/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/ /*** This file is part of systemd. Copyright 2014 Kay Sievers systemd is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with systemd; If not, see . ***/ /* * "Simple Network Time Protocol Version 4 (SNTPv4) is a subset of the * Network Time Protocol (NTP) used to synchronize computer clocks in * the Internet. SNTPv4 can be used when the ultimate performance of * a full NTP implementation based on RFC 1305 is neither needed nor * justified." * * "Unlike most NTP clients, SNTP clients normally operate with only a * single server at a time." * * http://tools.ietf.org/html/rfc4330 */ #include #include #include #include #include #include #include #include #include #include #include #include #include "util.h" #include "sparse-endian.h" #include "log.h" #include "sd-event.h" #include "timedate-sntp.h" #ifndef ADJ_SETOFFSET #define ADJ_SETOFFSET 0x0100 /* add 'time' to current time */ #endif /* Maximum delta in seconds which the system clock is gradually adjusted * to approach the network time. Deltas larger that this are set by letting * the system time jump. The maximum for adjtime is 500ms. */ #define NTP_MAX_ADJUST 0.2 /* * "Define the required accuracy of the system clock, then calculate the * maximum timeout. Use the longest maximum timeout possible given the system * constraints to minimize time server aggregate load." * * "A client MUST NOT under any conditions use a poll interval less * than 15 seconds." */ #define NTP_POLL_INTERVAL_MIN_SEC 16 #define NTP_POLL_INTERVAL_MAX_SEC 2048 #define NTP_POLL_ACCURACY_SEC 0.1 #define NTP_LEAP_PLUSSEC 1 #define NTP_LEAP_MINUSSEC 2 #define NTP_LEAP_NOTINSYNC 3 #define NTP_MODE_CLIENT 3 #define NTP_MODE_SERVER 4 #define NTP_FIELD_LEAP(f) (((f) >> 6) & 3) #define NTP_FIELD_VERSION(f) (((f) >> 3) & 7) #define NTP_FIELD_MODE(f) ((f) & 7) #define NTP_FIELD(l, v, m) (((l) << 6) | ((v) << 3) | (m)) /* * "NTP timestamps are represented as a 64-bit unsigned fixed-point number, * in seconds relative to 0h on 1 January 1900." */ #define OFFSET_1900_1970 2208988800UL struct ntp_ts { be32_t sec; be32_t frac; } _packed_; struct ntp_ts_short { be16_t sec; be16_t frac; } _packed_; struct ntp_msg { uint8_t field; uint8_t stratum; int8_t poll; int8_t precision; struct ntp_ts_short root_delay; struct ntp_ts_short root_dispersion; char refid[4]; struct ntp_ts reference_time; struct ntp_ts origin_time; struct ntp_ts recv_time; struct ntp_ts trans_time; } _packed_; struct SNTPContext { sd_event_source *event_receive; sd_event_source *event_timer; char *server; struct sockaddr_in server_addr; int server_socket; uint64_t packet_count; struct timespec trans_time_mon; struct timespec trans_time; bool pending; usec_t poll_interval; struct { double offset; double delay; } samples[8]; unsigned int samples_idx; double samples_jitter; }; static int sntp_arm_timer(SNTPContext *sntp); static int log2i(int a) { int exp = 0; assert(a > 0); while (a > 0) { a >>= 1; exp++; } return exp; } static double log2d(int a) { if (a < 0) return 1.0 / (1UL << - a); return 1UL << a; } static double ntp_ts_to_d(const struct ntp_ts *ts) { return be32toh(ts->sec) + ((double)be32toh(ts->frac) / UINT_MAX); } static double tv_to_d(const struct timeval *tv) { return tv->tv_sec + (1.0e-6 * tv->tv_usec); } static double ts_to_d(const struct timespec *ts) { return ts->tv_sec + (1.0e-9 * ts->tv_nsec); } static void d_to_tv(double d, struct timeval *tv) { tv->tv_sec = (long)d; tv->tv_usec = (d - tv->tv_sec) * 1000 * 1000; /* the kernel expects -0.3s as {-1, 7000.000} */ if (tv->tv_usec < 0) { tv->tv_sec -= 1; tv->tv_usec += 1000 * 1000; } } static double square(double d) { return d * d; } static int sntp_send_request(SNTPContext *sntp) { struct ntp_msg ntpmsg = {}; struct sockaddr_in addr = {}; ssize_t len; int r; /* * "The client initializes the NTP message header, sends the request * to the server, and strips the time of day from the Transmit * Timestamp field of the reply. For this purpose, all the NTP * header fields are set to 0, except the Mode, VN, and optional * Transmit Timestamp fields." */ ntpmsg.field = NTP_FIELD(0, 4, NTP_MODE_CLIENT); /* * Set transmit timestamp, remember it; the server will send that back * as the origin timestamp and we have an indication that this is the * matching answer to our request. * * The actual value does not matter, We do not care about the correct * NTP UINT_MAX fraction, we just pass the plain nanosecond value. */ clock_gettime(CLOCK_MONOTONIC, &sntp->trans_time_mon); clock_gettime(CLOCK_REALTIME, &sntp->trans_time); ntpmsg.trans_time.sec = htobe32(sntp->trans_time.tv_sec + OFFSET_1900_1970); ntpmsg.trans_time.frac = htobe32(sntp->trans_time.tv_nsec); addr.sin_family = AF_INET; addr.sin_port = htobe16(123); addr.sin_addr.s_addr = inet_addr(sntp->server); len = sendto(sntp->server_socket, &ntpmsg, sizeof(ntpmsg), MSG_DONTWAIT, &addr, sizeof(addr)); if (len < 0) { log_debug("Sending NTP request to %s failed: %m", sntp->server); return -errno; } sntp->pending = true; /* re-arm timer for next poll interval, in case the packet never arrives back */ r = sntp_arm_timer(sntp); if (r < 0) return r; log_debug("Sent NTP request to: %s", sntp->server); return 0; } static int sntp_timer(sd_event_source *source, usec_t usec, void *userdata) { SNTPContext *sntp = userdata; assert(sntp); sntp_send_request(sntp); return 0; } static int sntp_arm_timer(SNTPContext *sntp) { sd_event *e; int r; assert(sntp); assert(sntp->event_receive); if (sntp->poll_interval <= 0) { sntp->event_timer = sd_event_source_unref(sntp->event_timer); return 0; } if (sntp->event_timer) { r = sd_event_source_set_time(sntp->event_timer, now(CLOCK_MONOTONIC) + sntp->poll_interval); if (r < 0) return r; return sd_event_source_set_enabled(sntp->event_timer, SD_EVENT_ONESHOT); } e = sd_event_source_get_event(sntp->event_receive); r = sd_event_add_monotonic(e, &sntp->event_timer, now(CLOCK_MONOTONIC) + sntp->poll_interval, 0, sntp_timer, sntp); if (r < 0) return r; return 0; } static int sntp_adjust_clock(SNTPContext *sntp, double offset, int leap_sec) { struct timex tmx = {}; int r; /* * For small deltas, tell the kernel to gradually adjust the system * clock to the NTP time, larger deltas are just directly set. * * Clear STA_UNSYNC, it will enable the kernel's 11-minute mode, which * syncs the system time periodically to the hardware clock. */ if (offset < NTP_MAX_ADJUST && offset > -NTP_MAX_ADJUST) { int constant; constant = log2i(sntp->poll_interval / USEC_PER_SEC) - 5; tmx.modes |= ADJ_STATUS | ADJ_OFFSET | ADJ_TIMECONST; tmx.status = STA_PLL; tmx.offset = offset * 1000 * 1000; tmx.constant = constant; log_debug(" adjust (slew): %+f sec\n", (double)tmx.offset / USEC_PER_SEC); } else { tmx.modes = ADJ_SETOFFSET; d_to_tv(offset, &tmx.time); log_debug(" adjust (jump): %+f sec\n", tv_to_d(&tmx.time)); } switch (leap_sec) { case 1: tmx.status |= STA_INS; break; case -1: tmx.status |= STA_DEL; break; } r = clock_adjtime(CLOCK_REALTIME, &tmx); if (r < 0) return r; log_debug(" status : %04i %s\n" " time now : %li.%06li\n" " constant : %li\n" " offset : %+f sec\n" " freq offset : %+li (%+.3f ppm)\n", tmx.status, tmx.status & STA_UNSYNC ? "" : "sync", tmx.time.tv_sec, tmx.time.tv_usec, tmx.constant, (double)tmx.offset / USEC_PER_SEC, tmx.freq, (double)tmx.freq / 65536); return 0; } static bool sntp_sample_spike_detection(SNTPContext *sntp, double offset, double delay) { unsigned int i, idx_cur, idx_new, idx_min; double jitter; bool spike; /* store the current data in our samples array */ idx_cur = sntp->samples_idx; idx_new = (idx_cur + 1) % ELEMENTSOF(sntp->samples); sntp->samples_idx = idx_new; sntp->samples[idx_new].offset = offset; sntp->samples[idx_new].delay = delay; sntp->packet_count++; /* * Spike detection; compare the difference between the * current offset to the previous offset and jitter. */ spike = sntp->packet_count > 2 && fabs(offset - sntp->samples[idx_cur].offset) > sntp->samples_jitter * 3; /* calculate new jitter value from the RMS differences relative to the lowest delay sample */ for (idx_min = idx_cur, i = 0; i < ELEMENTSOF(sntp->samples); i++) if (sntp->samples[i].delay > 0 && sntp->samples[i].delay < sntp->samples[idx_min].delay) idx_min = i; for (jitter = 0, i = 0; i < ELEMENTSOF(sntp->samples); i++) jitter += square(sntp->samples[i].offset - sntp->samples[idx_min].offset); sntp->samples_jitter = sqrt(jitter / (ELEMENTSOF(sntp->samples) - 1)); return spike; } static void snmp_adjust_poll(SNTPContext *sntp, double offset, bool spike) { double delta; if (spike) { if (sntp->poll_interval > NTP_POLL_INTERVAL_MIN_SEC * USEC_PER_SEC) sntp->poll_interval /= 2; return; } delta = fabs(offset); /* set to minimal poll interval */ if (delta > NTP_POLL_ACCURACY_SEC) { sntp->poll_interval = NTP_POLL_INTERVAL_MIN_SEC * USEC_PER_SEC; return; } /* increase polling interval */ if (delta < NTP_POLL_ACCURACY_SEC * 0.25) { if (sntp->poll_interval < NTP_POLL_INTERVAL_MAX_SEC * USEC_PER_SEC) sntp->poll_interval *= 2; return; } /* decrease polling interval */ if (delta > NTP_POLL_ACCURACY_SEC * 0.75) { if (sntp->poll_interval > NTP_POLL_INTERVAL_MIN_SEC * USEC_PER_SEC) sntp->poll_interval /= 2; return; } } static int sntp_receive_response(sd_event_source *source, int fd, uint32_t revents, void *userdata) { SNTPContext *sntp = userdata; unsigned char buf[sizeof(struct ntp_msg)]; struct iovec iov = { .iov_base = buf, .iov_len = sizeof(buf), }; union { struct cmsghdr cmsghdr; uint8_t buf[CMSG_SPACE(sizeof(struct timeval))]; } control; struct sockaddr_in server_addr; struct msghdr msghdr = { .msg_iov = &iov, .msg_iovlen = 1, .msg_control = &control, .msg_controllen = sizeof(control), .msg_name = &server_addr, .msg_namelen = sizeof(server_addr), }; struct cmsghdr *cmsg; struct timespec now; struct timeval *recv_time; ssize_t len; struct ntp_msg *ntpmsg; double origin, recv, trans, dest; double delay, offset; bool spike; int leap_sec; int r; if (revents & (EPOLLHUP|EPOLLERR)) { log_debug("Server connection returned error, closing."); sntp_server_disconnect(sntp); return -ENOTCONN; } len = recvmsg(fd, &msghdr, MSG_DONTWAIT); if (len < 0) { log_debug("Error receiving message, disconnecting"); return -EINVAL; } if (iov.iov_len < sizeof(struct ntp_msg)) { log_debug("Invalid response from server, disconnecting"); return -EINVAL; } if (sntp->server_addr.sin_addr.s_addr != server_addr.sin_addr.s_addr) { log_debug("Response from unknown server, disconnecting"); return -EINVAL; } recv_time = NULL; for (cmsg = CMSG_FIRSTHDR(&msghdr); cmsg; cmsg = CMSG_NXTHDR(&msghdr, cmsg)) { if (cmsg->cmsg_level != SOL_SOCKET) continue; switch (cmsg->cmsg_type) { case SCM_TIMESTAMP: recv_time = (struct timeval *) CMSG_DATA(cmsg); break; } } if (!recv_time) { log_debug("Invalid packet timestamp, disconnecting"); return -EINVAL; } ntpmsg = iov.iov_base; if (!sntp->pending) { log_debug("Unexpected reply, ignoring"); return 0; } sntp->pending = false; /* check our "time cookie" (we just stored nanoseconds in the fraction field) */ if (be32toh(ntpmsg->origin_time.sec) != sntp->trans_time.tv_sec + OFFSET_1900_1970|| be32toh(ntpmsg->origin_time.frac) != sntp->trans_time.tv_nsec) { log_debug("Invalid reply, not our transmit time, ignoring"); return 0; } if (NTP_FIELD_LEAP(ntpmsg->field) == NTP_LEAP_NOTINSYNC) { log_debug("Server is not synchronized, disconnecting"); return -EINVAL; } if (NTP_FIELD_VERSION(ntpmsg->field) != 4) { log_debug("Response NTPv%d, disconnecting", NTP_FIELD_VERSION(ntpmsg->field)); return -EINVAL; } if (NTP_FIELD_MODE(ntpmsg->field) != NTP_MODE_SERVER) { log_debug("Unsupported mode %d, disconnecting", NTP_FIELD_MODE(ntpmsg->field)); return -EINVAL; } /* announce leap seconds */ if (NTP_FIELD_LEAP(ntpmsg->field) & NTP_LEAP_PLUSSEC) leap_sec = 1; else if (NTP_FIELD_LEAP(ntpmsg->field) & NTP_LEAP_MINUSSEC) leap_sec = -1; else leap_sec = 0; /* * "Timestamp Name ID When Generated * ------------------------------------------------------------ * Originate Timestamp T1 time request sent by client * Receive Timestamp T2 time request received by server * Transmit Timestamp T3 time reply sent by server * Destination Timestamp T4 time reply received by client * * The roundtrip delay d and system clock offset t are defined as: * d = (T4 - T1) - (T3 - T2) t = ((T2 - T1) + (T3 - T4)) / 2" */ clock_gettime(CLOCK_MONOTONIC, &now); origin = tv_to_d(recv_time) - (ts_to_d(&now) - ts_to_d(&sntp->trans_time_mon)) + OFFSET_1900_1970; recv = ntp_ts_to_d(&ntpmsg->recv_time); trans = ntp_ts_to_d(&ntpmsg->trans_time); dest = tv_to_d(recv_time) + OFFSET_1900_1970; offset = ((recv - origin) + (trans - dest)) / 2; delay = (dest - origin) - (trans - recv); spike = sntp_sample_spike_detection(sntp, offset, delay); snmp_adjust_poll(sntp, offset, spike); log_debug("NTP response:\n" " leap : %u\n" " version : %u\n" " mode : %u\n" " stratum : %u\n" " precision : %f sec (%d)\n" " reference : %.4s\n" " origin : %f\n" " recv : %f\n" " transmit : %f\n" " dest : %f\n" " offset : %+f sec\n" " delay : %+f sec\n" " packet count : %llu\n" " jitter/spike : %f (%s)\n" " poll interval: %llu\n", NTP_FIELD_LEAP(ntpmsg->field), NTP_FIELD_VERSION(ntpmsg->field), NTP_FIELD_MODE(ntpmsg->field), ntpmsg->stratum, log2d(ntpmsg->precision), ntpmsg->precision, ntpmsg->stratum == 1 ? ntpmsg->refid : "n/a", origin - OFFSET_1900_1970, recv - OFFSET_1900_1970, trans - OFFSET_1900_1970, dest - OFFSET_1900_1970, offset, delay, (unsigned long long)sntp->packet_count, sntp->samples_jitter, spike ? "yes" : "no", sntp->poll_interval / USEC_PER_SEC); log_info("%4llu %s %+12f", sntp->poll_interval / USEC_PER_SEC, spike ? "y" : "n", offset); if (!spike) { r = sntp_adjust_clock(sntp, offset, leap_sec); if (r < 0) log_error("Failed to call clock_adjtime(): %m"); } r = sntp_arm_timer(sntp); if (r < 0) return r; return 0; } int sntp_server_connect(SNTPContext *sntp, const char *server) { _cleanup_free_ char *s = NULL; assert(sntp); assert(server); assert(sntp->server_socket >= 0); s = strdup(server); if (!s) return -ENOMEM; free(sntp->server); sntp->server = s; s = NULL; zero(sntp->server_addr); sntp->server_addr.sin_family = AF_INET; sntp->server_addr.sin_addr.s_addr = inet_addr(server); sntp->poll_interval = 2 * NTP_POLL_INTERVAL_MIN_SEC * USEC_PER_SEC; return sntp_send_request(sntp); } void sntp_server_disconnect(SNTPContext *sntp) { if (!sntp->server) return; sntp->event_timer = sd_event_source_unref(sntp->event_timer); sntp->event_receive = sd_event_source_unref(sntp->event_receive); if (sntp->server_socket > 0) close(sntp->server_socket); sntp->server_socket = -1; zero(sntp->server_addr); free(sntp->server); sntp->server = NULL; } int sntp_new(SNTPContext **sntp, sd_event *e) { _cleanup_free_ SNTPContext *c; _cleanup_close_ int fd = -1; struct sockaddr_in addr; const int on = 1; const int tos = IPTOS_LOWDELAY; int r; c = new0(SNTPContext, 1); if (!c) return -ENOMEM; fd = socket(PF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0); if (fd < 0) return -errno; zero(addr); addr.sin_family = AF_INET; r = bind(fd, (struct sockaddr *)&addr, sizeof(addr)); if (r < 0) return -errno; r = setsockopt(fd, SOL_SOCKET, SO_TIMESTAMP, &on, sizeof(on)); if (r < 0) return -errno; r = setsockopt(fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos)); if (r < 0) return -errno; r = sd_event_add_io(e, &c->event_receive, fd, EPOLLIN, sntp_receive_response, c); if (r < 0) return r; c->server_socket = fd; fd = -1; *sntp = c; c = NULL; return 0; } SNTPContext *sntp_unref(SNTPContext *sntp) { sntp_server_disconnect(sntp); free(sntp); return NULL; }