/* * Copyright (C) 2004-2012 Kay Sievers * Copyright (C) 2004 Chris Friesen * Copyright (C) 2009 Canonical Ltd. * Copyright (C) 2009 Scott James Remnant * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sd-daemon.h" #include "rtnl-util.h" #include "cgroup-util.h" #include "dev-setup.h" #include "fileio.h" #include "selinux-util.h" #include "udev.h" #include "udev-util.h" #include "formats-util.h" #include "hashmap.h" static bool arg_debug = false; static int arg_daemonize = false; static int arg_resolve_names = 1; static unsigned arg_children_max; static int arg_exec_delay; static usec_t arg_event_timeout_usec = 180 * USEC_PER_SEC; static usec_t arg_event_timeout_warn_usec = 180 * USEC_PER_SEC / 3; typedef struct Manager { struct udev *udev; Hashmap *workers; struct udev_list_node events; char *cgroup; pid_t pid; /* the process that originally allocated the manager object */ sigset_t sigmask_orig; struct udev_rules *rules; struct udev_list properties; struct udev_monitor *monitor; struct udev_ctrl *ctrl; struct udev_ctrl_connection *ctrl_conn_blocking; int fd_ep; int fd_ctrl; int fd_uevent; int fd_signal; int fd_inotify; int fd_worker; int worker_watch[2]; bool stop_exec_queue:1; bool reload:1; bool exit:1; } Manager; enum event_state { EVENT_UNDEF, EVENT_QUEUED, EVENT_RUNNING, }; struct event { struct udev_list_node node; Manager *manager; struct udev *udev; struct udev_device *dev; struct udev_device *dev_kernel; struct worker *worker; enum event_state state; unsigned long long int delaying_seqnum; unsigned long long int seqnum; const char *devpath; size_t devpath_len; const char *devpath_old; dev_t devnum; int ifindex; bool is_block; usec_t start_usec; bool warned; }; static inline struct event *node_to_event(struct udev_list_node *node) { return container_of(node, struct event, node); } static void event_queue_cleanup(Manager *manager, enum event_state type); enum worker_state { WORKER_UNDEF, WORKER_RUNNING, WORKER_IDLE, WORKER_KILLED, }; struct worker { Manager *manager; struct udev_list_node node; int refcount; pid_t pid; struct udev_monitor *monitor; enum worker_state state; struct event *event; }; /* passed from worker to main process */ struct worker_message { }; static void event_free(struct event *event) { int r; if (!event) return; udev_list_node_remove(&event->node); udev_device_unref(event->dev); udev_device_unref(event->dev_kernel); if (event->worker) event->worker->event = NULL; assert(event->manager); if (udev_list_node_is_empty(&event->manager->events)) { /* only clean up the queue from the process that created it */ if (event->manager->pid == getpid()) { r = unlink("/run/udev/queue"); if (r < 0) log_warning_errno(errno, "could not unlink /run/udev/queue: %m"); } } free(event); } static void worker_free(struct worker *worker) { if (!worker) return; assert(worker->manager); hashmap_remove(worker->manager->workers, UINT_TO_PTR(worker->pid)); udev_monitor_unref(worker->monitor); event_free(worker->event); free(worker); } static void manager_workers_free(Manager *manager) { struct worker *worker; Iterator i; assert(manager); HASHMAP_FOREACH(worker, manager->workers, i) worker_free(worker); manager->workers = hashmap_free(manager->workers); } static int worker_new(struct worker **ret, Manager *manager, struct udev_monitor *worker_monitor, pid_t pid) { _cleanup_free_ struct worker *worker = NULL; int r; assert(ret); assert(manager); assert(worker_monitor); assert(pid > 1); worker = new0(struct worker, 1); if (!worker) return -ENOMEM; worker->refcount = 1; worker->manager = manager; /* close monitor, but keep address around */ udev_monitor_disconnect(worker_monitor); worker->monitor = udev_monitor_ref(worker_monitor); worker->pid = pid; r = hashmap_ensure_allocated(&manager->workers, NULL); if (r < 0) return r; r = hashmap_put(manager->workers, UINT_TO_PTR(pid), worker); if (r < 0) return r; *ret = worker; worker = NULL; return 0; } static void worker_attach_event(struct worker *worker, struct event *event) { assert(worker); assert(event); assert(!event->worker); assert(!worker->event); worker->state = WORKER_RUNNING; worker->event = event; event->state = EVENT_RUNNING; event->start_usec = now(CLOCK_MONOTONIC); event->warned = false; event->worker = worker; } static void manager_free(Manager *manager) { if (!manager) return; udev_builtin_exit(manager->udev); udev_unref(manager->udev); manager_workers_free(manager); event_queue_cleanup(manager, EVENT_UNDEF); udev_monitor_unref(manager->monitor); udev_ctrl_unref(manager->ctrl); udev_ctrl_connection_unref(manager->ctrl_conn_blocking); udev_list_cleanup(&manager->properties); udev_rules_unref(manager->rules); free(manager->cgroup); safe_close(manager->fd_ep); safe_close(manager->fd_signal); safe_close(manager->fd_inotify); safe_close_pair(manager->worker_watch); free(manager); } DEFINE_TRIVIAL_CLEANUP_FUNC(Manager*, manager_free); static int worker_send_message(int fd) { struct worker_message message = {}; return loop_write(fd, &message, sizeof(message), false); } static void worker_spawn(Manager *manager, struct event *event) { struct udev *udev = event->udev; _cleanup_udev_monitor_unref_ struct udev_monitor *worker_monitor = NULL; pid_t pid; /* listen for new events */ worker_monitor = udev_monitor_new_from_netlink(udev, NULL); if (worker_monitor == NULL) return; /* allow the main daemon netlink address to send devices to the worker */ udev_monitor_allow_unicast_sender(worker_monitor, manager->monitor); udev_monitor_enable_receiving(worker_monitor); pid = fork(); switch (pid) { case 0: { struct udev_device *dev = NULL; int fd_monitor; _cleanup_close_ int fd_signal = -1, fd_ep = -1; _cleanup_rtnl_unref_ sd_rtnl *rtnl = NULL; struct epoll_event ep_signal, ep_monitor; sigset_t mask; int r = 0; /* take initial device from queue */ dev = event->dev; event->dev = NULL; manager_workers_free(manager); event_queue_cleanup(manager, EVENT_UNDEF); manager->monitor = udev_monitor_unref(manager->monitor); manager->ctrl = udev_ctrl_unref(manager->ctrl); manager->fd_signal = safe_close(manager->fd_signal); manager->worker_watch[READ_END] = safe_close(manager->worker_watch[READ_END]); manager->fd_ep = safe_close(manager->fd_ep); sigfillset(&mask); fd_signal = signalfd(-1, &mask, SFD_NONBLOCK|SFD_CLOEXEC); if (fd_signal < 0) { r = log_error_errno(errno, "error creating signalfd %m"); goto out; } fd_ep = epoll_create1(EPOLL_CLOEXEC); if (fd_ep < 0) { r = log_error_errno(errno, "error creating epoll fd: %m"); goto out; } memzero(&ep_signal, sizeof(struct epoll_event)); ep_signal.events = EPOLLIN; ep_signal.data.fd = fd_signal; fd_monitor = udev_monitor_get_fd(worker_monitor); memzero(&ep_monitor, sizeof(struct epoll_event)); ep_monitor.events = EPOLLIN; ep_monitor.data.fd = fd_monitor; if (epoll_ctl(fd_ep, EPOLL_CTL_ADD, fd_signal, &ep_signal) < 0 || epoll_ctl(fd_ep, EPOLL_CTL_ADD, fd_monitor, &ep_monitor) < 0) { r = log_error_errno(errno, "fail to add fds to epoll: %m"); goto out; } /* request TERM signal if parent exits */ prctl(PR_SET_PDEATHSIG, SIGTERM); /* reset OOM score, we only protect the main daemon */ write_string_file("/proc/self/oom_score_adj", "0"); for (;;) { struct udev_event *udev_event; int fd_lock = -1; log_debug("seq %llu running", udev_device_get_seqnum(dev)); udev_event = udev_event_new(dev); if (udev_event == NULL) { r = -ENOMEM; goto out; } /* needed for SIGCHLD/SIGTERM in spawn() */ udev_event->fd_signal = fd_signal; if (arg_exec_delay > 0) udev_event->exec_delay = arg_exec_delay; /* * Take a shared lock on the device node; this establishes * a concept of device "ownership" to serialize device * access. External processes holding an exclusive lock will * cause udev to skip the event handling; in the case udev * acquired the lock, the external process can block until * udev has finished its event handling. */ if (!streq_ptr(udev_device_get_action(dev), "remove") && streq_ptr("block", udev_device_get_subsystem(dev)) && !startswith(udev_device_get_sysname(dev), "dm-") && !startswith(udev_device_get_sysname(dev), "md")) { struct udev_device *d = dev; if (streq_ptr("partition", udev_device_get_devtype(d))) d = udev_device_get_parent(d); if (d) { fd_lock = open(udev_device_get_devnode(d), O_RDONLY|O_CLOEXEC|O_NOFOLLOW|O_NONBLOCK); if (fd_lock >= 0 && flock(fd_lock, LOCK_SH|LOCK_NB) < 0) { log_debug_errno(errno, "Unable to flock(%s), skipping event handling: %m", udev_device_get_devnode(d)); fd_lock = safe_close(fd_lock); r = -EAGAIN; goto skip; } } } /* needed for renaming netifs */ udev_event->rtnl = rtnl; /* apply rules, create node, symlinks */ udev_event_execute_rules(udev_event, arg_event_timeout_usec, arg_event_timeout_warn_usec, &manager->properties, manager->rules, &manager->sigmask_orig); udev_event_execute_run(udev_event, arg_event_timeout_usec, arg_event_timeout_warn_usec, &manager->sigmask_orig); if (udev_event->rtnl) /* in case rtnl was initialized */ rtnl = sd_rtnl_ref(udev_event->rtnl); /* apply/restore inotify watch */ if (udev_event->inotify_watch) { udev_watch_begin(udev, dev); udev_device_update_db(dev); } safe_close(fd_lock); /* send processed event back to libudev listeners */ udev_monitor_send_device(worker_monitor, NULL, dev); skip: log_debug("seq %llu processed", udev_device_get_seqnum(dev)); /* send udevd the result of the event execution */ r = worker_send_message(manager->worker_watch[WRITE_END]); if (r < 0) log_error_errno(r, "failed to send result of seq %llu to main daemon: %m", udev_device_get_seqnum(dev)); udev_device_unref(dev); dev = NULL; if (udev_event->sigterm) { udev_event_unref(udev_event); goto out; } udev_event_unref(udev_event); /* wait for more device messages from main udevd, or term signal */ while (dev == NULL) { struct epoll_event ev[4]; int fdcount; int i; fdcount = epoll_wait(fd_ep, ev, ELEMENTSOF(ev), -1); if (fdcount < 0) { if (errno == EINTR) continue; r = log_error_errno(errno, "failed to poll: %m"); goto out; } for (i = 0; i < fdcount; i++) { if (ev[i].data.fd == fd_monitor && ev[i].events & EPOLLIN) { dev = udev_monitor_receive_device(worker_monitor); break; } else if (ev[i].data.fd == fd_signal && ev[i].events & EPOLLIN) { struct signalfd_siginfo fdsi; ssize_t size; size = read(fd_signal, &fdsi, sizeof(struct signalfd_siginfo)); if (size != sizeof(struct signalfd_siginfo)) continue; switch (fdsi.ssi_signo) { case SIGTERM: goto out; } } } } } out: udev_device_unref(dev); manager_free(manager); log_close(); _exit(r < 0 ? EXIT_FAILURE : EXIT_SUCCESS); } case -1: event->state = EVENT_QUEUED; log_error_errno(errno, "fork of child failed: %m"); break; default: { struct worker *worker; int r; r = worker_new(&worker, manager, worker_monitor, pid); if (r < 0) return; worker_attach_event(worker, event); log_debug("seq %llu forked new worker ["PID_FMT"]", udev_device_get_seqnum(event->dev), pid); break; } } } static void event_run(Manager *manager, struct event *event) { struct worker *worker; Iterator i; assert(manager); assert(event); HASHMAP_FOREACH(worker, manager->workers, i) { ssize_t count; if (worker->state != WORKER_IDLE) continue; count = udev_monitor_send_device(manager->monitor, worker->monitor, event->dev); if (count < 0) { log_error_errno(errno, "worker ["PID_FMT"] did not accept message %zi (%m), kill it", worker->pid, count); kill(worker->pid, SIGKILL); worker->state = WORKER_KILLED; continue; } worker_attach_event(worker, event); return; } if (hashmap_size(manager->workers) >= arg_children_max) { if (arg_children_max > 1) log_debug("maximum number (%i) of children reached", hashmap_size(manager->workers)); return; } /* start new worker and pass initial device */ worker_spawn(manager, event); } static int event_queue_insert(Manager *manager, struct udev_device *dev) { struct event *event; int r; assert(manager); assert(dev); /* only the main process can add events to the queue */ assert(manager->pid == getpid()); event = new0(struct event, 1); if (!event) return -ENOMEM; event->udev = udev_device_get_udev(dev); event->manager = manager; event->dev = dev; event->dev_kernel = udev_device_shallow_clone(dev); udev_device_copy_properties(event->dev_kernel, dev); event->seqnum = udev_device_get_seqnum(dev); event->devpath = udev_device_get_devpath(dev); event->devpath_len = strlen(event->devpath); event->devpath_old = udev_device_get_devpath_old(dev); event->devnum = udev_device_get_devnum(dev); event->is_block = streq("block", udev_device_get_subsystem(dev)); event->ifindex = udev_device_get_ifindex(dev); log_debug("seq %llu queued, '%s' '%s'", udev_device_get_seqnum(dev), udev_device_get_action(dev), udev_device_get_subsystem(dev)); event->state = EVENT_QUEUED; if (udev_list_node_is_empty(&manager->events)) { r = touch("/run/udev/queue"); if (r < 0) log_warning_errno(r, "could not touch /run/udev/queue: %m"); } udev_list_node_append(&event->node, &manager->events); return 0; } static void manager_kill_workers(Manager *manager) { struct worker *worker; Iterator i; assert(manager); HASHMAP_FOREACH(worker, manager->workers, i) { if (worker->state == WORKER_KILLED) continue; worker->state = WORKER_KILLED; kill(worker->pid, SIGTERM); } } /* lookup event for identical, parent, child device */ static bool is_devpath_busy(Manager *manager, struct event *event) { struct udev_list_node *loop; size_t common; /* check if queue contains events we depend on */ udev_list_node_foreach(loop, &manager->events) { struct event *loop_event = node_to_event(loop); /* we already found a later event, earlier can not block us, no need to check again */ if (loop_event->seqnum < event->delaying_seqnum) continue; /* event we checked earlier still exists, no need to check again */ if (loop_event->seqnum == event->delaying_seqnum) return true; /* found ourself, no later event can block us */ if (loop_event->seqnum >= event->seqnum) break; /* check major/minor */ if (major(event->devnum) != 0 && event->devnum == loop_event->devnum && event->is_block == loop_event->is_block) return true; /* check network device ifindex */ if (event->ifindex != 0 && event->ifindex == loop_event->ifindex) return true; /* check our old name */ if (event->devpath_old != NULL && streq(loop_event->devpath, event->devpath_old)) { event->delaying_seqnum = loop_event->seqnum; return true; } /* compare devpath */ common = MIN(loop_event->devpath_len, event->devpath_len); /* one devpath is contained in the other? */ if (memcmp(loop_event->devpath, event->devpath, common) != 0) continue; /* identical device event found */ if (loop_event->devpath_len == event->devpath_len) { /* devices names might have changed/swapped in the meantime */ if (major(event->devnum) != 0 && (event->devnum != loop_event->devnum || event->is_block != loop_event->is_block)) continue; if (event->ifindex != 0 && event->ifindex != loop_event->ifindex) continue; event->delaying_seqnum = loop_event->seqnum; return true; } /* parent device event found */ if (event->devpath[common] == '/') { event->delaying_seqnum = loop_event->seqnum; return true; } /* child device event found */ if (loop_event->devpath[common] == '/') { event->delaying_seqnum = loop_event->seqnum; return true; } /* no matching device */ continue; } return false; } static void event_queue_start(Manager *manager) { struct udev_list_node *loop; assert(manager); udev_list_node_foreach(loop, &manager->events) { struct event *event = node_to_event(loop); if (event->state != EVENT_QUEUED) continue; /* do not start event if parent or child event is still running */ if (is_devpath_busy(manager, event)) continue; event_run(manager, event); } } static void event_queue_cleanup(Manager *manager, enum event_state match_type) { struct udev_list_node *loop, *tmp; udev_list_node_foreach_safe(loop, tmp, &manager->events) { struct event *event = node_to_event(loop); if (match_type != EVENT_UNDEF && match_type != event->state) continue; event_free(event); } } static int on_worker(sd_event_source *s, int fd, uint32_t revents, void *userdata) { Manager *manager = userdata; assert(manager); for (;;) { struct worker_message msg; struct iovec iovec = { .iov_base = &msg, .iov_len = sizeof(msg), }; union { struct cmsghdr cmsghdr; uint8_t buf[CMSG_SPACE(sizeof(struct ucred))]; } control = {}; struct msghdr msghdr = { .msg_iov = &iovec, .msg_iovlen = 1, .msg_control = &control, .msg_controllen = sizeof(control), }; struct cmsghdr *cmsg; ssize_t size; struct ucred *ucred = NULL; struct worker *worker; size = recvmsg(fd, &msghdr, MSG_DONTWAIT); if (size < 0) { if (errno == EINTR) continue; else if (errno == EAGAIN) /* nothing more to read */ break; return log_error_errno(errno, "failed to receive message: %m"); } else if (size != sizeof(struct worker_message)) { log_warning_errno(EIO, "ignoring worker message with invalid size %zi bytes", size); continue; } for (cmsg = CMSG_FIRSTHDR(&msghdr); cmsg; cmsg = CMSG_NXTHDR(&msghdr, cmsg)) { if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_CREDENTIALS && cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred))) ucred = (struct ucred*) CMSG_DATA(cmsg); } if (!ucred || ucred->pid <= 0) { log_warning_errno(EIO, "ignoring worker message without valid PID"); continue; } /* lookup worker who sent the signal */ worker = hashmap_get(manager->workers, UINT_TO_PTR(ucred->pid)); if (!worker) { log_debug("worker ["PID_FMT"] returned, but is no longer tracked", ucred->pid); continue; } if (worker->state != WORKER_KILLED) worker->state = WORKER_IDLE; /* worker returned */ event_free(worker->event); } return 1; } static int on_uevent(sd_event_source *s, int fd, uint32_t revents, void *userdata) { Manager *manager = userdata; struct udev_device *dev; int r; assert(manager); dev = udev_monitor_receive_device(manager->monitor); if (dev) { udev_device_ensure_usec_initialized(dev, NULL); r = event_queue_insert(manager, dev); if (r < 0) udev_device_unref(dev); } return 1; } /* receive the udevd message from userspace */ static int on_ctrl_msg(sd_event_source *s, int fd, uint32_t revents, void *userdata) { Manager *manager = userdata; _cleanup_udev_ctrl_connection_unref_ struct udev_ctrl_connection *ctrl_conn = NULL; _cleanup_udev_ctrl_msg_unref_ struct udev_ctrl_msg *ctrl_msg = NULL; const char *str; int i; assert(manager); ctrl_conn = udev_ctrl_get_connection(manager->ctrl); if (!ctrl_conn) return 1; ctrl_msg = udev_ctrl_receive_msg(ctrl_conn); if (!ctrl_msg) return 1; i = udev_ctrl_get_set_log_level(ctrl_msg); if (i >= 0) { log_debug("udevd message (SET_LOG_LEVEL) received, log_priority=%i", i); log_set_max_level(i); manager_kill_workers(manager); } if (udev_ctrl_get_stop_exec_queue(ctrl_msg) > 0) { log_debug("udevd message (STOP_EXEC_QUEUE) received"); manager->stop_exec_queue = true; } if (udev_ctrl_get_start_exec_queue(ctrl_msg) > 0) { log_debug("udevd message (START_EXEC_QUEUE) received"); manager->stop_exec_queue = false; } if (udev_ctrl_get_reload(ctrl_msg) > 0) { log_debug("udevd message (RELOAD) received"); manager->reload = true; } str = udev_ctrl_get_set_env(ctrl_msg); if (str != NULL) { _cleanup_free_ char *key = NULL; key = strdup(str); if (key) { char *val; val = strchr(key, '='); if (val != NULL) { val[0] = '\0'; val = &val[1]; if (val[0] == '\0') { log_debug("udevd message (ENV) received, unset '%s'", key); udev_list_entry_add(&manager->properties, key, NULL); } else { log_debug("udevd message (ENV) received, set '%s=%s'", key, val); udev_list_entry_add(&manager->properties, key, val); } } else log_error("wrong key format '%s'", key); } manager_kill_workers(manager); } i = udev_ctrl_get_set_children_max(ctrl_msg); if (i >= 0) { log_debug("udevd message (SET_MAX_CHILDREN) received, children_max=%i", i); arg_children_max = i; } if (udev_ctrl_get_ping(ctrl_msg) > 0) log_debug("udevd message (SYNC) received"); if (udev_ctrl_get_exit(ctrl_msg) > 0) { log_debug("udevd message (EXIT) received"); manager->exit = true; /* keep reference to block the client until we exit TODO: deal with several blocking exit requests */ manager->ctrl_conn_blocking = udev_ctrl_connection_ref(ctrl_conn); } return 1; } static int synthesize_change(struct udev_device *dev) { char filename[UTIL_PATH_SIZE]; int r; if (streq_ptr("block", udev_device_get_subsystem(dev)) && streq_ptr("disk", udev_device_get_devtype(dev)) && !startswith(udev_device_get_sysname(dev), "dm-")) { bool part_table_read = false; bool has_partitions = false; int fd; struct udev *udev = udev_device_get_udev(dev); _cleanup_udev_enumerate_unref_ struct udev_enumerate *e = NULL; struct udev_list_entry *item; /* * Try to re-read the partition table. This only succeeds if * none of the devices is busy. The kernel returns 0 if no * partition table is found, and we will not get an event for * the disk. */ fd = open(udev_device_get_devnode(dev), O_RDONLY|O_CLOEXEC|O_NOFOLLOW|O_NONBLOCK); if (fd >= 0) { r = flock(fd, LOCK_EX|LOCK_NB); if (r >= 0) r = ioctl(fd, BLKRRPART, 0); close(fd); if (r >= 0) part_table_read = true; } /* search for partitions */ e = udev_enumerate_new(udev); if (!e) return -ENOMEM; r = udev_enumerate_add_match_parent(e, dev); if (r < 0) return r; r = udev_enumerate_add_match_subsystem(e, "block"); if (r < 0) return r; r = udev_enumerate_scan_devices(e); if (r < 0) return r; udev_list_entry_foreach(item, udev_enumerate_get_list_entry(e)) { _cleanup_udev_device_unref_ struct udev_device *d = NULL; d = udev_device_new_from_syspath(udev, udev_list_entry_get_name(item)); if (!d) continue; if (!streq_ptr("partition", udev_device_get_devtype(d))) continue; has_partitions = true; break; } /* * We have partitions and re-read the table, the kernel already sent * out a "change" event for the disk, and "remove/add" for all * partitions. */ if (part_table_read && has_partitions) return 0; /* * We have partitions but re-reading the partition table did not * work, synthesize "change" for the disk and all partitions. */ log_debug("device %s closed, synthesising 'change'", udev_device_get_devnode(dev)); strscpyl(filename, sizeof(filename), udev_device_get_syspath(dev), "/uevent", NULL); write_string_file(filename, "change"); udev_list_entry_foreach(item, udev_enumerate_get_list_entry(e)) { _cleanup_udev_device_unref_ struct udev_device *d = NULL; d = udev_device_new_from_syspath(udev, udev_list_entry_get_name(item)); if (!d) continue; if (!streq_ptr("partition", udev_device_get_devtype(d))) continue; log_debug("device %s closed, synthesising partition '%s' 'change'", udev_device_get_devnode(dev), udev_device_get_devnode(d)); strscpyl(filename, sizeof(filename), udev_device_get_syspath(d), "/uevent", NULL); write_string_file(filename, "change"); } return 0; } log_debug("device %s closed, synthesising 'change'", udev_device_get_devnode(dev)); strscpyl(filename, sizeof(filename), udev_device_get_syspath(dev), "/uevent", NULL); write_string_file(filename, "change"); return 0; } static int on_inotify(sd_event_source *s, int fd, uint32_t revents, void *userdata) { Manager *manager = userdata; union inotify_event_buffer buffer; struct inotify_event *e; ssize_t l; assert(manager); l = read(fd, &buffer, sizeof(buffer)); if (l < 0) { if (errno == EAGAIN || errno == EINTR) return 1; return log_error_errno(errno, "Failed to read inotify fd: %m"); } FOREACH_INOTIFY_EVENT(e, buffer, l) { _cleanup_udev_device_unref_ struct udev_device *dev = NULL; dev = udev_watch_lookup(manager->udev, e->wd); if (!dev) continue; log_debug("inotify event: %x for %s", e->mask, udev_device_get_devnode(dev)); if (e->mask & IN_CLOSE_WRITE) { synthesize_change(dev); /* settle might be waiting on us to determine the queue * state. If we just handled an inotify event, we might have * generated a "change" event, but we won't have queued up * the resultant uevent yet. Do that. */ on_uevent(NULL, -1, 0, manager); } else if (e->mask & IN_IGNORED) udev_watch_end(manager->udev, dev); } return 1; } static int on_request_exit(sd_event_source *s, const struct signalfd_siginfo *si, void *userdata) { Manager *manager = userdata; assert(manager); manager->exit = true; return 1; } static int on_request_reload(sd_event_source *s, const struct signalfd_siginfo *si, void *userdata) { Manager *manager = userdata; assert(manager); manager->reload = true; return 1; } static int on_sigchld(sd_event_source *s, const struct signalfd_siginfo *si, void *userdata) { Manager *manager = userdata; assert(manager); for (;;) { pid_t pid; int status; struct worker *worker; pid = waitpid(-1, &status, WNOHANG); if (pid <= 0) return 1; worker = hashmap_get(manager->workers, UINT_TO_PTR(pid)); if (!worker) { log_warning("worker ["PID_FMT"] is unknown, ignoring", pid); return 1; } if (WIFEXITED(status)) { if (WEXITSTATUS(status) == 0) log_debug("worker ["PID_FMT"] exited", pid); else log_warning("worker ["PID_FMT"] exited with return code %i", pid, WEXITSTATUS(status)); } else if (WIFSIGNALED(status)) { log_warning("worker ["PID_FMT"] terminated by signal %i (%s)", pid, WTERMSIG(status), strsignal(WTERMSIG(status))); } else if (WIFSTOPPED(status)) { log_info("worker ["PID_FMT"] stopped", pid); return 1; } else if (WIFCONTINUED(status)) { log_info("worker ["PID_FMT"] continued", pid); return 1; } else log_warning("worker ["PID_FMT"] exit with status 0x%04x", pid, status); if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { if (worker->event) { log_error("worker ["PID_FMT"] failed while handling '%s'", pid, worker->event->devpath); /* delete state from disk */ udev_device_delete_db(worker->event->dev); udev_device_tag_index(worker->event->dev, NULL, false); /* forward kernel event without amending it */ udev_monitor_send_device(manager->monitor, NULL, worker->event->dev_kernel); } } worker_free(worker); } return 1; } static int systemd_fds(int *rctrl, int *rnetlink) { int ctrl = -1, netlink = -1; int fd, n; n = sd_listen_fds(true); if (n <= 0) return -1; for (fd = SD_LISTEN_FDS_START; fd < n + SD_LISTEN_FDS_START; fd++) { if (sd_is_socket(fd, AF_LOCAL, SOCK_SEQPACKET, -1)) { if (ctrl >= 0) return -1; ctrl = fd; continue; } if (sd_is_socket(fd, AF_NETLINK, SOCK_RAW, -1)) { if (netlink >= 0) return -1; netlink = fd; continue; } return -1; } if (ctrl < 0 || netlink < 0) return -1; log_debug("ctrl=%i netlink=%i", ctrl, netlink); *rctrl = ctrl; *rnetlink = netlink; return 0; } /* * read the kernel command line, in case we need to get into debug mode * udev.log-priority= syslog priority * udev.children-max= events are fully serialized if set to 1 * udev.exec-delay= delay execution of every executed program * udev.event-timeout= seconds to wait before terminating an event */ static int parse_proc_cmdline_item(const char *key, const char *value) { int r; assert(key); if (!value) return 0; if (startswith(key, "rd.")) key += strlen("rd."); if (startswith(key, "udev.")) key += strlen("udev."); else return 0; if (streq(key, "log-priority")) { int prio; prio = util_log_priority(value); log_set_max_level(prio); } else if (streq(key, "children-max")) { r = safe_atou(value, &arg_children_max); if (r < 0) log_warning("invalid udev.children-max ignored: %s", value); } else if (streq(key, "exec-delay")) { r = safe_atoi(value, &arg_exec_delay); if (r < 0) log_warning("invalid udev.exec-delay ignored: %s", value); } else if (streq(key, "event-timeout")) { r = safe_atou64(value, &arg_event_timeout_usec); if (r < 0) log_warning("invalid udev.event-timeout ignored: %s", value); else { arg_event_timeout_usec *= USEC_PER_SEC; arg_event_timeout_warn_usec = (arg_event_timeout_usec / 3) ? : 1; } } return 0; } static void help(void) { printf("%s [OPTIONS...]\n\n" "Manages devices.\n\n" " -h --help Print this message\n" " --version Print version of the program\n" " --daemon Detach and run in the background\n" " --debug Enable debug output\n" " --children-max=INT Set maximum number of workers\n" " --exec-delay=SECONDS Seconds to wait before executing RUN=\n" " --event-timeout=SECONDS Seconds to wait before terminating an event\n" " --resolve-names=early|late|never\n" " When to resolve users and groups\n" , program_invocation_short_name); } static int parse_argv(int argc, char *argv[]) { static const struct option options[] = { { "daemon", no_argument, NULL, 'd' }, { "debug", no_argument, NULL, 'D' }, { "children-max", required_argument, NULL, 'c' }, { "exec-delay", required_argument, NULL, 'e' }, { "event-timeout", required_argument, NULL, 't' }, { "resolve-names", required_argument, NULL, 'N' }, { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, 'V' }, {} }; int c; assert(argc >= 0); assert(argv); while ((c = getopt_long(argc, argv, "c:de:DtN:hV", options, NULL)) >= 0) { int r; switch (c) { case 'd': arg_daemonize = true; break; case 'c': r = safe_atou(optarg, &arg_children_max); if (r < 0) log_warning("Invalid --children-max ignored: %s", optarg); break; case 'e': r = safe_atoi(optarg, &arg_exec_delay); if (r < 0) log_warning("Invalid --exec-delay ignored: %s", optarg); break; case 't': r = safe_atou64(optarg, &arg_event_timeout_usec); if (r < 0) log_warning("Invalid --event-timeout ignored: %s", optarg); else { arg_event_timeout_usec *= USEC_PER_SEC; arg_event_timeout_warn_usec = (arg_event_timeout_usec / 3) ? : 1; } break; case 'D': arg_debug = true; break; case 'N': if (streq(optarg, "early")) { arg_resolve_names = 1; } else if (streq(optarg, "late")) { arg_resolve_names = 0; } else if (streq(optarg, "never")) { arg_resolve_names = -1; } else { log_error("resolve-names must be early, late or never"); return 0; } break; case 'h': help(); return 0; case 'V': printf("%s\n", VERSION); return 0; case '?': return -EINVAL; default: assert_not_reached("Unhandled option"); } } return 1; } static int manager_new(Manager **ret) { _cleanup_(manager_freep) Manager *manager = NULL; struct epoll_event ep_ctrl = { .events = EPOLLIN }; struct epoll_event ep_inotify = { .events = EPOLLIN }; struct epoll_event ep_signal = { .events = EPOLLIN }; struct epoll_event ep_netlink = { .events = EPOLLIN }; struct epoll_event ep_worker = { .events = EPOLLIN }; sigset_t mask; int r, one = 1; assert(ret); manager = new0(Manager, 1); if (!manager) return log_oom(); manager->pid = getpid(); manager->fd_ep = -1; manager->fd_ctrl = -1; manager->fd_uevent = -1; manager->fd_signal = -1; manager->fd_inotify = -1; manager->worker_watch[WRITE_END] = -1; manager->worker_watch[READ_END] = -1; manager->udev = udev_new(); if (!manager->udev) return log_error_errno(errno, "could not allocate udev context: %m"); udev_builtin_init(manager->udev); manager->rules = udev_rules_new(manager->udev, arg_resolve_names); if (!manager->rules) return log_error_errno(ENOMEM, "error reading rules"); udev_list_node_init(&manager->events); udev_list_init(manager->udev, &manager->properties, true); r = systemd_fds(&manager->fd_ctrl, &manager->fd_uevent); if (r >= 0) { /* get control and netlink socket from systemd */ manager->ctrl = udev_ctrl_new_from_fd(manager->udev, manager->fd_ctrl); if (!manager->ctrl) return log_error_errno(EINVAL, "error taking over udev control socket"); manager->monitor = udev_monitor_new_from_netlink_fd(manager->udev, "kernel", manager->fd_uevent); if (!manager->monitor) return log_error_errno(EINVAL, "error taking over netlink socket"); /* get our own cgroup, we regularly kill everything udev has left behind */ r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &manager->cgroup); if (r < 0) log_warning_errno(r, "failed to get cgroup: %m"); } else { /* open control and netlink socket */ manager->ctrl = udev_ctrl_new(manager->udev); if (!manager->ctrl) return log_error_errno(EINVAL, "error initializing udev control socket"); manager->fd_ctrl = udev_ctrl_get_fd(manager->ctrl); manager->monitor = udev_monitor_new_from_netlink(manager->udev, "kernel"); if (!manager->monitor) return log_error_errno(EINVAL, "error initializing netlink socket"); manager->fd_uevent = udev_monitor_get_fd(manager->monitor); (void) udev_monitor_set_receive_buffer_size(manager->monitor, 128 * 1024 * 1024); } r = udev_monitor_enable_receiving(manager->monitor); if (r < 0) return log_error_errno(EINVAL, "error binding netlink socket"); r = udev_ctrl_enable_receiving(manager->ctrl); if (r < 0) return log_error_errno(EINVAL, "error binding udev control socket"); /* unnamed socket from workers to the main daemon */ r = socketpair(AF_LOCAL, SOCK_DGRAM|SOCK_CLOEXEC, 0, manager->worker_watch); if (r < 0) return log_error_errno(errno, "error creating socketpair: %m"); manager->fd_worker = manager->worker_watch[READ_END]; r = setsockopt(manager->fd_worker, SOL_SOCKET, SO_PASSCRED, &one, sizeof(one)); if (r < 0) return log_error_errno(errno, "could not enable SO_PASSCRED: %m"); manager->fd_inotify = udev_watch_init(manager->udev); if (manager->fd_inotify < 0) return log_error_errno(ENOMEM, "error initializing inotify"); udev_watch_restore(manager->udev); /* block and listen to all signals on signalfd */ sigfillset(&mask); sigprocmask(SIG_SETMASK, &mask, &manager->sigmask_orig); manager->fd_signal = signalfd(-1, &mask, SFD_NONBLOCK|SFD_CLOEXEC); if (manager->fd_signal < 0) return log_error_errno(errno, "error creating signalfd"); ep_ctrl.data.fd = manager->fd_ctrl; ep_inotify.data.fd = manager->fd_inotify; ep_signal.data.fd = manager->fd_signal; ep_netlink.data.fd = manager->fd_uevent; ep_worker.data.fd = manager->fd_worker; manager->fd_ep = epoll_create1(EPOLL_CLOEXEC); if (manager->fd_ep < 0) return log_error_errno(errno, "error creating epoll fd: %m"); if (epoll_ctl(manager->fd_ep, EPOLL_CTL_ADD, manager->fd_ctrl, &ep_ctrl) < 0 || epoll_ctl(manager->fd_ep, EPOLL_CTL_ADD, manager->fd_inotify, &ep_inotify) < 0 || epoll_ctl(manager->fd_ep, EPOLL_CTL_ADD, manager->fd_signal, &ep_signal) < 0 || epoll_ctl(manager->fd_ep, EPOLL_CTL_ADD, manager->fd_uevent, &ep_netlink) < 0 || epoll_ctl(manager->fd_ep, EPOLL_CTL_ADD, manager->fd_worker, &ep_worker) < 0) return log_error_errno(errno, "fail to add fds to epoll: %m"); *ret = manager; manager = NULL; return 1; } int main(int argc, char *argv[]) { _cleanup_(manager_freep) Manager *manager = NULL; int r; log_set_target(LOG_TARGET_AUTO); log_parse_environment(); log_open(); r = parse_argv(argc, argv); if (r <= 0) goto exit; r = parse_proc_cmdline(parse_proc_cmdline_item); if (r < 0) log_warning_errno(r, "failed to parse kernel command line, ignoring: %m"); if (arg_debug) log_set_max_level(LOG_DEBUG); if (getuid() != 0) { r = log_error_errno(EPERM, "root privileges required"); goto exit; } r = mac_selinux_init("/dev"); if (r < 0) { log_error_errno(r, "could not initialize labelling: %m"); goto exit; } /* set umask before creating any file/directory */ r = chdir("/"); if (r < 0) { r = log_error_errno(errno, "could not change dir to /: %m"); goto exit; } umask(022); r = mkdir("/run/udev", 0755); if (r < 0 && errno != EEXIST) { r = log_error_errno(errno, "could not create /run/udev: %m"); goto exit; } dev_setup(NULL); /* before opening new files, make sure std{in,out,err} fds are in a sane state */ if (arg_daemonize) { int fd; fd = open("/dev/null", O_RDWR); if (fd >= 0) { if (write(STDOUT_FILENO, 0, 0) < 0) dup2(fd, STDOUT_FILENO); if (write(STDERR_FILENO, 0, 0) < 0) dup2(fd, STDERR_FILENO); if (fd > STDERR_FILENO) close(fd); } else { log_error("cannot open /dev/null"); } } if (arg_children_max == 0) { cpu_set_t cpu_set; arg_children_max = 8; if (sched_getaffinity(0, sizeof (cpu_set), &cpu_set) == 0) { arg_children_max += CPU_COUNT(&cpu_set) * 2; } } log_debug("set children_max to %u", arg_children_max); r = manager_new(&manager); if (r < 0) goto exit; log_info("starting version " VERSION); r = udev_rules_apply_static_dev_perms(manager->rules); if (r < 0) log_error_errno(r, "failed to apply permissions on static device nodes: %m"); if (arg_daemonize) { pid_t pid; pid = fork(); switch (pid) { case 0: break; case -1: r = log_error_errno(errno, "fork of daemon failed: %m"); goto exit; default: goto exit_daemonize; } setsid(); write_string_file("/proc/self/oom_score_adj", "-1000"); } else sd_notify(1, "READY=1"); for (;;) { static usec_t last_usec; struct epoll_event ev[8]; int fdcount; int timeout; bool is_worker, is_signal, is_inotify, is_uevent, is_ctrl; int i; if (manager->exit) { /* close sources of new events and discard buffered events */ if (manager->fd_ctrl >= 0) { epoll_ctl(manager->fd_ep, EPOLL_CTL_DEL, manager->fd_ctrl, NULL); manager->fd_ctrl = safe_close(manager->fd_ctrl); } if (manager->monitor) { epoll_ctl(manager->fd_ep, EPOLL_CTL_DEL, manager->fd_uevent, NULL); manager->monitor = udev_monitor_unref(manager->monitor); } if (manager->fd_inotify >= 0) { epoll_ctl(manager->fd_ep, EPOLL_CTL_DEL, manager->fd_inotify, NULL); manager->fd_inotify = safe_close(manager->fd_inotify); } /* discard queued events and kill workers */ event_queue_cleanup(manager, EVENT_QUEUED); manager_kill_workers(manager); /* exit after all has cleaned up */ if (udev_list_node_is_empty(&manager->events) && hashmap_isempty(manager->workers)) break; /* timeout at exit for workers to finish */ timeout = 30 * MSEC_PER_SEC; } else if (udev_list_node_is_empty(&manager->events) && hashmap_isempty(manager->workers)) { /* we are idle */ timeout = -1; /* cleanup possible left-over processes in our cgroup */ if (manager->cgroup) cg_kill(SYSTEMD_CGROUP_CONTROLLER, manager->cgroup, SIGKILL, false, true, NULL); } else { /* kill idle or hanging workers */ timeout = 3 * MSEC_PER_SEC; } fdcount = epoll_wait(manager->fd_ep, ev, ELEMENTSOF(ev), timeout); if (fdcount < 0) continue; if (fdcount == 0) { struct worker *worker; Iterator j; /* timeout */ if (manager->exit) { log_error("timeout, giving up waiting for workers to finish"); break; } /* kill idle workers */ if (udev_list_node_is_empty(&manager->events)) { log_debug("cleanup idle workers"); manager_kill_workers(manager); } /* check for hanging events */ HASHMAP_FOREACH(worker, manager->workers, j) { struct event *event = worker->event; usec_t ts; if (worker->state != WORKER_RUNNING) continue; assert(event); ts = now(CLOCK_MONOTONIC); if ((ts - event->start_usec) > arg_event_timeout_warn_usec) { if ((ts - event->start_usec) > arg_event_timeout_usec) { log_error("worker ["PID_FMT"] %s timeout; kill it", worker->pid, event->devpath); kill(worker->pid, SIGKILL); worker->state = WORKER_KILLED; log_error("seq %llu '%s' killed", udev_device_get_seqnum(event->dev), event->devpath); } else if (!event->warned) { log_warning("worker ["PID_FMT"] %s is taking a long time", worker->pid, event->devpath); event->warned = true; } } } } is_worker = is_signal = is_inotify = is_uevent = is_ctrl = false; for (i = 0; i < fdcount; i++) { if (ev[i].data.fd == manager->fd_worker && ev[i].events & EPOLLIN) is_worker = true; else if (ev[i].data.fd == manager->fd_uevent && ev[i].events & EPOLLIN) is_uevent = true; else if (ev[i].data.fd == manager->fd_signal && ev[i].events & EPOLLIN) is_signal = true; else if (ev[i].data.fd == manager->fd_inotify && ev[i].events & EPOLLIN) is_inotify = true; else if (ev[i].data.fd == manager->fd_ctrl && ev[i].events & EPOLLIN) is_ctrl = true; } /* check for changed config, every 3 seconds at most */ if ((now(CLOCK_MONOTONIC) - last_usec) > 3 * USEC_PER_SEC) { if (udev_rules_check_timestamp(manager->rules)) manager->reload = true; if (udev_builtin_validate(manager->udev)) manager->reload = true; last_usec = now(CLOCK_MONOTONIC); } /* reload requested, HUP signal received, rules changed, builtin changed */ if (manager->reload) { manager_kill_workers(manager); manager->rules = udev_rules_unref(manager->rules); udev_builtin_exit(manager->udev); manager->reload = false; } /* event has finished */ if (is_worker) on_worker(NULL, manager->fd_worker, 0, manager); /* uevent from kernel */ if (is_uevent) on_uevent(NULL, manager->fd_uevent, 0, manager); /* start new events */ if (!udev_list_node_is_empty(&manager->events) && !manager->exit && !manager->stop_exec_queue) { udev_builtin_init(manager->udev); if (!manager->rules) manager->rules = udev_rules_new(manager->udev, arg_resolve_names); if (manager->rules) event_queue_start(manager); } if (is_signal) { struct signalfd_siginfo fdsi; ssize_t size; size = read(manager->fd_signal, &fdsi, sizeof(struct signalfd_siginfo)); if (size == sizeof(struct signalfd_siginfo)) { switch (fdsi.ssi_signo) { case SIGINT: case SIGTERM: on_request_exit(NULL, &fdsi, manager); break; case SIGHUP: on_request_reload(NULL, &fdsi, manager); break; case SIGCHLD: on_sigchld(NULL, &fdsi, manager); break; } } } /* we are shutting down, the events below are not handled anymore */ if (manager->exit) continue; /* device node watch */ if (is_inotify) on_inotify(NULL, manager->fd_inotify, 0, manager); /* * This needs to be after the inotify handling, to make sure, * that the ping is send back after the possibly generated * "change" events by the inotify device node watch. */ if (is_ctrl) on_ctrl_msg(NULL, manager->fd_ctrl, 0, manager); } exit: if (manager) udev_ctrl_cleanup(manager->ctrl); exit_daemonize: mac_selinux_finish(); log_close(); return r < 0 ? EXIT_FAILURE : EXIT_SUCCESS; }