split(const char **state, size_t *l, const char *separator, bool quoted) { const char *current; current = *state; if (!*current) { assert(**state == '\0'); return NULL; } current += strspn(current, separator); if (!*current) { *state = current; return NULL; } if (quoted && strchr("\'\"", *current)) { char quotechars[2] = {*current, '\0'}; *l = strcspn_escaped(current + 1, quotechars); if (current[*l + 1] == '\0' || (current[*l + 2] && !strchr(separator, current[*l + 2]))) { /* right quote missing or garbage at the end */ *state = current; return NULL; } assert(current[*l + 1] == quotechars[0]); *state = current++ + *l + 2; } else if (quoted) { *l = strcspn_escaped(current, separator); if (current[*l] && !strchr(separator, current[*l])) { /* unfinished escape */ *state = current; return NULL; } *state = current + *l; } else { *l = strcspn(current, separator); *state = current + *l; } return current; } int fchmod_umask(int fd, mode_t m) { mode_t u; int r; u = umask(0777); r = fchmod(fd, m & (~u)) < 0 ? -errno : 0; umask(u); return r; } char *truncate_nl(char *s) { assert(s); s[strcspn(s, NEWLINE)] = 0; return s; } char *strnappend(const char *s, const char *suffix, size_t b) { size_t a; char *r; if (!s && !suffix) return strdup(""); if (!s) return strndup(suffix, b); if (!suffix) return strdup(s); assert(s); assert(suffix); a = strlen(s); if (b > ((size_t) -1) - a) return NULL; r = new(char, a+b+1); if (!r) return NULL; memcpy(r, s, a); memcpy(r+a, suffix, b); r[a+b] = 0; return r; } char *strappend(const char *s, const char *suffix) { return strnappend(s, suffix, suffix ? strlen(suffix) : 0); } int readlinkat_malloc(int fd, const char *p, char **ret) { size_t l = 100; int r; assert(p); assert(ret); for (;;) { char *c; ssize_t n; c = new(char, l); if (!c) return -ENOMEM; n = readlinkat(fd, p, c, l-1); if (n < 0) { r = -errno; free(c); return r; } if ((size_t) n < l-1) { c[n] = 0; *ret = c; return 0; } free(c); l *= 2; } } int readlink_malloc(const char *p, char **ret) { return readlinkat_malloc(AT_FDCWD, p, ret); } int readlink_value(const char *p, char **ret) { _cleanup_free_ char *link = NULL; char *value; int r; r = readlink_malloc(p, &link); if (r < 0) return r; value = basename(link); if (!value) return -ENOENT; value = strdup(value); if (!value) return -ENOMEM; *ret = value; return 0; } int readlink_and_make_absolute(const char *p, char **r) { _cleanup_free_ char *target = NULL; char *k; int j; assert(p); assert(r); j = readlink_malloc(p, &target); if (j < 0) return j; k = file_in_same_dir(p, target); if (!k) return -ENOMEM; *r = k; return 0; } int readlink_and_canonicalize(const char *p, char **r) { char *t, *s; int j; assert(p); assert(r); j = readlink_and_make_absolute(p, &t); if (j < 0) return j; s = canonicalize_file_name(t); if (s) { free(t); *r = s; } else *r = t; path_kill_slashes(*r); return 0; } int reset_all_signal_handlers(void) { int sig, r = 0; for (sig = 1; sig < _NSIG; sig++) { struct sigaction sa = { .sa_handler = SIG_DFL, .sa_flags = SA_RESTART, }; /* These two cannot be caught... */ if (sig == SIGKILL || sig == SIGSTOP) continue; /* On Linux the first two RT signals are reserved by * glibc, and sigaction() will return EINVAL for them. */ if ((sigaction(sig, &sa, NULL) < 0)) if (errno != EINVAL && r == 0) r = -errno; } return r; } int reset_signal_mask(void) { sigset_t ss; if (sigemptyset(&ss) < 0) return -errno; if (sigprocmask(SIG_SETMASK, &ss, NULL) < 0) return -errno; return 0; } char *strstrip(char *s) { char *e; /* Drops trailing whitespace. Modifies the string in * place. Returns pointer to first non-space character */ s += strspn(s, WHITESPACE); for (e = strchr(s, 0); e > s; e --) if (!strchr(WHITESPACE, e[-1])) break; *e = 0; return s; } char *delete_chars(char *s, const char *bad) { char *f, *t; /* Drops all whitespace, regardless where in the string */ for (f = s, t = s; *f; f++) { if (strchr(bad, *f)) continue; *(t++) = *f; } *t = 0; return s; } char *file_in_same_dir(const char *path, const char *filename) { char *e, *ret; size_t k; assert(path); assert(filename); /* This removes the last component of path and appends * filename, unless the latter is absolute anyway or the * former isn't */ if (path_is_absolute(filename)) return strdup(filename); e = strrchr(path, '/'); if (!e) return strdup(filename); k = strlen(filename); ret = new(char, (e + 1 - path) + k + 1); if (!ret) return NULL; memcpy(mempcpy(ret, path, e + 1 - path), filename, k + 1); return ret; } int rmdir_parents(const char *path, const char *stop) { size_t l; int r = 0; assert(path); assert(stop); l = strlen(path); /* Skip trailing slashes */ while (l > 0 && path[l-1] == '/') l--; while (l > 0) { char *t; /* Skip last component */ while (l > 0 && path[l-1] != '/') l--; /* Skip trailing slashes */ while (l > 0 && path[l-1] == '/') l--; if (l <= 0) break; if (!(t = strndup(path, l))) return -ENOMEM; if (path_startswith(stop, t)) { free(t); return 0; } r = rmdir(t); free(t); if (r < 0) if (errno != ENOENT) return -errno; } return 0; } char hexchar(int x) { static const char table[16] = "0123456789abcdef"; return table[x & 15]; } int unhexchar(char c) { if (c >= '0' && c <= '9') return c - '0'; if (c >= 'a' && c <= 'f') return c - 'a' + 10; if (c >= 'A' && c <= 'F') return c - 'A' + 10; return -EINVAL; } char *hexmem(const void *p, size_t l) { char *r, *z; const uint8_t *x; z = r = malloc(l * 2 + 1); if (!r) return NULL; for (x = p; x < (const uint8_t*) p + l; x++) { *(z++) = hexchar(*x >> 4); *(z++) = hexchar(*x & 15); } *z = 0; return r; } void *unhexmem(const char *p, size_t l) { uint8_t *r, *z; const char *x; assert(p); z = r = malloc((l + 1) / 2 + 1); if (!r) return NULL; for (x = p; x < p + l; x += 2) { int a, b; a = unhexchar(x[0]); if (x+1 < p + l) b = unhexchar(x[1]); else b = 0; *(z++) = (uint8_t) a << 4 | (uint8_t) b; } *z = 0; return r; } char octchar(int x) { return '0' + (x & 7); } int unoctchar(char c) { if (c >= '0' && c <= '7') return c - '0'; return -EINVAL; } char decchar(int x) { return '0' + (x % 10); } int undecchar(char c) { if (c >= '0' && c <= '9') return c - '0'; return -EINVAL; } char *cescape(const char *s) { char *r, *t; const char *f; assert(s); /* Does C style string escaping. May be reversed with * cunescape(). */ r = new(char, strlen(s)*4 + 1); if (!r) return NULL; for (f = s, t = r; *f; f++) t += cescape_char(*f, t); *t = 0; return r; } static int cunescape_one(const char *p, size_t length, char *ret, uint32_t *ret_unicode) { int r = 1; assert(p); assert(*p); assert(ret); /* Unescapes C style. Returns the unescaped character in ret, * unless we encountered a \u sequence in which case the full * unicode character is returned in ret_unicode, instead. */ if (length != (size_t) -1 && length < 1) return -EINVAL; switch (p[0]) { case 'a': *ret = '\a'; break; case 'b': *ret = '\b'; break; case 'f': *ret = '\f'; break; case 'n': *ret = '\n'; break; case 'r': *ret = '\r'; break; case 't': *ret = '\t'; break; case 'v': *ret = '\v'; break; case '\\': *ret = '\\'; break; case '"': *ret = '"'; break; case '\'': *ret = '\''; break; case 's': /* This is an extension of the XDG syntax files */ *ret = ' '; break; case 'x': { /* hexadecimal encoding */ int a, b; if (length != (size_t) -1 && length < 3) return -EINVAL; a = unhexchar(p[1]); if (a < 0) return -EINVAL; b = unhexchar(p[2]); if (b < 0) return -EINVAL; /* Don't allow NUL bytes */ if (a == 0 && b == 0) return -EINVAL; *ret = (char) ((a << 4U) | b); r = 3; break; } case 'u': { /* C++11 style 16bit unicode */ int a[4]; unsigned i; uint32_t c; if (length != (size_t) -1 && length < 5) return -EINVAL; for (i = 0; i < 4; i++) { a[i] = unhexchar(p[1 + i]); if (a[i] < 0) return a[i]; } c = ((uint32_t) a[0] << 12U) | ((uint32_t) a[1] << 8U) | ((uint32_t) a[2] << 4U) | (uint32_t) a[3]; /* Don't allow 0 chars */ if (c == 0) return -EINVAL; if (c < 128) *ret = c; else { if (!ret_unicode) return -EINVAL; *ret = 0; *ret_unicode = c; } r = 5; break; } case 'U': { /* C++11 style 32bit unicode */ int a[8]; unsigned i; uint32_t c; if (length != (size_t) -1 && length < 9) return -EINVAL; for (i = 0; i < 8; i++) { a[i] = unhexchar(p[1 + i]); if (a[i] < 0) return a[i]; } c = ((uint32_t) a[0] << 28U) | ((uint32_t) a[1] << 24U) | ((uint32_t) a[2] << 20U) | ((uint32_t) a[3] << 16U) | ((uint32_t) a[4] << 12U) | ((uint32_t) a[5] << 8U) | ((uint32_t) a[6] << 4U) | (uint32_t) a[7]; /* Don't allow 0 chars */ if (c == 0) return -EINVAL; /* Don't allow invalid code points */ if (!unichar_is_valid(c)) return -EINVAL; if (c < 128) *ret = c; else { if (!ret_unicode) return -EINVAL; *ret = 0; *ret_unicode = c; } r = 9; break; } case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { /* octal encoding */ int a, b, c; uint32_t m; if (length != (size_t) -1 && length < 4) return -EINVAL; a = unoctchar(p[0]); if (a < 0) return -EINVAL; b = unoctchar(p[1]); if (b < 0) return -EINVAL; c = unoctchar(p[2]); if (c < 0) return -EINVAL; /* don't allow NUL bytes */ if (a == 0 && b == 0 && c == 0) return -EINVAL; /* Don't allow bytes above 255 */ m = ((uint32_t) a << 6U) | ((uint32_t) b << 3U) | (uint32_t) c; if (m > 255) return -EINVAL; *ret = m; r = 3; break; } default: return -EINVAL; } return r; } int cunescape_length_with_prefix(const char *s, size_t length, const char *prefix, UnescapeFlags flags, char **ret) { char *r, *t; const char *f; size_t pl; assert(s); assert(ret); /* Undoes C style string escaping, and optionally prefixes it. */ pl = prefix ? strlen(prefix) : 0; r = new(char, pl+length+1); if (!r) return -ENOMEM; if (prefix) memcpy(r, prefix, pl); for (f = s, t = r + pl; f < s + length; f++) { size_t remaining; uint32_t u; char c; int k; remaining = s + length - f; assert(remaining > 0); if (*f != '\\') { /* A literal literal, copy verbatim */ *(t++) = *f; continue; } if (remaining == 1) { if (flags & UNESCAPE_RELAX) { /* A trailing backslash, copy verbatim */ *(t++) = *f; continue; } free(r); return -EINVAL; } k = cunescape_one(f + 1, remaining - 1, &c, &u); if (k < 0) { if (flags & UNESCAPE_RELAX) { /* Invalid escape code, let's take it literal then */ *(t++) = '\\'; continue; } free(r); return k; } if (c != 0) /* Non-Unicode? Let's encode this directly */ *(t++) = c; else /* Unicode? Then let's encode this in UTF-8 */ t += utf8_encode_unichar(t, u); f += k; } *t = 0; *ret = r; return t - r; } int cunescape_length(const char *s, size_t length, UnescapeFlags flags, char **ret) { return cunescape_length_with_prefix(s, length, NULL, flags, ret); } int cunescape(const char *s, UnescapeFlags flags, char **ret) { return cunescape_length(s, strlen(s), flags, ret); } char *xescape(const char *s, const char *bad) { char *r, *t; const char *f; /* Escapes all chars in bad, in addition to \ and all special * chars, in \xFF style escaping. May be reversed with * cunescape(). */ r = new(char, strlen(s) * 4 + 1); if (!r) return NULL; for (f = s, t = r; *f; f++) { if ((*f < ' ') || (*f >= 127) || (*f == '\\') || strchr(bad, *f)) { *(t++) = '\\'; *(t++) = 'x'; *(t++) = hexchar(*f >> 4); *(t++) = hexchar(*f); } else *(t++) = *f; } *t = 0; return r; } char *ascii_strlower(char *t) { char *p; assert(t); for (p = t; *p; p++) if (*p >= 'A' && *p <= 'Z') *p = *p - 'A' + 'a'; return t; } _pure_ static bool hidden_file_allow_backup(const char *filename) { assert(filename); return filename[0] == '.' || streq(filename, "lost+found") || streq(filename, "aquota.user") || streq(filename, "aquota.group") || endswith(filename, ".rpmnew") || endswith(filename, ".rpmsave") || endswith(filename, ".rpmorig") || endswith(filename, ".dpkg-old") || endswith(filename, ".dpkg-new") || endswith(filename, ".dpkg-tmp") || endswith(filename, ".dpkg-dist") || endswith(filename, ".dpkg-bak") || endswith(filename, ".dpkg-backup") || endswith(filename, ".dpkg-remove") || endswith(filename, ".swp"); } bool hidden_file(const char *filename) { assert(filename); if (endswith(filename, "~")) return true; return hidden_file_allow_backup(filename); } int fd_nonblock(int fd, bool nonblock) { int flags, nflags; assert(fd >= 0); flags = fcntl(fd, F_GETFL, 0); if (flags < 0) return -errno; if (nonblock) nflags = flags | O_NONBLOCK; else nflags = flags & ~O_NONBLOCK; if (nflags == flags) return 0; if (fcntl(fd, F_SETFL, nflags) < 0) return -errno; return 0; } int fd_cloexec(int fd, bool cloexec) { int flags, nflags; assert(fd >= 0); flags = fcntl(fd, F_GETFD, 0); if (flags < 0) return -errno; if (cloexec) nflags = flags | FD_CLOEXEC; else nflags = flags & ~FD_CLOEXEC; if (nflags == flags) return 0; if (fcntl(fd, F_SETFD, nflags) < 0) return -errno; return 0; } _pure_ static bool fd_in_set(int fd, const int fdset[], unsigned n_fdset) { unsigned i; assert(n_fdset == 0 || fdset); for (i = 0; i < n_fdset; i++) if (fdset[i] == fd) return true; return false; } int close_all_fds(const int except[], unsigned n_except) { _cleanup_closedir_ DIR *d = NULL; struct dirent *de; int r = 0; assert(n_except == 0 || except); d = opendir("/proc/self/fd"); if (!d) { int fd; struct rlimit rl; /* When /proc isn't available (for example in chroots) * the fallback is brute forcing through the fd * table */ assert_se(getrlimit(RLIMIT_NOFILE, &rl) >= 0); for (fd = 3; fd < (int) rl.rlim_max; fd ++) { if (fd_in_set(fd, except, n_except)) continue; if (close_nointr(fd) < 0) if (errno != EBADF && r == 0) r = -errno; } return r; } while ((de = readdir(d))) { int fd = -1; if (hidden_file(de->d_name)) continue; if (safe_atoi(de->d_name, &fd) < 0) /* Let's better ignore this, just in case */ continue; if (fd < 3) continue; if (fd == dirfd(d)) continue; if (fd_in_set(fd, except, n_except)) continue; if (close_nointr(fd) < 0) { /* Valgrind has its own FD and doesn't want to have it closed */ if (errno != EBADF && r == 0) r = -errno; } } return r; } bool chars_intersect(const char *a, const char *b) { const char *p; /* Returns true if any of the chars in a are in b. */ for (p = a; *p; p++) if (strchr(b, *p)) return true; return false; } bool fstype_is_network(const char *fstype) { static const char table[] = "afs\0" "cifs\0" "smbfs\0" "sshfs\0" "ncpfs\0" "ncp\0" "nfs\0" "nfs4\0" "gfs\0" "gfs2\0" "glusterfs\0"; const char *x; x = startswith(fstype, "fuse."); if (x) fstype = x; return nulstr_contains(table, fstype); } int flush_fd(int fd) { struct pollfd pollfd = { .fd = fd, .events = POLLIN, }; for (;;) { char buf[LINE_MAX]; ssize_t l; int r; r = poll(&pollfd, 1, 0); if (r < 0) { if (errno == EINTR) continue; return -errno; } else if (r == 0) return 0; l = read(fd, buf, sizeof(buf)); if (l < 0) { if (errno == EINTR) continue; if (errno == EAGAIN) return 0; return -errno; } else if (l == 0) return 0; } } int sigaction_many(const struct sigaction *sa, ...) { va_list ap; int r = 0, sig; va_start(ap, sa); while ((sig = va_arg(ap, int)) > 0) if (sigaction(sig, sa, NULL) < 0) r = -errno; va_end(ap); return r; } int ignore_signals(int sig, ...) { struct sigaction sa = { .sa_handler = SIG_IGN, .sa_flags = SA_RESTART, }; va_list ap; int r = 0; if (sigaction(sig, &sa, NULL) < 0) r = -errno; va_start(ap, sig); while ((sig = va_arg(ap, int)) > 0) if (sigaction(sig, &sa, NULL) < 0) r = -errno; va_end(ap); return r; } int default_signals(int sig, ...) { struct sigaction sa = { .sa_handler = SIG_DFL, .sa_flags = SA_RESTART, }; va_list ap; int r = 0; if (sigaction(sig, &sa, NULL) < 0) r = -errno; va_start(ap, sig); while ((sig = va_arg(ap, int)) > 0) if (sigaction(sig, &sa, NULL) < 0) r = -errno; va_end(ap); return r; } void safe_close_pair(int p[]) { assert(p); if (p[0] == p[1]) { /* Special case pairs which use the same fd in both * directions... */ p[0] = p[1] = safe_close(p[0]); return; } p[0] = safe_close(p[0]); p[1] = safe_close(p[1]); } ssize_t loop_read(int fd, void *buf, size_t nbytes, bool do_poll) { uint8_t *p = buf; ssize_t n = 0; assert(fd >= 0); assert(buf); while (nbytes > 0) { ssize_t k; k = read(fd, p, nbytes); if (k < 0) { if (errno == EINTR) continue; if (errno == EAGAIN && do_poll) { /* We knowingly ignore any return value here, * and expect that any error/EOF is reported * via read() */ fd_wait_for_event(fd, POLLIN, USEC_INFINITY); continue; } return n > 0 ? n : -errno; } if (k == 0) return n; p += k; nbytes -= k; n += k; } return n; } int loop_read_exact(int fd, void *buf, size_t nbytes, bool do_poll) { ssize_t n; n = loop_read(fd, buf, nbytes, do_poll); if (n < 0) return n; if ((size_t) n != nbytes) return -EIO; return 0; } int loop_write(int fd, const void *buf, size_t nbytes, bool do_poll) { const uint8_t *p = buf; assert(fd >= 0); assert(buf); errno = 0; while (nbytes > 0) { ssize_t k; k = write(fd, p, nbytes); if (k < 0) { if (errno == EINTR) continue; if (errno == EAGAIN && do_poll) { /* We knowingly ignore any return value here, * and expect that any error/EOF is reported * via write() */ fd_wait_for_event(fd, POLLOUT, USEC_INFINITY); continue; } return -errno; } if (k == 0) /* Can't really happen */ return -EIO; p += k; nbytes -= k; } return 0; } int parse_size(const char *t, off_t base, off_t *size) { /* Soo, sometimes we want to parse IEC binary suffxies, and * sometimes SI decimal suffixes. This function can parse * both. Which one is the right way depends on the * context. Wikipedia suggests that SI is customary for * hardware metrics and network speeds, while IEC is * customary for most data sizes used by software and volatile * (RAM) memory. Hence be careful which one you pick! * * In either case we use just K, M, G as suffix, and not Ki, * Mi, Gi or so (as IEC would suggest). That's because that's * frickin' ugly. But this means you really need to make sure * to document which base you are parsing when you use this * call. */ struct table { const char *suffix; unsigned long long factor; }; static const struct table iec[] = { { "E", 1024ULL*1024ULL*1024ULL*1024ULL*1024ULL*1024ULL }, { "P", 1024ULL*1024ULL*1024ULL*1024ULL*1024ULL }, { "T", 1024ULL*1024ULL*1024ULL*1024ULL }, { "G", 1024ULL*1024ULL*1024ULL }, { "M", 1024ULL*1024ULL }, { "K", 1024ULL }, { "B", 1 }, { "", 1 }, }; static const struct table si[] = { { "E", 1000ULL*1000ULL*1000ULL*1000ULL*1000ULL*1000ULL }, { "P", 1000ULL*1000ULL*1000ULL*1000ULL*1000ULL }, { "T", 1000ULL*1000ULL*1000ULL*1000ULL }, { "G", 1000ULL*1000ULL*1000ULL }, { "M", 1000ULL*1000ULL }, { "K", 1000ULL }, { "B", 1 }, { "", 1 }, }; const struct table *table; const char *p; unsigned long long r = 0; unsigned n_entries, start_pos = 0; assert(t); assert(base == 1000 || base == 1024); assert(size); if (base == 1000) { table = si; n_entries = ELEMENTSOF(si); } else { table = iec; n_entries = ELEMENTSOF(iec); } p = t; do { long long l; unsigned long long l2; double frac = 0; char *e; unsigned i; errno = 0; l = strtoll(p, &e, 10); if (errno > 0) return -errno; if (l < 0) return -ERANGE; if (e == p) return -EINVAL; if (*e == '.') { e++; if (*e >= '0' && *e <= '9') { char *e2; /* strotoull itself would accept space/+/- */ l2 = strtoull(e, &e2, 10); if (errno == ERANGE) return -errno; /* Ignore failure. E.g. 10.M is valid */ frac = l2; for (; e < e2; e++) frac /= 10; } } e += strspn(e, WHITESPACE); for (i = start_pos; i < n_entries; i++) if (startswith(e, table[i].suffix)) { unsigned long long tmp; if ((unsigned long long) l + (frac > 0) > ULLONG_MAX / table[i].factor) return -ERANGE; tmp = l * table[i].factor + (unsigned long long) (frac * table[i].factor); if (tmp > ULLONG_MAX - r) return -ERANGE; r += tmp; if ((unsigned long long) (off_t) r != r) return -ERANGE; p = e + strlen(table[i].suffix); start_pos = i + 1; break; } if (i >= n_entries) return -EINVAL; } while (*p); *size = r; return 0; } bool is_device_path(const char *path) { /* Returns true on paths that refer to a device, either in * sysfs or in /dev */ return path_startswith(path, "/dev/") || path_startswith(path, "/sys/"); } int dir_is_empty(const char *path) { _cleanup_closedir_ DIR *d; d = opendir(path); if (!d) return -errno; for (;;) { struct dirent *de; errno = 0; de = readdir(d); if (!de && errno != 0) return -errno; if (!de) return 1; if (!hidden_file(de->d_name)) return 0; } } char* dirname_malloc(const char *path) { char *d, *dir, *dir2; d = strdup(path); if (!d) return NULL; dir = dirname(d); assert(dir); if (dir != d) { dir2 = strdup(dir); free(d); return dir2; } return dir; } void rename_process(const char name[8]) { assert(name); /* This is a like a poor man's setproctitle(). It changes the * comm field, argv[0], and also the glibc's internally used * name of the process. For the first one a limit of 16 chars * applies, to the second one usually one of 10 (i.e. length * of "/sbin/init"), to the third one one of 7 (i.e. length of * "systemd"). If you pass a longer string it will be * truncated */ prctl(PR_SET_NAME, name); if (program_invocation_name) strncpy(program_invocation_name, name, strlen(program_invocation_name)); if (saved_argc > 0) { int i; if (saved_argv[0]) strncpy(saved_argv[0], name, strlen(saved_argv[0])); for (i = 1; i < saved_argc; i++) { if (!saved_argv[i]) break; memzero(saved_argv[i], strlen(saved_argv[i])); } } } void sigset_add_many(sigset_t *ss, ...) { va_list ap; int sig; assert(ss); va_start(ap, ss); while ((sig = va_arg(ap, int)) > 0) assert_se(sigaddset(ss, sig) == 0); va_end(ap); } int sigprocmask_many(int how, ...) { va_list ap; sigset_t ss; int sig; assert_se(sigemptyset(&ss) == 0); va_start(ap, how); while ((sig = va_arg(ap, int)) > 0) assert_se(sigaddset(&ss, sig) == 0); va_end(ap); if (sigprocmask(how, &ss, NULL) < 0) return -errno; return 0; } char* gethostname_malloc(void) { struct utsname u; assert_se(uname(&u) >= 0); if (!isempty(u.nodename) && !streq(u.nodename, "(none)")) return strdup(u.nodename); return strdup(u.sysname); } bool hostname_is_set(void) { struct utsname u; assert_se(uname(&u) >= 0); return !isempty(u.nodename) && !streq(u.nodename, "(none)"); } char *lookup_uid(uid_t uid) { long bufsize; char *name; _cleanup_free_ char *buf = NULL; struct passwd pwbuf, *pw = NULL; /* Shortcut things to avoid NSS lookups */ if (uid == 0) return strdup("root"); bufsize = sysconf(_SC_GETPW_R_SIZE_MAX); if (bufsize <= 0) bufsize = 4096; buf = malloc(bufsize); if (!buf) return NULL; if (getpwuid_r(uid, &pwbuf, buf, bufsize, &pw) == 0 && pw) return strdup(pw->pw_name); if (asprintf(&name, UID_FMT, uid) < 0) return NULL; return name; } char* getlogname_malloc(void) { uid_t uid; struct stat st; if (isatty(STDIN_FILENO) && fstat(STDIN_FILENO, &st) >= 0) uid = st.st_uid; else uid = getuid(); return lookup_uid(uid); } char *getusername_malloc(void) { const char *e; e = getenv("USER"); if (e) return strdup(e); return lookup_uid(getuid()); } bool is_temporary_fs(const struct statfs *s) { assert(s); return F_TYPE_EQUAL(s->f_type, TMPFS_MAGIC) || F_TYPE_EQUAL(s->f_type, RAMFS_MAGIC); } int fd_is_temporary_fs(int fd) { struct statfs s; if (fstatfs(fd, &s) < 0) return -errno; return is_temporary_fs(&s); } int chmod_and_chown(const char *path, mode_t mode, uid_t uid, gid_t gid) { assert(path); /* Under the assumption that we are running privileged we * first change the access mode and only then hand out * ownership to avoid a window where access is too open. */ if (mode != MODE_INVALID) if (chmod(path, mode) < 0) return -errno; if (uid != UID_INVALID || gid != GID_INVALID) if (chown(path, uid, gid) < 0) return -errno; return 0; } int fchmod_and_fchown(int fd, mode_t mode, uid_t uid, gid_t gid) { assert(fd >= 0); /* Under the assumption that we are running privileged we * first change the access mode and only then hand out * ownership to avoid a window where access is too open. */ if (mode != MODE_INVALID) if (fchmod(fd, mode) < 0) return -errno; if (uid != UID_INVALID || gid != GID_INVALID) if (fchown(fd, uid, gid) < 0) return -errno; return 0; } cpu_set_t* cpu_set_malloc(unsigned *ncpus) { cpu_set_t *r; unsigned n = 1024; /* Allocates the cpuset in the right size */ for (;;) { if (!(r = CPU_ALLOC(n))) return NULL; if (sched_getaffinity(0, CPU_ALLOC_SIZE(n), r) >= 0) { CPU_ZERO_S(CPU_ALLOC_SIZE(n), r); if (ncpus) *ncpus = n; return r; } CPU_FREE(r); if (errno != EINVAL) return NULL; n *= 2; } } int files_same(const char *filea, const char *fileb) { struct stat a, b; if (stat(filea, &a) < 0) return -errno; if (stat(fileb, &b) < 0) return -errno; return a.st_dev == b.st_dev && a.st_ino == b.st_ino; } int running_in_chroot(void) { int ret; ret = files_same("/proc/1/root", "/"); if (ret < 0) return ret; return ret == 0; } static char *ascii_ellipsize_mem(const char *s, size_t old_length, size_t new_length, unsigned percent) { size_t x; char *r; assert(s); assert(percent <= 100); assert(new_length >= 3); if (old_length <= 3 || old_length <= new_length) return strndup(s, old_length); r = new0(char, new_length+1); if (!r) return NULL; x = (new_length * percent) / 100; if (x > new_length - 3) x = new_length - 3; memcpy(r, s, x); r[x] = '.'; r[x+1] = '.'; r[x+2] = '.'; memcpy(r + x + 3, s + old_length - (new_length - x - 3), new_length - x - 3); return r; } char *ellipsize_mem(const char *s, size_t old_length, size_t new_length, unsigned percent) { size_t x; char *e; const char *i, *j; unsigned k, len, len2; assert(s); assert(percent <= 100); assert(new_length >= 3); /* if no multibyte characters use ascii_ellipsize_mem for speed */ if (ascii_is_valid(s)) return ascii_ellipsize_mem(s, old_length, new_length, percent); if (old_length <= 3 || old_length <= new_length) return strndup(s, old_length); x = (new_length * percent) / 100; if (x > new_length - 3) x = new_length - 3; k = 0; for (i = s; k < x && i < s + old_length; i = utf8_next_char(i)) { int c; c = utf8_encoded_to_unichar(i); if (c < 0) return NULL; k += unichar_iswide(c) ? 2 : 1; } if (k > x) /* last character was wide and went over quota */ x ++; for (j = s + old_length; k < new_length && j > i; ) { int c; j = utf8_prev_char(j); c = utf8_encoded_to_unichar(j); if (c < 0) return NULL; k += unichar_iswide(c) ? 2 : 1; } assert(i <= j); /* we don't actually need to ellipsize */ if (i == j) return memdup(s, old_length + 1); /* make space for ellipsis */ j = utf8_next_char(j); len = i - s; len2 = s + old_length - j; e = new(char, len + 3 + len2 + 1); if (!e) return NULL; /* printf("old_length=%zu new_length=%zu x=%zu len=%u len2=%u k=%u\n", old_length, new_length, x, len, len2, k); */ memcpy(e, s, len); e[len] = 0xe2; /* tri-dot ellipsis: … */ e[len + 1] = 0x80; e[len + 2] = 0xa6; memcpy(e + len + 3, j, len2 + 1); return e; } char *ellipsize(const char *s, size_t length, unsigned percent) { return ellipsize_mem(s, strlen(s), length, percent); } int touch_file(const char *path, bool parents, usec_t stamp, uid_t uid, gid_t gid, mode_t mode) { _cleanup_close_ int fd; int r; assert(path); if (parents) mkdir_parents(path, 0755); fd = open(path, O_WRONLY|O_CREAT|O_CLOEXEC|O_NOCTTY, mode > 0 ? mode : 0644); if (fd < 0) return -errno; if (mode > 0) { r = fchmod(fd, mode); if (r < 0) return -errno; } if (uid != UID_INVALID || gid != GID_INVALID) { r = fchown(fd, uid, gid); if (r < 0) return -errno; } if (stamp != USEC_INFINITY) { struct timespec ts[2]; timespec_store(&ts[0], stamp); ts[1] = ts[0]; r = futimens(fd, ts); } else r = futimens(fd, NULL); if (r < 0) return -errno; return 0; } int touch(const char *path) { return touch_file(path, false, USEC_INFINITY, UID_INVALID, GID_INVALID, 0); } static char *unquote(const char *s, const char* quotes) { size_t l; assert(s); /* This is rather stupid, simply removes the heading and * trailing quotes if there is one. Doesn't care about * escaping or anything. * * DON'T USE THIS FOR NEW CODE ANYMORE!*/ l = strlen(s); if (l < 2) return strdup(s); if (strchr(quotes, s[0]) && s[l-1] == s[0]) return strndup(s+1, l-2); return strdup(s); } noreturn void freeze(void) { /* Make sure nobody waits for us on a socket anymore */ close_all_fds(NULL, 0); sync(); for (;;) pause(); } bool null_or_empty(struct stat *st) { assert(st); if (S_ISREG(st->st_mode) && st->st_size <= 0) return true; if (S_ISCHR(st->st_mode) || S_ISBLK(st->st_mode)) return true; return false; } int null_or_empty_path(const char *fn) { struct stat st; assert(fn); if (stat(fn, &st) < 0) return -errno; return null_or_empty(&st); } int null_or_empty_fd(int fd) { struct stat st; assert(fd >= 0); if (fstat(fd, &st) < 0) return -errno; return null_or_empty(&st); } DIR *xopendirat(int fd, const char *name, int flags) { int nfd; DIR *d; assert(!(flags & O_CREAT)); nfd = openat(fd, name, O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC|flags, 0); if (nfd < 0) return NULL; d = fdopendir(nfd); if (!d) { safe_close(nfd); return NULL; } return d; } int signal_from_string_try_harder(const char *s) { int signo; assert(s); signo = signal_from_string(s); if (signo <= 0) if (startswith(s, "SIG")) return signal_from_string(s+3); return signo; } static char *tag_to_udev_node(const char *tagvalue, const char *by) { _cleanup_free_ char *t = NULL, *u = NULL; size_t enc_len; u = unquote(tagvalue, QUOTES); if (!u) return NULL; enc_len = strlen(u) * 4 + 1; t = new(char, enc_len); if (!t) return NULL; if (encode_devnode_name(u, t, enc_len) < 0) return NULL; return strjoin("/dev/disk/by-", by, "/", t, NULL); } char *fstab_node_to_udev_node(const char *p) { assert(p); if (startswith(p, "LABEL=")) return tag_to_udev_node(p+6, "label"); if (startswith(p, "UUID=")) return tag_to_udev_node(p+5, "uuid"); if (startswith(p, "PARTUUID=")) return tag_to_udev_node(p+9, "partuuid"); if (startswith(p, "PARTLABEL=")) return tag_to_udev_node(p+10, "partlabel"); return strdup(p); } bool dirent_is_file(const struct dirent *de) { assert(de); if (hidden_file(de->d_name)) return false; if (de->d_type != DT_REG && de->d_type != DT_LNK && de->d_type != DT_UNKNOWN) return false; return true; } bool dirent_is_file_with_suffix(const struct dirent *de, const char *suffix) { assert(de); if (de->d_type != DT_REG && de->d_type != DT_LNK && de->d_type != DT_UNKNOWN) return false; if (hidden_file_allow_backup(de->d_name)) return false; return endswith(de->d_name, suffix); } static int do_execute(char **directories, usec_t timeout, char *argv[]) { _cleanup_hashmap_free_free_ Hashmap *pids = NULL; _cleanup_set_free_free_ Set *seen = NULL; char **directory; /* We fork this all off from a child process so that we can * somewhat cleanly make use of SIGALRM to set a time limit */ reset_all_signal_handlers(); reset_signal_mask(); assert_se(prctl(PR_SET_PDEATHSIG, SIGTERM) == 0); pids = hashmap_new(NULL); if (!pids) return log_oom(); seen = set_new(&string_hash_ops); if (!seen) return log_oom(); STRV_FOREACH(directory, directories) { _cleanup_closedir_ DIR *d; struct dirent *de; d = opendir(*directory); if (!d) { if (errno == ENOENT) continue; return log_error_errno(errno, "Failed to open directory %s: %m", *directory); } FOREACH_DIRENT(de, d, break) { _cleanup_free_ char *path = NULL; pid_t pid; int r; if (!dirent_is_file(de)) continue; if (set_contains(seen, de->d_name)) { log_debug("%1$s/%2$s skipped (%2$s was already seen).", *directory, de->d_name); continue; } r = set_put_strdup(seen, de->d_name); if (r < 0) return log_oom(); path = strjoin(*directory, "/", de->d_name, NULL); if (!path) return log_oom(); if (null_or_empty_path(path)) { log_debug("%s is empty (a mask).", path); continue; } pid = fork(); if (pid < 0) { log_error_errno(errno, "Failed to fork: %m"); continue; } else if (pid == 0) { char *_argv[2]; assert_se(prctl(PR_SET_PDEATHSIG, SIGTERM) == 0); if (!argv) { _argv[0] = path; _argv[1] = NULL; argv = _argv; } else argv[0] = path; execv(path, argv); return log_error_errno(errno, "Failed to execute %s: %m", path); } log_debug("Spawned %s as " PID_FMT ".", path, pid); r = hashmap_put(pids, UINT_TO_PTR(pid), path); if (r < 0) return log_oom(); path = NULL; } } /* Abort execution of this process after the timout. We simply * rely on SIGALRM as default action terminating the process, * and turn on alarm(). */ if (timeout != USEC_INFINITY) alarm((timeout + USEC_PER_SEC - 1) / USEC_PER_SEC); while (!hashmap_isempty(pids)) { _cleanup_free_ char *path = NULL; pid_t pid; pid = PTR_TO_UINT(hashmap_first_key(pids)); assert(pid > 0); path = hashmap_remove(pids, UINT_TO_PTR(pid)); assert(path); wait_for_terminate_and_warn(path, pid, true); } return 0; } void execute_directories(const char* const* directories, usec_t timeout, char *argv[]) { pid_t executor_pid; int r; char *name; char **dirs = (char**) directories; assert(!strv_isempty(dirs)); name = basename(dirs[0]); assert(!isempty(name)); /* Executes all binaries in the directories in parallel and waits * for them to finish. Optionally a timeout is applied. If a file * with the same name exists in more than one directory, the * earliest one wins. */ executor_pid = fork(); if (executor_pid < 0) { log_error_errno(errno, "Failed to fork: %m"); return; } else if (executor_pid == 0) { r = do_execute(dirs, timeout, argv); _exit(r < 0 ? EXIT_FAILURE : EXIT_SUCCESS); } wait_for_terminate_and_warn(name, executor_pid, true); } bool nulstr_contains(const char*nulstr, const char *needle) { const char *i; if (!nulstr) return false; NULSTR_FOREACH(i, nulstr) if (streq(i, needle)) return true; return false; } bool plymouth_running(void) { return access("/run/plymouth/pid", F_OK) >= 0; } char* strshorten(char *s, size_t l) { assert(s); if (l < strlen(s)) s[l] = 0; return s; } static bool hostname_valid_char(char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9') || c == '-' || c == '_' || c == '.'; } bool hostname_is_valid(const char *s) { const char *p; bool dot; if (isempty(s)) return false; /* Doesn't accept empty hostnames, hostnames with trailing or * leading dots, and hostnames with multiple dots in a * sequence. Also ensures that the length stays below * HOST_NAME_MAX. */ for (p = s, dot = true; *p; p++) { if (*p == '.') { if (dot) return false; dot = true; } else { if (!hostname_valid_char(*p)) return false; dot = false; } } if (dot) return false; if (p-s > HOST_NAME_MAX) return false; return true; } char* hostname_cleanup(char *s, bool lowercase) { char *p, *d; bool dot; for (p = s, d = s, dot = true; *p; p++) { if (*p == '.') { if (dot) continue; *(d++) = '.'; dot = true; } else if (hostname_valid_char(*p)) { *(d++) = lowercase ? tolower(*p) : *p; dot = false; } } if (dot && d > s) d[-1] = 0; else *d = 0; strshorten(s, HOST_NAME_MAX); return s; } bool machine_name_is_valid(const char *s) { if (!hostname_is_valid(s)) return false; /* Machine names should be useful hostnames, but also be * useful in unit names, hence we enforce a stricter length * limitation. */ if (strlen(s) > 64) return false; return true; } int pipe_eof(int fd) { struct pollfd pollfd = { .fd = fd, .events = POLLIN|POLLHUP, }; int r; r = poll(&pollfd, 1, 0); if (r < 0) return -errno; if (r == 0) return 0; return pollfd.revents & POLLHUP; } int fd_wait_for_event(int fd, int event, usec_t t) { struct pollfd pollfd = { .fd = fd, .events = event, }; struct timespec ts; int r; r = ppoll(&pollfd, 1, t == USEC_INFINITY ? NULL : timespec_store(&ts, t), NULL); if (r < 0) return -errno; if (r == 0) return 0; return pollfd.revents; } int fopen_temporary(const char *path, FILE **_f, char **_temp_path) { FILE *f; char *t; int r, fd; assert(path); assert(_f); assert(_temp_path); r = tempfn_xxxxxx(path, &t); if (r < 0) return r; fd = mkostemp_safe(t, O_WRONLY|O_CLOEXEC); if (fd < 0) { free(t); return -errno; } f = fdopen(fd, "we"); if (!f) { unlink(t); free(t); return -errno; } *_f = f; *_temp_path = t; return 0; } int symlink_atomic(const char *from, const char *to) { _cleanup_free_ char *t = NULL; int r; assert(from); assert(to); r = tempfn_random(to, &t); if (r < 0) return r; if (symlink(from, t) < 0) return -errno; if (rename(t, to) < 0) { unlink_noerrno(t); return -errno; } return 0; } int mknod_atomic(const char *path, mode_t mode, dev_t dev) { _cleanup_free_ char *t = NULL; int r; assert(path); r = tempfn_random(path, &t); if (r < 0) return r; if (mknod(t, mode, dev) < 0) return -errno; if (rename(t, path) < 0) { unlink_noerrno(t); return -errno; } return 0; } int mkfifo_atomic(const char *path, mode_t mode) { _cleanup_free_ char *t = NULL; int r; assert(path); r = tempfn_random(path, &t); if (r < 0) return r; if (mkfifo(t, mode) < 0) return -errno; if (rename(t, path) < 0) { unlink_noerrno(t); return -errno; } return 0; } bool display_is_local(const char *display) { assert(display); return display[0] == ':' && display[1] >= '0' && display[1] <= '9'; } int socket_from_display(const char *display, char **path) { size_t k; char *f, *c; assert(display); assert(path); if (!display_is_local(display)) return -EINVAL; k = strspn(display+1, "0123456789"); f = new(char, strlen("/tmp/.X11-unix/X") + k + 1); if (!f) return -ENOMEM; c = stpcpy(f, "/tmp/.X11-unix/X"); memcpy(c, display+1, k); c[k] = 0; *path = f; return 0; } int get_user_creds( const char **username, uid_t *uid, gid_t *gid, const char **home, const char **shell) { struct passwd *p; uid_t u; assert(username); assert(*username); /* We enforce some special rules for uid=0: in order to avoid * NSS lookups for root we hardcode its data. */ if (streq(*username, "root") || streq(*username, "0")) { *username = "root"; if (uid) *uid = 0; if (gid) *gid = 0; if (home) *home = "/root"; if (shell) *shell = "/bin/sh"; return 0; } if (parse_uid(*username, &u) >= 0) { errno = 0; p = getpwuid(u); /* If there are multiple users with the same id, make * sure to leave $USER to the configured value instead * of the first occurrence in the database. However if * the uid was configured by a numeric uid, then let's * pick the real username from /etc/passwd. */ if (p) *username = p->pw_name; } else { errno = 0; p = getpwnam(*username); } if (!p) return errno > 0 ? -errno : -ESRCH; if (uid) *uid = p->pw_uid; if (gid) *gid = p->pw_gid; if (home) *home = p->pw_dir; if (shell) *shell = p->pw_shell; return 0; } char* uid_to_name(uid_t uid) { struct passwd *p; char *r; if (uid == 0) return strdup("root"); p = getpwuid(uid); if (p) return strdup(p->pw_name); if (asprintf(&r, UID_FMT, uid) < 0) return NULL; return r; } char* gid_to_name(gid_t gid) { struct group *p; char *r; if (gid == 0) return strdup("root"); p = getgrgid(gid); if (p) return strdup(p->gr_name); if (asprintf(&r, GID_FMT, gid) < 0) return NULL; return r; } int get_group_creds(const char **groupname, gid_t *gid) { struct group *g; gid_t id; assert(groupname); /* We enforce some special rules for gid=0: in order to avoid * NSS lookups for root we hardcode its data. */ if (streq(*groupname, "root") || streq(*groupname, "0")) { *groupname = "root"; if (gid) *gid = 0; return 0; } if (parse_gid(*groupname, &id) >= 0) { errno = 0; g = getgrgid(id); if (g) *groupname = g->gr_name; } else { errno = 0; g = getgrnam(*groupname); } if (!g) return errno > 0 ? -errno : -ESRCH; if (gid) *gid = g->gr_gid; return 0; } int in_gid(gid_t gid) { gid_t *gids; int ngroups_max, r, i; if (getgid() == gid) return 1; if (getegid() == gid) return 1; ngroups_max = sysconf(_SC_NGROUPS_MAX); assert(ngroups_max > 0); gids = alloca(sizeof(gid_t) * ngroups_max); r = getgroups(ngroups_max, gids); if (r < 0) return -errno; for (i = 0; i < r; i++) if (gids[i] == gid) return 1; return 0; } int in_group(const char *name) { int r; gid_t gid; r = get_group_creds(&name, &gid); if (r < 0) return r; return in_gid(gid); } int glob_exists(const char *path) { _cleanup_globfree_ glob_t g = {}; int k; assert(path); errno = 0; k = glob(path, GLOB_NOSORT|GLOB_BRACE, NULL, &g); if (k == GLOB_NOMATCH) return 0; else if (k == GLOB_NOSPACE) return -ENOMEM; else if (k == 0) return !strv_isempty(g.gl_pathv); else return errno ? -errno : -EIO; } int glob_extend(char ***strv, const char *path) { _cleanup_globfree_ glob_t g = {}; int k; char **p; errno = 0; k = glob(path, GLOB_NOSORT|GLOB_BRACE, NULL, &g); if (k == GLOB_NOMATCH) return -ENOENT; else if (k == GLOB_NOSPACE) return -ENOMEM; else if (k != 0 || strv_isempty(g.gl_pathv)) return errno ? -errno : -EIO; STRV_FOREACH(p, g.gl_pathv) { k = strv_extend(strv, *p); if (k < 0) break; } return k; } int dirent_ensure_type(DIR *d, struct dirent *de) { struct stat st; assert(d); assert(de); if (de->d_type != DT_UNKNOWN) return 0; if (fstatat(dirfd(d), de->d_name, &st, AT_SYMLINK_NOFOLLOW) < 0) return -errno; de->d_type = S_ISREG(st.st_mode) ? DT_REG : S_ISDIR(st.st_mode) ? DT_DIR : S_ISLNK(st.st_mode) ? DT_LNK : S_ISFIFO(st.st_mode) ? DT_FIFO : S_ISSOCK(st.st_mode) ? DT_SOCK : S_ISCHR(st.st_mode) ? DT_CHR : S_ISBLK(st.st_mode) ? DT_BLK : DT_UNKNOWN; return 0; } int get_files_in_directory(const char *path, char ***list) { _cleanup_closedir_ DIR *d = NULL; size_t bufsize = 0, n = 0; _cleanup_strv_free_ char **l = NULL; assert(path); /* Returns all files in a directory in *list, and the number * of files as return value. If list is NULL returns only the * number. */ d = opendir(path); if (!d) return -errno; for (;;) { struct dirent *de; errno = 0; de = readdir(d); if (!de && errno != 0) return -errno; if (!de) break; dirent_ensure_type(d, de); if (!dirent_is_file(de)) continue; if (list) { /* one extra slot is needed for the terminating NULL */ if (!GREEDY_REALLOC(l, bufsize, n + 2)) return -ENOMEM; l[n] = strdup(de->d_name); if (!l[n]) return -ENOMEM; l[++n] = NULL; } else n++; } if (list) { *list = l; l = NULL; /* avoid freeing */ } return n; } char *strjoin(const char *x, ...) { va_list ap; size_t l; char *r, *p; va_start(ap, x); if (x) { l = strlen(x); for (;;) { const char *t; size_t n; t = va_arg(ap, const char *); if (!t) break; n = strlen(t); if (n > ((size_t) -1) - l) { va_end(ap); return NULL; } l += n; } } else l = 0; va_end(ap); r = new(char, l+1); if (!r) return NULL; if (x) { p = stpcpy(r, x); va_start(ap, x); for (;;) { const char *t; t = va_arg(ap, const char *); if (!t) break; p = stpcpy(p, t); } va_end(ap); } else r[0] = 0; return r; } bool is_main_thread(void) { static thread_local int cached = 0; if (_unlikely_(cached == 0)) cached = getpid() == gettid() ? 1 : -1; return cached > 0; } int block_get_whole_disk(dev_t d, dev_t *ret) { char *p, *s; int r; unsigned n, m; assert(ret); /* If it has a queue this is good enough for us */ if (asprintf(&p, "/sys/dev/block/%u:%u/queue", major(d), minor(d)) < 0) return -ENOMEM; r = access(p, F_OK); free(p); if (r >= 0) { *ret = d; return 0; } /* If it is a partition find the originating device */ if (asprintf(&p, "/sys/dev/block/%u:%u/partition", major(d), minor(d)) < 0) return -ENOMEM; r = access(p, F_OK); free(p); if (r < 0) return -ENOENT; /* Get parent dev_t */ if (asprintf(&p, "/sys/dev/block/%u:%u/../dev", major(d), minor(d)) < 0) return -ENOMEM; r = read_one_line_file(p, &s); free(p); if (r < 0) return r; r = sscanf(s, "%u:%u", &m, &n); free(s); if (r != 2) return -EINVAL; /* Only return this if it is really good enough for us. */ if (asprintf(&p, "/sys/dev/block/%u:%u/queue", m, n) < 0) return -ENOMEM; r = access(p, F_OK); free(p); if (r >= 0) { *ret = makedev(m, n); return 0; } return -ENOENT; } static const char *const ioprio_class_table[] = { [IOPRIO_CLASS_NONE] = "none", [IOPRIO_CLASS_RT] = "realtime", [IOPRIO_CLASS_BE] = "best-effort", [IOPRIO_CLASS_IDLE] = "idle" }; DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ioprio_class, int, INT_MAX); static const char *const sigchld_code_table[] = { [CLD_EXITED] = "exited", [CLD_KILLED] = "killed", [CLD_DUMPED] = "dumped", [CLD_TRAPPED] = "trapped", [CLD_STOPPED] = "stopped", [CLD_CONTINUED] = "continued", }; DEFINE_STRING_TABLE_LOOKUP(sigchld_code, int); static const char *const log_facility_unshifted_table[LOG_NFACILITIES] = { [LOG_FAC(LOG_KERN)] = "kern", [LOG_FAC(LOG_USER)] = "user", [LOG_FAC(LOG_MAIL)] = "mail", [LOG_FAC(LOG_DAEMON)] = "daemon", [LOG_FAC(LOG_AUTH)] = "auth", [LOG_FAC(LOG_SYSLOG)] = "syslog", [LOG_FAC(LOG_LPR)] = "lpr", [LOG_FAC(LOG_NEWS)] = "news", [LOG_FAC(LOG_UUCP)] = "uucp", [LOG_FAC(LOG_CRON)] = "cron", [LOG_FAC(LOG_AUTHPRIV)] = "authpriv", [LOG_FAC(LOG_FTP)] = "ftp", [LOG_FAC(LOG_LOCAL0)] = "local0", [LOG_FAC(LOG_LOCAL1)] = "local1", [LOG_FAC(LOG_LOCAL2)] = "local2", [LOG_FAC(LOG_LOCAL3)] = "local3", [LOG_FAC(LOG_LOCAL4)] = "local4", [LOG_FAC(LOG_LOCAL5)] = "local5", [LOG_FAC(LOG_LOCAL6)] = "local6", [LOG_FAC(LOG_LOCAL7)] = "local7" }; DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(log_facility_unshifted, int, LOG_FAC(~0)); static const char *const log_level_table[] = { [LOG_EMERG] = "emerg", [LOG_ALERT] = "alert", [LOG_CRIT] = "crit", [LOG_ERR] = "err", [LOG_WARNING] = "warning", [LOG_NOTICE] = "notice", [LOG_INFO] = "info", [LOG_DEBUG] = "debug" }; DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(log_level, int, LOG_DEBUG); static const char* const sched_policy_table[] = { [SCHED_OTHER] = "other", [SCHED_BATCH] = "batch", [SCHED_IDLE] = "idle", [SCHED_FIFO] = "fifo", [SCHED_RR] = "rr" }; DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(sched_policy, int, INT_MAX); static const char* const rlimit_table[_RLIMIT_MAX] = { [RLIMIT_CPU] = "LimitCPU", [RLIMIT_FSIZE] = "LimitFSIZE", [RLIMIT_DATA] = "LimitDATA", [RLIMIT_STACK] = "LimitSTACK", [RLIMIT_CORE] = "LimitCORE", [RLIMIT_RSS] = "LimitRSS", [RLIMIT_NOFILE] = "LimitNOFILE", [RLIMIT_AS] = "LimitAS", [RLIMIT_NPROC] = "LimitNPROC", [RLIMIT_MEMLOCK] = "LimitMEMLOCK", [RLIMIT_LOCKS] = "LimitLOCKS", [RLIMIT_SIGPENDING] = "LimitSIGPENDING", [RLIMIT_MSGQUEUE] = "LimitMSGQUEUE", [RLIMIT_NICE] = "LimitNICE", [RLIMIT_RTPRIO] = "LimitRTPRIO", [RLIMIT_RTTIME] = "LimitRTTIME" }; DEFINE_STRING_TABLE_LOOKUP(rlimit, int); static const char* const ip_tos_table[] = { [IPTOS_LOWDELAY] = "low-delay", [IPTOS_THROUGHPUT] = "throughput", [IPTOS_RELIABILITY] = "reliability", [IPTOS_LOWCOST] = "low-cost", }; DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ip_tos, int, 0xff); static const char *const __signal_table[] = { [SIGHUP] = "HUP", [SIGINT] = "INT", [SIGQUIT] = "QUIT", [SIGILL] = "ILL", [SIGTRAP] = "TRAP", [SIGABRT] = "ABRT", [SIGBUS] = "BUS", [SIGFPE] = "FPE", [SIGKILL] = "KILL", [SIGUSR1] = "USR1", [SIGSEGV] = "SEGV", [SIGUSR2] = "USR2", [SIGPIPE] = "PIPE", [SIGALRM] = "ALRM", [SIGTERM] = "TERM", #ifdef SIGSTKFLT [SIGSTKFLT] = "STKFLT", /* Linux on SPARC doesn't know SIGSTKFLT */ #endif [SIGCHLD] = "CHLD", [SIGCONT] = "CONT", [SIGSTOP] = "STOP", [SIGTSTP] = "TSTP", [SIGTTIN] = "TTIN", [SIGTTOU] = "TTOU", [SIGURG] = "URG", [SIGXCPU] = "XCPU", [SIGXFSZ] = "XFSZ", [SIGVTALRM] = "VTALRM", [SIGPROF] = "PROF", [SIGWINCH] = "WINCH", [SIGIO] = "IO", [SIGPWR] = "PWR", [SIGSYS] = "SYS" }; DEFINE_PRIVATE_STRING_TABLE_LOOKUP(__signal, int); const char *signal_to_string(int signo) { static thread_local char buf[sizeof("RTMIN+")-1 + DECIMAL_STR_MAX(int) + 1]; const char *name; name = __signal_to_string(signo); if (name) return name; if (signo >= SIGRTMIN && signo <= SIGRTMAX) snprintf(buf, sizeof(buf), "RTMIN+%d", signo - SIGRTMIN); else snprintf(buf, sizeof(buf), "%d", signo); return buf; } int signal_from_string(const char *s) { int signo; int offset = 0; unsigned u; signo = __signal_from_string(s); if (signo > 0) return signo; if (startswith(s, "RTMIN+")) { s += 6; offset = SIGRTMIN; } if (safe_atou(s, &u) >= 0) { signo = (int) u + offset; if (signo > 0 && signo < _NSIG) return signo; } return -EINVAL; } bool kexec_loaded(void) { bool loaded = false; char *s; if (read_one_line_file("/sys/kernel/kexec_loaded", &s) >= 0) { if (s[0] == '1') loaded = true; free(s); } return loaded; } int prot_from_flags(int flags) { switch (flags & O_ACCMODE) { case O_RDONLY: return PROT_READ; case O_WRONLY: return PROT_WRITE; case O_RDWR: return PROT_READ|PROT_WRITE; default: return -EINVAL; } } char *format_bytes(char *buf, size_t l, off_t t) { unsigned i; static const struct { const char *suffix; off_t factor; } table[] = { { "E", 1024ULL*1024ULL*1024ULL*1024ULL*1024ULL*1024ULL }, { "P", 1024ULL*1024ULL*1024ULL*1024ULL*1024ULL }, { "T", 1024ULL*1024ULL*1024ULL*1024ULL }, { "G", 1024ULL*1024ULL*1024ULL }, { "M", 1024ULL*1024ULL }, { "K", 1024ULL }, }; if (t == (off_t) -1) return NULL; for (i = 0; i < ELEMENTSOF(table); i++) { if (t >= table[i].factor) { snprintf(buf, l, "%llu.%llu%s", (unsigned long long) (t / table[i].factor), (unsigned long long) (((t*10ULL) / table[i].factor) % 10ULL), table[i].suffix); goto finish; } } snprintf(buf, l, "%lluB", (unsigned long long) t); finish: buf[l-1] = 0; return buf; } void* memdup(const void *p, size_t l) { void *r; assert(p); r = malloc(l); if (!r) return NULL; memcpy(r, p, l); return r; } int fd_inc_sndbuf(int fd, size_t n) { int r, value; socklen_t l = sizeof(value); r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l); if (r >= 0 && l == sizeof(value) && (size_t) value >= n*2) return 0; /* If we have the privileges we will ignore the kernel limit. */ value = (int) n; if (setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &value, sizeof(value)) < 0) if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, sizeof(value)) < 0) return -errno; return 1; } int fd_inc_rcvbuf(int fd, size_t n) { int r, value; socklen_t l = sizeof(value); r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l); if (r >= 0 && l == sizeof(value) && (size_t) value >= n*2) return 0; /* If we have the privileges we will ignore the kernel limit. */ value = (int) n; if (setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &value, sizeof(value)) < 0) if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, sizeof(value)) < 0) return -errno; return 1; } int fork_agent(pid_t *pid, const int except[], unsigned n_except, const char *path, ...) { bool stdout_is_tty, stderr_is_tty; pid_t parent_pid, agent_pid; sigset_t ss, saved_ss; unsigned n, i; va_list ap; char **l; assert(pid); assert(path); /* Spawns a temporary TTY agent, making sure it goes away when * we go away */ parent_pid = getpid(); /* First we temporarily block all signals, so that the new * child has them blocked initially. This way, we can be sure * that SIGTERMs are not lost we might send to the agent. */ assert_se(sigfillset(&ss) >= 0); assert_se(sigprocmask(SIG_SETMASK, &ss, &saved_ss) >= 0); agent_pid = fork(); if (agent_pid < 0) { assert_se(sigprocmask(SIG_SETMASK, &saved_ss, NULL) >= 0); return -errno; } if (agent_pid != 0) { assert_se(sigprocmask(SIG_SETMASK, &saved_ss, NULL) >= 0); *pid = agent_pid; return 0; } /* In the child: * * Make sure the agent goes away when the parent dies */ if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0) _exit(EXIT_FAILURE); /* Make sure we actually can kill the agent, if we need to, in * case somebody invoked us from a shell script that trapped * SIGTERM or so... */ reset_all_signal_handlers(); reset_signal_mask(); /* Check whether our parent died before we were able * to set the death signal and unblock the signals */ if (getppid() != parent_pid) _exit(EXIT_SUCCESS); /* Don't leak fds to the agent */ close_all_fds(except, n_except); stdout_is_tty = isatty(STDOUT_FILENO); stderr_is_tty = isatty(STDERR_FILENO); if (!stdout_is_tty || !stderr_is_tty) { int fd; /* Detach from stdout/stderr. and reopen * /dev/tty for them. This is important to * ensure that when systemctl is started via * popen() or a similar call that expects to * read EOF we actually do generate EOF and * not delay this indefinitely by because we * keep an unused copy of stdin around. */ fd = open("/dev/tty", O_WRONLY); if (fd < 0) { log_error_errno(errno, "Failed to open /dev/tty: %m"); _exit(EXIT_FAILURE); } if (!stdout_is_tty) dup2(fd, STDOUT_FILENO); if (!stderr_is_tty) dup2(fd, STDERR_FILENO); if (fd > 2) close(fd); } /* Count arguments */ va_start(ap, path); for (n = 0; va_arg(ap, char*); n++) ; va_end(ap); /* Allocate strv */ l = alloca(sizeof(char *) * (n + 1)); /* Fill in arguments */ va_start(ap, path); for (i = 0; i <= n; i++) l[i] = va_arg(ap, char*); va_end(ap); execv(path, l); _exit(EXIT_FAILURE); } int setrlimit_closest(int resource, const struct rlimit *rlim) { struct rlimit highest, fixed; assert(rlim); if (setrlimit(resource, rlim) >= 0) return 0; if (errno != EPERM) return -errno; /* So we failed to set the desired setrlimit, then let's try * to get as close as we can */ assert_se(getrlimit(resource, &highest) == 0); fixed.rlim_cur = MIN(rlim->rlim_cur, highest.rlim_max); fixed.rlim_max = MIN(rlim->rlim_max, highest.rlim_max); if (setrlimit(resource, &fixed) < 0) return -errno; return 0; } bool http_etag_is_valid(const char *etag) { if (isempty(etag)) return false; if (!endswith(etag, "\"")) return false; if (!startswith(etag, "\"") && !startswith(etag, "W/\"")) return false; return true; } bool http_url_is_valid(const char *url) { const char *p; if (isempty(url)) return false; p = startswith(url, "http://"); if (!p) p = startswith(url, "https://"); if (!p) return false; if (isempty(p)) return false; return ascii_is_valid(p); } bool documentation_url_is_valid(const char *url) { const char *p; if (isempty(url)) return false; if (http_url_is_valid(url)) return true; p = startswith(url, "file:/"); if (!p) p = startswith(url, "info:"); if (!p) p = startswith(url, "man:"); if (isempty(p)) return false; return ascii_is_valid(p); } bool in_initrd(void) { static int saved = -1; struct statfs s; if (saved >= 0) return saved; /* We make two checks here: * * 1. the flag file /etc/initrd-release must exist * 2. the root file system must be a memory file system * * The second check is extra paranoia, since misdetecting an * initrd can have bad bad consequences due the initrd * emptying when transititioning to the main systemd. */ saved = access("/etc/initrd-release", F_OK) >= 0 && statfs("/", &s) >= 0 && is_temporary_fs(&s); return saved; } int get_home_dir(char **_h) { struct passwd *p; const char *e; char *h; uid_t u; assert(_h); /* Take the user specified one */ e = secure_getenv("HOME"); if (e && path_is_absolute(e)) { h = strdup(e); if (!h) return -ENOMEM; *_h = h; return 0; } /* Hardcode home directory for root to avoid NSS */ u = getuid(); if (u == 0) { h = strdup("/root"); if (!h) return -ENOMEM; *_h = h; return 0; } /* Check the database... */ errno = 0; p = getpwuid(u); if (!p) return errno > 0 ? -errno : -ESRCH; if (!path_is_absolute(p->pw_dir)) return -EINVAL; h = strdup(p->pw_dir); if (!h) return -ENOMEM; *_h = h; return 0; } int get_shell(char **_s) { struct passwd *p; const char *e; char *s; uid_t u; assert(_s); /* Take the user specified one */ e = getenv("SHELL"); if (e) { s = strdup(e); if (!s) return -ENOMEM; *_s = s; return 0; } /* Hardcode home directory for root to avoid NSS */ u = getuid(); if (u == 0) { s = strdup("/bin/sh"); if (!s) return -ENOMEM; *_s = s; return 0; } /* Check the database... */ errno = 0; p = getpwuid(u); if (!p) return errno > 0 ? -errno : -ESRCH; if (!path_is_absolute(p->pw_shell)) return -EINVAL; s = strdup(p->pw_shell); if (!s) return -ENOMEM; *_s = s; return 0; } bool filename_is_valid(const char *p) { if (isempty(p)) return false; if (strchr(p, '/')) return false; if (streq(p, ".")) return false; if (streq(p, "..")) return false; if (strlen(p) > FILENAME_MAX) return false; return true; } bool string_is_safe(const char *p) { const char *t; if (!p) return false; for (t = p; *t; t++) { if (*t > 0 && *t < ' ') return false; if (strchr("\\\"\'\0x7f", *t)) return false; } return true; } /** * Check if a string contains control characters. If 'ok' is non-NULL * it may be a string containing additional CCs to be considered OK. */ bool string_has_cc(const char *p, const char *ok) { const char *t; assert(p); for (t = p; *t; t++) { if (ok && strchr(ok, *t)) continue; if (*t > 0 && *t < ' ') return true; if (*t == 127) return true; } return false; } bool path_is_safe(const char *p) { if (isempty(p)) return false; if (streq(p, "..") || startswith(p, "../") || endswith(p, "/..") || strstr(p, "/../")) return false; if (strlen(p) > PATH_MAX) return false; /* The following two checks are not really dangerous, but hey, they still are confusing */ if (streq(p, ".") || startswith(p, "./") || endswith(p, "/.") || strstr(p, "/./")) return false; if (strstr(p, "//")) return false; return true; } /* hey glibc, APIs with callbacks without a user pointer are so useless */ void *xbsearch_r(const void *key, const void *base, size_t nmemb, size_t size, int (*compar) (const void *, const void *, void *), void *arg) { size_t l, u, idx; const void *p; int comparison; l = 0; u = nmemb; while (l < u) { idx = (l + u) / 2; p = (void *)(((const char *) base) + (idx * size)); comparison = compar(key, p, arg); if (comparison < 0) u = idx; else if (comparison > 0) l = idx + 1; else return (void *)p; } return NULL; } void init_gettext(void) { setlocale(LC_ALL, ""); textdomain(GETTEXT_PACKAGE); } bool is_locale_utf8(void) { const char *set; static int cached_answer = -1; if (cached_answer >= 0) goto out; if (!setlocale(LC_ALL, "")) { cached_answer = true; goto out; } set = nl_langinfo(CODESET); if (!set) { cached_answer = true; goto out; } if (streq(set, "UTF-8")) { cached_answer = true; goto out; } /* For LC_CTYPE=="C" return true, because CTYPE is effectly * unset and everything can do to UTF-8 nowadays. */ set = setlocale(LC_CTYPE, NULL); if (!set) { cached_answer = true; goto out; } /* Check result, but ignore the result if C was set * explicitly. */ cached_answer = streq(set, "C") && !getenv("LC_ALL") && !getenv("LC_CTYPE") && !getenv("LANG"); out: return (bool) cached_answer; } const char *draw_special_char(DrawSpecialChar ch) { static const char *draw_table[2][_DRAW_SPECIAL_CHAR_MAX] = { /* UTF-8 */ { [DRAW_TREE_VERTICAL] = "\342\224\202 ", /* │ */ [DRAW_TREE_BRANCH] = "\342\224\234\342\224\200", /* ├─ */ [DRAW_TREE_RIGHT] = "\342\224\224\342\224\200", /* └─ */ [DRAW_TREE_SPACE] = " ", /* */ [DRAW_TRIANGULAR_BULLET] = "\342\200\243", /* ‣ */ [DRAW_BLACK_CIRCLE] = "\342\227\217", /* ● */ [DRAW_ARROW] = "\342\206\222", /* → */ [DRAW_DASH] = "\342\200\223", /* – */ }, /* ASCII fallback */ { [DRAW_TREE_VERTICAL] = "| ", [DRAW_TREE_BRANCH] = "|-", [DRAW_TREE_RIGHT] = "`-", [DRAW_TREE_SPACE] = " ", [DRAW_TRIANGULAR_BULLET] = ">", [DRAW_BLACK_CIRCLE] = "*", [DRAW_ARROW] = "->", [DRAW_DASH] = "-", } }; return draw_table[!is_locale_utf8()][ch]; } char *strreplace(const char *text, const char *old_string, const char *new_string) { const char *f; char *t, *r; size_t l, old_len, new_len; assert(text); assert(old_string); assert(new_string); old_len = strlen(old_string); new_len = strlen(new_string); l = strlen(text); r = new(char, l+1); if (!r) return NULL; f = text; t = r; while (*f) { char *a; size_t d, nl; if (!startswith(f, old_string)) { *(t++) = *(f++); continue; } d = t - r; nl = l - old_len + new_len; a = realloc(r, nl + 1); if (!a) goto oom; l = nl; r = a; t = r + d; t = stpcpy(t, new_string); f += old_len; } *t = 0; return r; oom: free(r); return NULL; } char *strip_tab_ansi(char **ibuf, size_t *_isz) { const char *i, *begin = NULL; enum { STATE_OTHER, STATE_ESCAPE, STATE_BRACKET } state = STATE_OTHER; char *obuf = NULL; size_t osz = 0, isz; FILE *f; assert(ibuf); assert(*ibuf); /* Strips ANSI color and replaces TABs by 8 spaces */ isz = _isz ? *_isz : strlen(*ibuf); f = open_memstream(&obuf, &osz); if (!f) return NULL; for (i = *ibuf; i < *ibuf + isz + 1; i++) { switch (state) { case STATE_OTHER: if (i >= *ibuf + isz) /* EOT */ break; else if (*i == '\x1B') state = STATE_ESCAPE; else if (*i == '\t') fputs(" ", f); else fputc(*i, f); break; case STATE_ESCAPE: if (i >= *ibuf + isz) { /* EOT */ fputc('\x1B', f); break; } else if (*i == '[') { state = STATE_BRACKET; begin = i + 1; } else { fputc('\x1B', f); fputc(*i, f); state = STATE_OTHER; } break; case STATE_BRACKET: if (i >= *ibuf + isz || /* EOT */ (!(*i >= '0' && *i <= '9') && *i != ';' && *i != 'm')) { fputc('\x1B', f); fputc('[', f); state = STATE_OTHER; i = begin-1; } else if (*i == 'm') state = STATE_OTHER; break; } } if (ferror(f)) { fclose(f); free(obuf); return NULL; } fclose(f); free(*ibuf); *ibuf = obuf; if (_isz) *_isz = osz; return obuf; } int on_ac_power(void) { bool found_offline = false, found_online = false; _cleanup_closedir_ DIR *d = NULL; d = opendir("/sys/class/power_supply"); if (!d) return errno == ENOENT ? true : -errno; for (;;) { struct dirent *de; _cleanup_close_ int fd = -1, device = -1; char contents[6]; ssize_t n; errno = 0; de = readdir(d); if (!de && errno != 0) return -errno; if (!de) break; if (hidden_file(de->d_name)) continue; device = openat(dirfd(d), de->d_name, O_DIRECTORY|O_RDONLY|O_CLOEXEC|O_NOCTTY); if (device < 0) { if (errno == ENOENT || errno == ENOTDIR) continue; return -errno; } fd = openat(device, "type", O_RDONLY|O_CLOEXEC|O_NOCTTY); if (fd < 0) { if (errno == ENOENT) continue; return -errno; } n = read(fd, contents, sizeof(contents)); if (n < 0) return -errno; if (n != 6 || memcmp(contents, "Mains\n", 6)) continue; safe_close(fd); fd = openat(device, "online", O_RDONLY|O_CLOEXEC|O_NOCTTY); if (fd < 0) { if (errno == ENOENT) continue; return -errno; } n = read(fd, contents, sizeof(contents)); if (n < 0) return -errno; if (n != 2 || contents[1] != '\n') return -EIO; if (contents[0] == '1') { found_online = true; break; } else if (contents[0] == '0') found_offline = true; else return -EIO; } return found_online || !found_offline; } static int search_and_fopen_internal(const char *path, const char *mode, const char *root, char **search, FILE **_f) { char **i; assert(path); assert(mode); assert(_f); if (!path_strv_resolve_uniq(search, root)) return -ENOMEM; STRV_FOREACH(i, search) { _cleanup_free_ char *p = NULL; FILE *f; if (root) p = strjoin(root, *i, "/", path, NULL); else p = strjoin(*i, "/", path, NULL); if (!p) return -ENOMEM; f = fopen(p, mode); if (f) { *_f = f; return 0; } if (errno != ENOENT) return -errno; } return -ENOENT; } int search_and_fopen(const char *path, const char *mode, const char *root, const char **search, FILE **_f) { _cleanup_strv_free_ char **copy = NULL; assert(path); assert(mode); assert(_f); if (path_is_absolute(path)) { FILE *f; f = fopen(path, mode); if (f) { *_f = f; return 0; } return -errno; } copy = strv_copy((char**) search); if (!copy) return -ENOMEM; return search_and_fopen_internal(path, mode, root, copy, _f); } int search_and_fopen_nulstr(const char *path, const char *mode, const char *root, const char *search, FILE **_f) { _cleanup_strv_free_ char **s = NULL; if (path_is_absolute(path)) { FILE *f; f = fopen(path, mode); if (f) { *_f = f; return 0; } return -errno; } s = strv_split_nulstr(search); if (!s) return -ENOMEM; return search_and_fopen_internal(path, mode, root, s, _f); } char *strextend(char **x, ...) { va_list ap; size_t f, l; char *r, *p; assert(x); l = f = *x ? strlen(*x) : 0; va_start(ap, x); for (;;) { const char *t; size_t n; t = va_arg(ap, const char *); if (!t) break; n = strlen(t); if (n > ((size_t) -1) - l) { va_end(ap); return NULL; } l += n; } va_end(ap); r = realloc(*x, l+1); if (!r) return NULL; p = r + f; va_start(ap, x); for (;;) { const char *t; t = va_arg(ap, const char *); if (!t) break; p = stpcpy(p, t); } va_end(ap); *p = 0; *x = r; return r + l; } char *strrep(const char *s, unsigned n) { size_t l; char *r, *p; unsigned i; assert(s); l = strlen(s); p = r = malloc(l * n + 1); if (!r) return NULL; for (i = 0; i < n; i++) p = stpcpy(p, s); *p = 0; return r; } void* greedy_realloc(void **p, size_t *allocated, size_t need, size_t size) { size_t a, newalloc; void *q; assert(p); assert(allocated); if (*allocated >= need) return *p; newalloc = MAX(need * 2, 64u / size); a = newalloc * size; /* check for overflows */ if (a < size * need) return NULL; q = realloc(*p, a); if (!q) return NULL; *p = q; *allocated = newalloc; return q; } void* greedy_realloc0(void **p, size_t *allocated, size_t need, size_t size) { size_t prev; uint8_t *q; assert(p); assert(allocated); prev = *allocated; q = greedy_realloc(p, allocated, need, size); if (!q) return NULL; if (*allocated > prev) memzero(q + prev * size, (*allocated - prev) * size); return q; } bool id128_is_valid(const char *s) { size_t i, l; l = strlen(s); if (l == 32) { /* Simple formatted 128bit hex string */ for (i = 0; i < l; i++) { char c = s[i]; if (!(c >= '0' && c <= '9') && !(c >= 'a' && c <= 'z') && !(c >= 'A' && c <= 'Z')) return false; } } else if (l == 36) { /* Formatted UUID */ for (i = 0; i < l; i++) { char c = s[i]; if ((i == 8 || i == 13 || i == 18 || i == 23)) { if (c != '-') return false; } else { if (!(c >= '0' && c <= '9') && !(c >= 'a' && c <= 'z') && !(c >= 'A' && c <= 'Z')) return false; } } } else return false; return true; } int split_pair(const char *s, const char *sep, char **l, char **r) { char *x, *a, *b; assert(s); assert(sep); assert(l); assert(r); if (isempty(sep)) return -EINVAL; x = strstr(s, sep); if (!x) return -EINVAL; a = strndup(s, x - s); if (!a) return -ENOMEM; b = strdup(x + strlen(sep)); if (!b) { free(a); return -ENOMEM; } *l = a; *r = b; return 0; } int shall_restore_state(void) { _cleanup_free_ char *value = NULL; int r; r = get_proc_cmdline_key("systemd.restore_state=", &value); if (r < 0) return r; if (r == 0) return true; return parse_boolean(value) != 0; } int proc_cmdline(char **ret) { assert(ret); if (detect_container(NULL) > 0) return get_process_cmdline(1, 0, false, ret); else return read_one_line_file("/proc/cmdline", ret); } int parse_proc_cmdline(int (*parse_item)(const char *key, const char *value)) { _cleanup_free_ char *line = NULL; const char *p; int r; assert(parse_item); r = proc_cmdline(&line); if (r < 0) return r; p = line; for (;;) { _cleanup_free_ char *word = NULL; char *value = NULL; r = unquote_first_word(&p, &word, UNQUOTE_RELAX); if (r < 0) return r; if (r == 0) break; /* Filter out arguments that are intended only for the * initrd */ if (!in_initrd() && startswith(word, "rd.")) continue; value = strchr(word, '='); if (value) *(value++) = 0; r = parse_item(word, value); if (r < 0) return r; } return 0; } int get_proc_cmdline_key(const char *key, char **value) { _cleanup_free_ char *line = NULL, *ret = NULL; bool found = false; const char *p; int r; assert(key); r = proc_cmdline(&line); if (r < 0) return r; p = line; for (;;) { _cleanup_free_ char *word = NULL; const char *e; r = unquote_first_word(&p, &word, UNQUOTE_RELAX); if (r < 0) return r; if (r == 0) break; /* Filter out arguments that are intended only for the * initrd */ if (!in_initrd() && startswith(word, "rd.")) continue; if (value) { e = startswith(word, key); if (!e) continue; r = free_and_strdup(&ret, e); if (r < 0) return r; found = true; } else { if (streq(word, key)) found = true; } } if (value) { *value = ret; ret = NULL; } return found; } int container_get_leader(const char *machine, pid_t *pid) { _cleanup_free_ char *s = NULL, *class = NULL; const char *p; pid_t leader; int r; assert(machine); assert(pid); p = strjoina("/run/systemd/machines/", machine); r = parse_env_file(p, NEWLINE, "LEADER", &s, "CLASS", &class, NULL); if (r == -ENOENT) return -EHOSTDOWN; if (r < 0) return r; if (!s) return -EIO; if (!streq_ptr(class, "container")) return -EIO; r = parse_pid(s, &leader); if (r < 0) return r; if (leader <= 1) return -EIO; *pid = leader; return 0; } int namespace_open(pid_t pid, int *pidns_fd, int *mntns_fd, int *netns_fd, int *root_fd) { _cleanup_close_ int pidnsfd = -1, mntnsfd = -1, netnsfd = -1; int rfd = -1; assert(pid >= 0); if (mntns_fd) { const char *mntns; mntns = procfs_file_alloca(pid, "ns/mnt"); mntnsfd = open(mntns, O_RDONLY|O_NOCTTY|O_CLOEXEC); if (mntnsfd < 0) return -errno; } if (pidns_fd) { const char *pidns; pidns = procfs_file_alloca(pid, "ns/pid"); pidnsfd = open(pidns, O_RDONLY|O_NOCTTY|O_CLOEXEC); if (pidnsfd < 0) return -errno; } if (netns_fd) { const char *netns; netns = procfs_file_alloca(pid, "ns/net"); netnsfd = open(netns, O_RDONLY|O_NOCTTY|O_CLOEXEC); if (netnsfd < 0) return -errno; } if (root_fd) { const char *root; root = procfs_file_alloca(pid, "root"); rfd = open(root, O_RDONLY|O_NOCTTY|O_CLOEXEC|O_DIRECTORY); if (rfd < 0) return -errno; } if (pidns_fd) *pidns_fd = pidnsfd; if (mntns_fd) *mntns_fd = mntnsfd; if (netns_fd) *netns_fd = netnsfd; if (root_fd) *root_fd = rfd; pidnsfd = mntnsfd = netnsfd = -1; return 0; } int namespace_enter(int pidns_fd, int mntns_fd, int netns_fd, int root_fd) { if (pidns_fd >= 0) if (setns(pidns_fd, CLONE_NEWPID) < 0) return -errno; if (mntns_fd >= 0) if (setns(mntns_fd, CLONE_NEWNS) < 0) return -errno; if (netns_fd >= 0) if (setns(netns_fd, CLONE_NEWNET) < 0) return -errno; if (root_fd >= 0) { if (fchdir(root_fd) < 0) return -errno; if (chroot(".") < 0) return -errno; } if (setresgid(0, 0, 0) < 0) return -errno; if (setgroups(0, NULL) < 0) return -errno; if (setresuid(0, 0, 0) < 0) return -errno; return 0; } int getpeercred(int fd, struct ucred *ucred) { socklen_t n = sizeof(struct ucred); struct ucred u; int r; assert(fd >= 0); assert(ucred); r = getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &u, &n); if (r < 0) return -errno; if (n != sizeof(struct ucred)) return -EIO; /* Check if the data is actually useful and not suppressed due * to namespacing issues */ if (u.pid <= 0) return -ENODATA; if (u.uid == UID_INVALID) return -ENODATA; if (u.gid == GID_INVALID) return -ENODATA; *ucred = u; return 0; } int getpeersec(int fd, char **ret) { socklen_t n = 64; char *s; int r; assert(fd >= 0); assert(ret); s = new0(char, n); if (!s) return -ENOMEM; r = getsockopt(fd, SOL_SOCKET, SO_PEERSEC, s, &n); if (r < 0) { free(s); if (errno != ERANGE) return -errno; s = new0(char, n); if (!s) return -ENOMEM; r = getsockopt(fd, SOL_SOCKET, SO_PEERSEC, s, &n); if (r < 0) { free(s); return -errno; } } if (isempty(s)) { free(s); return -EOPNOTSUPP; } *ret = s; return 0; } /* This is much like like mkostemp() but is subject to umask(). */ int mkostemp_safe(char *pattern, int flags) { _cleanup_umask_ mode_t u; int fd; assert(pattern); u = umask(077); fd = mkostemp(pattern, flags); if (fd < 0) return -errno; return fd; } int open_tmpfile(const char *path, int flags) { char *p; int fd; assert(path); #ifdef O_TMPFILE /* Try O_TMPFILE first, if it is supported */ fd = open(path, flags|O_TMPFILE, S_IRUSR|S_IWUSR); if (fd >= 0) return fd; #endif /* Fall back to unguessable name + unlinking */ p = strjoina(path, "/systemd-tmp-XXXXXX"); fd = mkostemp_safe(p, flags); if (fd < 0) return fd; unlink(p); return fd; } int fd_warn_permissions(const char *path, int fd) { struct stat st; if (fstat(fd, &st) < 0) return -errno; if (st.st_mode & 0111) log_warning("Configuration file %s is marked executable. Please remove executable permission bits. Proceeding anyway.", path); if (st.st_mode & 0002) log_warning("Configuration file %s is marked world-writable. Please remove world writability permission bits. Proceeding anyway.", path); if (getpid() == 1 && (st.st_mode & 0044) != 0044) log_warning("Configuration file %s is marked world-inaccessible. This has no effect as configuration data is accessible via APIs without restrictions. Proceeding anyway.", path); return 0; } unsigned long personality_from_string(const char *p) { /* Parse a personality specifier. We introduce our own * identifiers that indicate specific ABIs, rather than just * hints regarding the register size, since we want to keep * things open for multiple locally supported ABIs for the * same register size. We try to reuse the ABI identifiers * used by libseccomp. */ #if defined(__x86_64__) if (streq(p, "x86")) return PER_LINUX32; if (streq(p, "x86-64")) return PER_LINUX; #elif defined(__i386__) if (streq(p, "x86")) return PER_LINUX; #endif /* personality(7) documents that 0xffffffffUL is used for * querying the current personality, hence let's use that here * as error indicator. */ return 0xffffffffUL; } const char* personality_to_string(unsigned long p) { #if defined(__x86_64__) if (p == PER_LINUX32) return "x86"; if (p == PER_LINUX) return "x86-64"; #elif defined(__i386__) if (p == PER_LINUX) return "x86"; #endif return NULL; } uint64_t physical_memory(void) { long mem; /* We return this as uint64_t in case we are running as 32bit * process on a 64bit kernel with huge amounts of memory */ mem = sysconf(_SC_PHYS_PAGES); assert(mem > 0); return (uint64_t) mem * (uint64_t) page_size(); } void hexdump(FILE *f, const void *p, size_t s) { const uint8_t *b = p; unsigned n = 0; assert(s == 0 || b); while (s > 0) { size_t i; fprintf(f, "%04x ", n); for (i = 0; i < 16; i++) { if (i >= s) fputs(" ", f); else fprintf(f, "%02x ", b[i]); if (i == 7) fputc(' ', f); } fputc(' ', f); for (i = 0; i < 16; i++) { if (i >= s) fputc(' ', f); else fputc(isprint(b[i]) ? (char) b[i] : '.', f); } fputc('\n', f); if (s < 16) break; n += 16; b += 16; s -= 16; } } int update_reboot_param_file(const char *param) { int r = 0; if (param) { r = write_string_file(REBOOT_PARAM_FILE, param); if (r < 0) log_error("Failed to write reboot param to " REBOOT_PARAM_FILE": %s", strerror(-r)); } else unlink(REBOOT_PARAM_FILE); return r; } int umount_recursive(const char *prefix, int flags) { bool again; int n = 0, r; /* Try to umount everything recursively below a * directory. Also, take care of stacked mounts, and keep * unmounting them until they are gone. */ do { _cleanup_fclose_ FILE *proc_self_mountinfo = NULL; again = false; r = 0; proc_self_mountinfo = fopen("/proc/self/mountinfo", "re"); if (!proc_self_mountinfo) return -errno; for (;;) { _cleanup_free_ char *path = NULL, *p = NULL; int k; k = fscanf(proc_self_mountinfo, "%*s " /* (1) mount id */ "%*s " /* (2) parent id */ "%*s " /* (3) major:minor */ "%*s " /* (4) root */ "%ms " /* (5) mount point */ "%*s" /* (6) mount options */ "%*[^-]" /* (7) optional fields */ "- " /* (8) separator */ "%*s " /* (9) file system type */ "%*s" /* (10) mount source */ "%*s" /* (11) mount options 2 */ "%*[^\n]", /* some rubbish at the end */ &path); if (k != 1) { if (k == EOF) break; continue; } r = cunescape(path, UNESCAPE_RELAX, &p); if (r < 0) return r; if (!path_startswith(p, prefix)) continue; if (umount2(p, flags) < 0) { r = -errno; continue; } again = true; n++; break; } } while (again); return r ? r : n; } static int get_mount_flags(const char *path, unsigned long *flags) { struct statvfs buf; if (statvfs(path, &buf) < 0) return -errno; *flags = buf.f_flag; return 0; } int bind_remount_recursive(const char *prefix, bool ro) { _cleanup_set_free_free_ Set *done = NULL; _cleanup_free_ char *cleaned = NULL; int r; /* Recursively remount a directory (and all its submounts) * read-only or read-write. If the directory is already * mounted, we reuse the mount and simply mark it * MS_BIND|MS_RDONLY (or remove the MS_RDONLY for read-write * operation). If it isn't we first make it one. Afterwards we * apply MS_BIND|MS_RDONLY (or remove MS_RDONLY) to all * submounts we can access, too. When mounts are stacked on * the same mount point we only care for each individual * "top-level" mount on each point, as we cannot * influence/access the underlying mounts anyway. We do not * have any effect on future submounts that might get * propagated, they migt be writable. This includes future * submounts that have been triggered via autofs. */ cleaned = strdup(prefix); if (!cleaned) return -ENOMEM; path_kill_slashes(cleaned); done = set_new(&string_hash_ops); if (!done) return -ENOMEM; for (;;) { _cleanup_fclose_ FILE *proc_self_mountinfo = NULL; _cleanup_set_free_free_ Set *todo = NULL; bool top_autofs = false; char *x; unsigned long orig_flags; todo = set_new(&string_hash_ops); if (!todo) return -ENOMEM; proc_self_mountinfo = fopen("/proc/self/mountinfo", "re"); if (!proc_self_mountinfo) return -errno; for (;;) { _cleanup_free_ char *path = NULL, *p = NULL, *type = NULL; int k; k = fscanf(proc_self_mountinfo, "%*s " /* (1) mount id */ "%*s " /* (2) parent id */ "%*s " /* (3) major:minor */ "%*s " /* (4) root */ "%ms " /* (5) mount point */ "%*s" /* (6) mount options (superblock) */ "%*[^-]" /* (7) optional fields */ "- " /* (8) separator */ "%ms " /* (9) file system type */ "%*s" /* (10) mount source */ "%*s" /* (11) mount options (bind mount) */ "%*[^\n]", /* some rubbish at the end */ &path, &type); if (k != 2) { if (k == EOF) break; continue; } r = cunescape(path, UNESCAPE_RELAX, &p); if (r < 0) return r; /* Let's ignore autofs mounts. If they aren't * triggered yet, we want to avoid triggering * them, as we don't make any guarantees for * future submounts anyway. If they are * already triggered, then we will find * another entry for this. */ if (streq(type, "autofs")) { top_autofs = top_autofs || path_equal(cleaned, p); continue; } if (path_startswith(p, cleaned) && !set_contains(done, p)) { r = set_consume(todo, p); p = NULL; if (r == -EEXIST) continue; if (r < 0) return r; } } /* If we have no submounts to process anymore and if * the root is either already done, or an autofs, we * are done */ if (set_isempty(todo) && (top_autofs || set_contains(done, cleaned))) return 0; if (!set_contains(done, cleaned) && !set_contains(todo, cleaned)) { /* The prefix directory itself is not yet a * mount, make it one. */ if (mount(cleaned, cleaned, NULL, MS_BIND|MS_REC, NULL) < 0) return -errno; orig_flags = 0; (void) get_mount_flags(cleaned, &orig_flags); orig_flags &= ~MS_RDONLY; if (mount(NULL, prefix, NULL, orig_flags|MS_BIND|MS_REMOUNT|(ro ? MS_RDONLY : 0), NULL) < 0) return -errno; x = strdup(cleaned); if (!x) return -ENOMEM; r = set_consume(done, x); if (r < 0) return r; } while ((x = set_steal_first(todo))) { r = set_consume(done, x); if (r == -EEXIST) continue; if (r < 0) return r; /* Try to reuse the original flag set, but * don't care for errors, in case of * obstructed mounts */ orig_flags = 0; (void) get_mount_flags(x, &orig_flags); orig_flags &= ~MS_RDONLY; if (mount(NULL, x, NULL, orig_flags|MS_BIND|MS_REMOUNT|(ro ? MS_RDONLY : 0), NULL) < 0) { /* Deal with mount points that are * obstructed by a later mount */ if (errno != ENOENT) return -errno; } } } } int fflush_and_check(FILE *f) { assert(f); errno = 0; fflush(f); if (ferror(f)) return errno ? -errno : -EIO; return 0; } int tempfn_xxxxxx(const char *p, char **ret) { const char *fn; char *t; assert(p); assert(ret); /* * Turns this: * /foo/bar/waldo * * Into this: * /foo/bar/.#waldoXXXXXX */ fn = basename(p); if (!filename_is_valid(fn)) return -EINVAL; t = new(char, strlen(p) + 2 + 6 + 1); if (!t) return -ENOMEM; strcpy(stpcpy(stpcpy(mempcpy(t, p, fn - p), ".#"), fn), "XXXXXX"); *ret = path_kill_slashes(t); return 0; } int tempfn_random(const char *p, char **ret) { const char *fn; char *t, *x; uint64_t u; unsigned i; assert(p); assert(ret); /* * Turns this: * /foo/bar/waldo * * Into this: * /foo/bar/.#waldobaa2a261115984a9 */ fn = basename(p); if (!filename_is_valid(fn)) return -EINVAL; t = new(char, strlen(p) + 2 + 16 + 1); if (!t) return -ENOMEM; x = stpcpy(stpcpy(mempcpy(t, p, fn - p), ".#"), fn); u = random_u64(); for (i = 0; i < 16; i++) { *(x++) = hexchar(u & 0xF); u >>= 4; } *x = 0; *ret = path_kill_slashes(t); return 0; } int tempfn_random_child(const char *p, char **ret) { char *t, *x; uint64_t u; unsigned i; assert(p); assert(ret); /* Turns this: * /foo/bar/waldo * Into this: * /foo/bar/waldo/.#3c2b6219aa75d7d0 */ t = new(char, strlen(p) + 3 + 16 + 1); if (!t) return -ENOMEM; x = stpcpy(stpcpy(t, p), "/.#"); u = random_u64(); for (i = 0; i < 16; i++) { *(x++) = hexchar(u & 0xF); u >>= 4; } *x = 0; *ret = path_kill_slashes(t); return 0; } /* make sure the hostname is not "localhost" */ bool is_localhost(const char *hostname) { assert(hostname); /* This tries to identify local host and domain names * described in RFC6761 plus the redhatism of .localdomain */ return streq(hostname, "localhost") || streq(hostname, "localhost.") || streq(hostname, "localdomain.") || streq(hostname, "localdomain") || endswith(hostname, ".localhost") || endswith(hostname, ".localhost.") || endswith(hostname, ".localdomain") || endswith(hostname, ".localdomain."); } int take_password_lock(const char *root) { struct flock flock = { .l_type = F_WRLCK, .l_whence = SEEK_SET, .l_start = 0, .l_len = 0, }; const char *path; int fd, r; /* This is roughly the same as lckpwdf(), but not as awful. We * don't want to use alarm() and signals, hence we implement * our own trivial version of this. * * Note that shadow-utils also takes per-database locks in * addition to lckpwdf(). However, we don't given that they * are redundant as they they invoke lckpwdf() first and keep * it during everything they do. The per-database locks are * awfully racy, and thus we just won't do them. */ if (root) path = strjoina(root, "/etc/.pwd.lock"); else path = "/etc/.pwd.lock"; fd = open(path, O_WRONLY|O_CREAT|O_CLOEXEC|O_NOCTTY|O_NOFOLLOW, 0600); if (fd < 0) return -errno; r = fcntl(fd, F_SETLKW, &flock); if (r < 0) { safe_close(fd); return -errno; } return fd; } int is_symlink(const char *path) { struct stat info; if (lstat(path, &info) < 0) return -errno; return !!S_ISLNK(info.st_mode); } int is_dir(const char* path, bool follow) { struct stat st; int r; if (follow) r = stat(path, &st); else r = lstat(path, &st); if (r < 0) return -errno; return !!S_ISDIR(st.st_mode); } int unquote_first_word(const char **p, char **ret, UnquoteFlags flags) { _cleanup_free_ char *s = NULL; size_t allocated = 0, sz = 0; int r; enum { START, VALUE, VALUE_ESCAPE, SINGLE_QUOTE, SINGLE_QUOTE_ESCAPE, DOUBLE_QUOTE, DOUBLE_QUOTE_ESCAPE, SPACE, } state = START; assert(p); assert(*p); assert(ret); /* Parses the first word of a string, and returns it in * *ret. Removes all quotes in the process. When parsing fails * (because of an uneven number of quotes or similar), leaves * the pointer *p at the first invalid character. */ for (;;) { char c = **p; switch (state) { case START: if (c == 0) goto finish; else if (strchr(WHITESPACE, c)) break; state = VALUE; /* fallthrough */ case VALUE: if (c == 0) goto finish; else if (c == '\'') state = SINGLE_QUOTE; else if (c == '\\') state = VALUE_ESCAPE; else if (c == '\"') state = DOUBLE_QUOTE; else if (strchr(WHITESPACE, c)) state = SPACE; else { if (!GREEDY_REALLOC(s, allocated, sz+2)) return -ENOMEM; s[sz++] = c; } break; case VALUE_ESCAPE: if (c == 0) { if (flags & UNQUOTE_RELAX) goto finish; return -EINVAL; } if (!GREEDY_REALLOC(s, allocated, sz+7)) return -ENOMEM; if (flags & UNQUOTE_CUNESCAPE) { uint32_t u; r = cunescape_one(*p, (size_t) -1, &c, &u); if (r < 0) return -EINVAL; (*p) += r - 1; if (c != 0) s[sz++] = c; /* normal explicit char */ else sz += utf8_encode_unichar(s + sz, u); /* unicode chars we'll encode as utf8 */ } else s[sz++] = c; state = VALUE; break; case SINGLE_QUOTE: if (c == 0) { if (flags & UNQUOTE_RELAX) goto finish; return -EINVAL; } else if (c == '\'') state = VALUE; else if (c == '\\') state = SINGLE_QUOTE_ESCAPE; else { if (!GREEDY_REALLOC(s, allocated, sz+2)) return -ENOMEM; s[sz++] = c; } break; case SINGLE_QUOTE_ESCAPE: if (c == 0) { if (flags & UNQUOTE_RELAX) goto finish; return -EINVAL; } if (!GREEDY_REALLOC(s, allocated, sz+7)) return -ENOMEM; if (flags & UNQUOTE_CUNESCAPE) { uint32_t u; r = cunescape_one(*p, (size_t) -1, &c, &u); if (r < 0) return -EINVAL; (*p) += r - 1; if (c != 0) s[sz++] = c; else sz += utf8_encode_unichar(s + sz, u); } else s[sz++] = c; state = SINGLE_QUOTE; break; case DOUBLE_QUOTE: if (c == 0) return -EINVAL; else if (c == '\"') state = VALUE; else if (c == '\\') state = DOUBLE_QUOTE_ESCAPE; else { if (!GREEDY_REALLOC(s, allocated, sz+2)) return -ENOMEM; s[sz++] = c; } break; case DOUBLE_QUOTE_ESCAPE: if (c == 0) { if (flags & UNQUOTE_RELAX) goto finish; return -EINVAL; } if (!GREEDY_REALLOC(s, allocated, sz+7)) return -ENOMEM; if (flags & UNQUOTE_CUNESCAPE) { uint32_t u; r = cunescape_one(*p, (size_t) -1, &c, &u); if (r < 0) return -EINVAL; (*p) += r - 1; if (c != 0) s[sz++] = c; else sz += utf8_encode_unichar(s + sz, u); } else s[sz++] = c; state = DOUBLE_QUOTE; break; case SPACE: if (c == 0) goto finish; if (!strchr(WHITESPACE, c)) goto finish; break; } (*p) ++; } finish: if (!s) { *ret = NULL; return 0; } s[sz] = 0; *ret = s; s = NULL; return 1; } int unquote_many_words(const char **p, UnquoteFlags flags, ...) { va_list ap; char **l; int n = 0, i, c, r; /* Parses a number of words from a string, stripping any * quotes if necessary. */ assert(p); /* Count how many words are expected */ va_start(ap, flags); for (;;) { if (!va_arg(ap, char **)) break; n++; } va_end(ap); if (n <= 0) return 0; /* Read all words into a temporary array */ l = newa0(char*, n); for (c = 0; c < n; c++) { r = unquote_first_word(p, &l[c], flags); if (r < 0) { int j; for (j = 0; j < c; j++) free(l[j]); return r; } if (r == 0) break; } /* If we managed to parse all words, return them in the passed * in parameters */ va_start(ap, flags); for (i = 0; i < n; i++) { char **v; v = va_arg(ap, char **); assert(v); *v = l[i]; } va_end(ap); return c; } int free_and_strdup(char **p, const char *s) { char *t; assert(p); /* Replaces a string pointer with an strdup()ed new string, * possibly freeing the old one. */ if (s) { t = strdup(s); if (!t) return -ENOMEM; } else t = NULL; free(*p); *p = t; return 0; } int sethostname_idempotent(const char *s) { int r; char buf[HOST_NAME_MAX + 1] = {}; assert(s); r = gethostname(buf, sizeof(buf)); if (r < 0) return -errno; if (streq(buf, s)) return 0; r = sethostname(s, strlen(s)); if (r < 0) return -errno; return 1; } int ptsname_malloc(int fd, char **ret) { size_t l = 100; assert(fd >= 0); assert(ret); for (;;) { char *c; c = new(char, l); if (!c) return -ENOMEM; if (ptsname_r(fd, c, l) == 0) { *ret = c; return 0; } if (errno != ERANGE) { free(c); return -errno; } free(c); l *= 2; } } int openpt_in_namespace(pid_t pid, int flags) { _cleanup_close_ int pidnsfd = -1, mntnsfd = -1, rootfd = -1; _cleanup_close_pair_ int pair[2] = { -1, -1 }; union { struct cmsghdr cmsghdr; uint8_t buf[CMSG_SPACE(sizeof(int))]; } control = {}; struct msghdr mh = { .msg_control = &control, .msg_controllen = sizeof(control), }; struct cmsghdr *cmsg; siginfo_t si; pid_t child; int r; assert(pid > 0); r = namespace_open(pid, &pidnsfd, &mntnsfd, NULL, &rootfd); if (r < 0) return r; if (socketpair(AF_UNIX, SOCK_DGRAM, 0, pair) < 0) return -errno; child = fork(); if (child < 0) return -errno; if (child == 0) { int master; pair[0] = safe_close(pair[0]); r = namespace_enter(pidnsfd, mntnsfd, -1, rootfd); if (r < 0) _exit(EXIT_FAILURE); master = posix_openpt(flags); if (master < 0) _exit(EXIT_FAILURE); cmsg = CMSG_FIRSTHDR(&mh); cmsg->cmsg_level = SOL_SOCKET; cmsg->cmsg_type = SCM_RIGHTS; cmsg->cmsg_len = CMSG_LEN(sizeof(int)); memcpy(CMSG_DATA(cmsg), &master, sizeof(int)); mh.msg_controllen = cmsg->cmsg_len; if (sendmsg(pair[1], &mh, MSG_NOSIGNAL) < 0) _exit(EXIT_FAILURE); _exit(EXIT_SUCCESS); } pair[1] = safe_close(pair[1]); r = wait_for_terminate(child, &si); if (r < 0) return r; if (si.si_code != CLD_EXITED || si.si_status != EXIT_SUCCESS) return -EIO; if (recvmsg(pair[0], &mh, MSG_NOSIGNAL|MSG_CMSG_CLOEXEC) < 0) return -errno; for (cmsg = CMSG_FIRSTHDR(&mh); cmsg; cmsg = CMSG_NXTHDR(&mh, cmsg)) if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { int *fds; unsigned n_fds; fds = (int*) CMSG_DATA(cmsg); n_fds = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int); if (n_fds != 1) { close_many(fds, n_fds); return -EIO; } return fds[0]; } return -EIO; } ssize_t fgetxattrat_fake(int dirfd, const char *filename, const char *attribute, void *value, size_t size, int flags) { _cleanup_close_ int fd = -1; ssize_t l; /* The kernel doesn't have a fgetxattrat() command, hence let's emulate one */ fd = openat(dirfd, filename, O_RDONLY|O_CLOEXEC|O_NOCTTY|O_NOATIME|(flags & AT_SYMLINK_NOFOLLOW ? O_NOFOLLOW : 0)); if (fd < 0) return -errno; l = fgetxattr(fd, attribute, value, size); if (l < 0) return -errno; return l; } static int parse_crtime(le64_t le, usec_t *usec) { uint64_t u; assert(usec); u = le64toh(le); if (u == 0 || u == (uint64_t) -1) return -EIO; *usec = (usec_t) u; return 0; } int fd_getcrtime(int fd, usec_t *usec) { le64_t le; ssize_t n; assert(fd >= 0); assert(usec); /* Until Linux gets a real concept of birthtime/creation time, * let's fake one with xattrs */ n = fgetxattr(fd, "user.crtime_usec", &le, sizeof(le)); if (n < 0) return -errno; if (n != sizeof(le)) return -EIO; return parse_crtime(le, usec); } int fd_getcrtime_at(int dirfd, const char *name, usec_t *usec, int flags) { le64_t le; ssize_t n; n = fgetxattrat_fake(dirfd, name, "user.crtime_usec", &le, sizeof(le), flags); if (n < 0) return -errno; if (n != sizeof(le)) return -EIO; return parse_crtime(le, usec); } int path_getcrtime(const char *p, usec_t *usec) { le64_t le; ssize_t n; assert(p); assert(usec); n = getxattr(p, "user.crtime_usec", &le, sizeof(le)); if (n < 0) return -errno; if (n != sizeof(le)) return -EIO; return parse_crtime(le, usec); } int fd_setcrtime(int fd, usec_t usec) { le64_t le; assert(fd >= 0); if (usec <= 0) usec = now(CLOCK_REALTIME); le = htole64((uint64_t) usec); if (fsetxattr(fd, "user.crtime_usec", &le, sizeof(le), 0) < 0) return -errno; return 0; } int same_fd(int a, int b) { struct stat sta, stb; pid_t pid; int r, fa, fb; assert(a >= 0); assert(b >= 0); /* Compares two file descriptors. Note that semantics are * quite different depending on whether we have kcmp() or we * don't. If we have kcmp() this will only return true for * dup()ed file descriptors, but not otherwise. If we don't * have kcmp() this will also return true for two fds of the same * file, created by separate open() calls. Since we use this * call mostly for filtering out duplicates in the fd store * this difference hopefully doesn't matter too much. */ if (a == b) return true; /* Try to use kcmp() if we have it. */ pid = getpid(); r = kcmp(pid, pid, KCMP_FILE, a, b); if (r == 0) return true; if (r > 0) return false; if (errno != ENOSYS) return -errno; /* We don't have kcmp(), use fstat() instead. */ if (fstat(a, &sta) < 0) return -errno; if (fstat(b, &stb) < 0) return -errno; if ((sta.st_mode & S_IFMT) != (stb.st_mode & S_IFMT)) return false; /* We consider all device fds different, since two device fds * might refer to quite different device contexts even though * they share the same inode and backing dev_t. */ if (S_ISCHR(sta.st_mode) || S_ISBLK(sta.st_mode)) return false; if (sta.st_dev != stb.st_dev || sta.st_ino != stb.st_ino) return false; /* The fds refer to the same inode on disk, let's also check * if they have the same fd flags. This is useful to * distuingish the read and write side of a pipe created with * pipe(). */ fa = fcntl(a, F_GETFL); if (fa < 0) return -errno; fb = fcntl(b, F_GETFL); if (fb < 0) return -errno; return fa == fb; } int chattr_fd(int fd, unsigned value, unsigned mask) { unsigned old_attr, new_attr; assert(fd >= 0); if (mask == 0) return 0; if (ioctl(fd, FS_IOC_GETFLAGS, &old_attr) < 0) return -errno; new_attr = (old_attr & ~mask) | (value & mask); if (new_attr == old_attr) return 0; if (ioctl(fd, FS_IOC_SETFLAGS, &new_attr) < 0) return -errno; return 1; } int chattr_path(const char *p, unsigned value, unsigned mask) { _cleanup_close_ int fd = -1; assert(p); if (mask == 0) return 0; fd = open(p, O_RDONLY|O_CLOEXEC|O_NOCTTY|O_NOFOLLOW); if (fd < 0) return -errno; return chattr_fd(fd, value, mask); } int read_attr_fd(int fd, unsigned *ret) { assert(fd >= 0); if (ioctl(fd, FS_IOC_GETFLAGS, ret) < 0) return -errno; return 0; } int read_attr_path(const char *p, unsigned *ret) { _cleanup_close_ int fd = -1; assert(p); assert(ret); fd = open(p, O_RDONLY|O_CLOEXEC|O_NOCTTY|O_NOFOLLOW); if (fd < 0) return -errno; return read_attr_fd(fd, ret); } int make_lock_file(const char *p, int operation, LockFile *ret) { _cleanup_close_ int fd = -1; _cleanup_free_ char *t = NULL; int r; /* * We use UNPOSIX locks if they are available. They have nice * semantics, and are mostly compatible with NFS. However, * they are only available on new kernels. When we detect we * are running on an older kernel, then we fall back to good * old BSD locks. They also have nice semantics, but are * slightly problematic on NFS, where they are upgraded to * POSIX locks, even though locally they are orthogonal to * POSIX locks. */ t = strdup(p); if (!t) return -ENOMEM; for (;;) { struct flock fl = { .l_type = (operation & ~LOCK_NB) == LOCK_EX ? F_WRLCK : F_RDLCK, .l_whence = SEEK_SET, }; struct stat st; fd = open(p, O_CREAT|O_RDWR|O_NOFOLLOW|O_CLOEXEC|O_NOCTTY, 0600); if (fd < 0) return -errno; r = fcntl(fd, (operation & LOCK_NB) ? F_OFD_SETLK : F_OFD_SETLKW, &fl); if (r < 0) { /* If the kernel is too old, use good old BSD locks */ if (errno == EINVAL) r = flock(fd, operation); if (r < 0) return errno == EAGAIN ? -EBUSY : -errno; } /* If we acquired the lock, let's check if the file * still exists in the file system. If not, then the * previous exclusive owner removed it and then closed * it. In such a case our acquired lock is worthless, * hence try again. */ r = fstat(fd, &st); if (r < 0) return -errno; if (st.st_nlink > 0) break; fd = safe_close(fd); } ret->path = t; ret->fd = fd; ret->operation = operation; fd = -1; t = NULL; return r; } int make_lock_file_for(const char *p, int operation, LockFile *ret) { const char *fn; char *t; assert(p); assert(ret); fn = basename(p); if (!filename_is_valid(fn)) return -EINVAL; t = newa(char, strlen(p) + 2 + 4 + 1); stpcpy(stpcpy(stpcpy(mempcpy(t, p, fn - p), ".#"), fn), ".lck"); return make_lock_file(t, operation, ret); } void release_lock_file(LockFile *f) { int r; if (!f) return; if (f->path) { /* If we are the exclusive owner we can safely delete * the lock file itself. If we are not the exclusive * owner, we can try becoming it. */ if (f->fd >= 0 && (f->operation & ~LOCK_NB) == LOCK_SH) { static const struct flock fl = { .l_type = F_WRLCK, .l_whence = SEEK_SET, }; r = fcntl(f->fd, F_OFD_SETLK, &fl); if (r < 0 && errno == EINVAL) r = flock(f->fd, LOCK_EX|LOCK_NB); if (r >= 0) f->operation = LOCK_EX|LOCK_NB; } if ((f->operation & ~LOCK_NB) == LOCK_EX) unlink_noerrno(f->path); free(f->path); f->path = NULL; } f->fd = safe_close(f->fd); f->operation = 0; } static size_t nul_length(const uint8_t *p, size_t sz) { size_t n = 0; while (sz > 0) { if (*p != 0) break; n++; p++; sz--; } return n; } ssize_t sparse_write(int fd, const void *p, size_t sz, size_t run_length) { const uint8_t *q, *w, *e; ssize_t l; q = w = p; e = q + sz; while (q < e) { size_t n; n = nul_length(q, e - q); /* If there are more than the specified run length of * NUL bytes, or if this is the beginning or the end * of the buffer, then seek instead of write */ if ((n > run_length) || (n > 0 && q == p) || (n > 0 && q + n >= e)) { if (q > w) { l = write(fd, w, q - w); if (l < 0) return -errno; if (l != q -w) return -EIO; } if (lseek(fd, n, SEEK_CUR) == (off_t) -1) return -errno; q += n; w = q; } else if (n > 0) q += n; else q ++; } if (q > w) { l = write(fd, w, q - w); if (l < 0) return -errno; if (l != q - w) return -EIO; } return q - (const uint8_t*) p; } void sigkill_wait(pid_t *pid) { if (!pid) return; if (*pid <= 1) return; if (kill(*pid, SIGKILL) > 0) (void) wait_for_terminate(*pid, NULL); } int syslog_parse_priority(const char **p, int *priority, bool with_facility) { int a = 0, b = 0, c = 0; int k; assert(p); assert(*p); assert(priority); if ((*p)[0] != '<') return 0; if (!strchr(*p, '>')) return 0; if ((*p)[2] == '>') { c = undecchar((*p)[1]); k = 3; } else if ((*p)[3] == '>') { b = undecchar((*p)[1]); c = undecchar((*p)[2]); k = 4; } else if ((*p)[4] == '>') { a = undecchar((*p)[1]); b = undecchar((*p)[2]); c = undecchar((*p)[3]); k = 5; } else return 0; if (a < 0 || b < 0 || c < 0 || (!with_facility && (a || b || c > 7))) return 0; if (with_facility) *priority = a*100 + b*10 + c; else *priority = (*priority & LOG_FACMASK) | c; *p += k; return 1; } ssize_t string_table_lookup(const char * const *table, size_t len, const char *key) { size_t i; if (!key) return -1; for (i = 0; i < len; ++i) if (streq_ptr(table[i], key)) return (ssize_t)i; return -1; } void cmsg_close_all(struct msghdr *mh) { struct cmsghdr *cmsg; assert(mh); for (cmsg = CMSG_FIRSTHDR(mh); cmsg; cmsg = CMSG_NXTHDR(mh, cmsg)) if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) close_many((int*) CMSG_DATA(cmsg), (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int)); } int rename_noreplace(int olddirfd, const char *oldpath, int newdirfd, const char *newpath) { struct stat buf; int ret; ret = renameat2(olddirfd, oldpath, newdirfd, newpath, RENAME_NOREPLACE); if (ret >= 0) return 0; /* Even though renameat2() exists since Linux 3.15, btrfs added * support for it later. If it is not implemented, fallback to another * method. */ if (errno != EINVAL) return -errno; /* The link()/unlink() fallback does not work on directories. But * renameat() without RENAME_NOREPLACE gives the same semantics on * directories, except when newpath is an *empty* directory. This is * good enough. */ ret = fstatat(olddirfd, oldpath, &buf, AT_SYMLINK_NOFOLLOW); if (ret >= 0 && S_ISDIR(buf.st_mode)) { ret = renameat(olddirfd, oldpath, newdirfd, newpath); return ret >= 0 ? 0 : -errno; } /* If it is not a directory, use the link()/unlink() fallback. */ ret = linkat(olddirfd, oldpath, newdirfd, newpath, 0); if (ret < 0) return -errno; ret = unlinkat(olddirfd, oldpath, 0); if (ret < 0) { /* backup errno before the following unlinkat() alters it */ ret = errno; (void) unlinkat(newdirfd, newpath, 0); errno = ret; return -errno; } return 0; } char *shell_maybe_quote(const char *s) { const char *p; char *r, *t; assert(s); /* Encloses a string in double quotes if necessary to make it * OK as shell string. */ for (p = s; *p; p++) if (*p <= ' ' || *p >= 127 || strchr(SHELL_NEED_QUOTES, *p)) break; if (!*p) return strdup(s); r = new(char, 1+strlen(s)*2+1+1); if (!r) return NULL; t = r; *(t++) = '"'; t = mempcpy(t, s, p - s); for (; *p; p++) { if (strchr(SHELL_NEED_ESCAPE, *p)) *(t++) = '\\'; *(t++) = *p; } *(t++)= '"'; *t = 0; return r; } int parse_mode(const char *s, mode_t *ret) { char *x; long l; assert(s); assert(ret); errno = 0; l = strtol(s, &x, 8); if (errno != 0) return -errno; if (!x || x == s || *x) return -EINVAL; if (l < 0 || l > 07777) return -ERANGE; *ret = (mode_t) l; return 0; }