/* * Copyright (C) 2004-2009 Kay Sievers * Copyright (C) 2004 Chris Friesen * Copyright (C) 2009 Canonical Ltd. * Copyright (C) 2009 Scott James Remnant * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "udev.h" #define UDEVD_PRIORITY -4 #define UDEV_PRIORITY -2 static int debug; static void log_fn(struct udev *udev, int priority, const char *file, int line, const char *fn, const char *format, va_list args) { if (debug) { fprintf(stderr, "[%d] %s: ", (int) getpid(), fn); vfprintf(stderr, format, args); } else { vsyslog(priority, format, args); } } static int debug_trace; static struct udev_rules *rules; static struct udev_queue_export *udev_queue_export; static struct udev_ctrl *udev_ctrl; static struct udev_monitor *monitor; static int worker_watch[2]; static pid_t settle_pid; static int stop_exec_queue; static int reload_config; static int max_childs; static int childs; static struct udev_list_node event_list; static struct udev_list_node worker_list; static int udev_exit; static volatile sig_atomic_t worker_exit; enum poll_fd { FD_CONTROL, FD_NETLINK, FD_INOTIFY, FD_SIGNAL, FD_WORKER, }; static struct pollfd pfd[] = { [FD_NETLINK] = { .events = POLLIN }, [FD_WORKER] = { .events = POLLIN }, [FD_SIGNAL] = { .events = POLLIN }, [FD_INOTIFY] = { .events = POLLIN }, [FD_CONTROL] = { .events = POLLIN }, }; enum event_state { EVENT_UNDEF, EVENT_QUEUED, EVENT_RUNNING, }; struct event { struct udev_list_node node; struct udev *udev; struct udev_device *dev; enum event_state state; int exitcode; unsigned long long int delaying_seqnum; unsigned long long int seqnum; const char *devpath; size_t devpath_len; const char *devpath_old; }; static struct event *node_to_event(struct udev_list_node *node) { char *event; event = (char *)node; event -= offsetof(struct event, node); return (struct event *)event; } enum worker_state { WORKER_UNDEF, WORKER_RUNNING, WORKER_IDLE, WORKER_KILLED, }; struct worker { struct udev_list_node node; struct udev *udev; int refcount; pid_t pid; struct udev_monitor *monitor; enum worker_state state; struct event *event; }; /* passed from worker to main process */ struct worker_message { pid_t pid; int exitcode; }; static struct worker *node_to_worker(struct udev_list_node *node) { char *worker; worker = (char *)node; worker -= offsetof(struct worker, node); return (struct worker *)worker; } static void event_queue_delete(struct event *event) { udev_list_node_remove(&event->node); /* mark as failed, if "add" event returns non-zero */ if (event->exitcode && strcmp(udev_device_get_action(event->dev), "add") == 0) udev_queue_export_device_failed(udev_queue_export, event->dev); else udev_queue_export_device_finished(udev_queue_export, event->dev); info(event->udev, "seq %llu done with %i\n", udev_device_get_seqnum(event->dev), event->exitcode); udev_device_unref(event->dev); free(event); } static void event_sig_handler(int signum) { switch (signum) { case SIGALRM: _exit(1); break; case SIGTERM: worker_exit = 1; break; } } static struct worker *worker_ref(struct worker *worker) { worker->refcount++; return worker; } static void worker_unref(struct worker *worker) { worker->refcount--; if (worker->refcount > 0) return; udev_list_node_remove(&worker->node); udev_monitor_unref(worker->monitor); childs--; info(worker->udev, "worker [%u] cleaned up\n", worker->pid); free(worker); } static void worker_new(struct event *event) { struct worker *worker; struct udev_monitor *worker_monitor; pid_t pid; struct sigaction act; /* listen for new events */ worker_monitor = udev_monitor_new_from_netlink(event->udev, NULL); if (worker_monitor == NULL) return; /* allow the main daemon netlink address to send devices to the worker */ udev_monitor_allow_unicast_sender(worker_monitor, monitor); udev_monitor_enable_receiving(worker_monitor); util_set_fd_cloexec(udev_monitor_get_fd(worker_monitor)); worker = calloc(1, sizeof(struct worker)); if (worker == NULL) return; /* worker + event reference */ worker->refcount = 2; worker->udev = event->udev; pid = fork(); switch (pid) { case 0: { sigset_t sigmask; struct udev_device *dev; struct pollfd pmon = { .fd = udev_monitor_get_fd(worker_monitor), .events = POLLIN, }; udev_queue_export_unref(udev_queue_export); udev_monitor_unref(monitor); udev_ctrl_unref(udev_ctrl); close(pfd[FD_SIGNAL].fd); close(worker_watch[READ_END]); udev_log_close(); udev_log_init("udevd-work"); setpriority(PRIO_PROCESS, 0, UDEV_PRIORITY); /* set signal handlers */ memset(&act, 0x00, sizeof(act)); act.sa_handler = event_sig_handler; sigemptyset (&act.sa_mask); act.sa_flags = 0; sigaction(SIGTERM, &act, NULL); sigaction(SIGALRM, &act, NULL); /* unblock SIGALRM */ sigfillset(&sigmask); sigdelset(&sigmask, SIGALRM); sigprocmask(SIG_SETMASK, &sigmask, NULL); /* SIGTERM is unblocked in ppoll() */ sigdelset(&sigmask, SIGTERM); /* request TERM signal if parent exits */ prctl(PR_SET_PDEATHSIG, SIGTERM); /* initial device */ dev = event->dev; do { struct udev_event *udev_event; struct worker_message msg; int err; udev_event = udev_event_new(dev); if (udev_event == NULL) _exit(3); /* set timeout to prevent hanging processes */ alarm(UDEV_EVENT_TIMEOUT); /* apply rules, create node, symlinks */ err = udev_event_execute_rules(udev_event, rules); /* rules may change/disable the timeout */ if (udev_device_get_event_timeout(dev) >= 0) alarm(udev_device_get_event_timeout(dev)); /* execute RUN= */ if (err == 0 && !udev_event->ignore_device && udev_get_run(udev_event->udev)) udev_event_execute_run(udev_event); /* reset alarm */ alarm(0); /* apply/restore inotify watch */ if (err == 0 && udev_event->inotify_watch) { udev_watch_begin(udev_event->udev, dev); udev_device_update_db(dev); } /* send processed event back to libudev listeners */ udev_monitor_send_device(worker_monitor, NULL, dev); /* send back the result of the event execution */ msg.exitcode = err; msg.pid = getpid(); send(worker_watch[WRITE_END], &msg, sizeof(struct worker_message), 0); info(event->udev, "seq %llu processed with %i\n", udev_device_get_seqnum(dev), err); udev_event_unref(udev_event); udev_device_unref(dev); dev = NULL; /* wait for more device messages or signal from udevd */ while (!worker_exit) { int fdcount; fdcount = ppoll(&pmon, 1, NULL, &sigmask); if (fdcount < 0) continue; if (pmon.revents & POLLIN) { dev = udev_monitor_receive_device(worker_monitor); if (dev != NULL) break; } } } while (dev != NULL); udev_monitor_unref(worker_monitor); udev_log_close(); exit(0); } case -1: udev_monitor_unref(worker_monitor); event->state = EVENT_QUEUED; free(worker); err(event->udev, "fork of child failed: %m\n"); break; default: /* close monitor, but keep address around */ udev_monitor_disconnect(worker_monitor); worker->monitor = worker_monitor; worker->pid = pid; worker->state = WORKER_RUNNING; worker->event = event; event->state = EVENT_RUNNING; udev_list_node_append(&worker->node, &worker_list); childs++; info(event->udev, "seq %llu forked new worker [%u]\n", udev_device_get_seqnum(event->dev), pid); break; } } static void event_run(struct event *event) { struct udev_list_node *loop; udev_list_node_foreach(loop, &worker_list) { struct worker *worker = node_to_worker(loop); ssize_t count; if (worker->state != WORKER_IDLE) continue; count = udev_monitor_send_device(monitor, worker->monitor, event->dev); if (count < 0) { err(event->udev, "worker [%u] did not accept message %zi (%m), kill it\n", worker->pid, count); kill(worker->pid, SIGKILL); worker->state = WORKER_KILLED; continue; } worker_ref(worker); worker->event = event; worker->state = WORKER_RUNNING; event->state = EVENT_RUNNING; return; } if (childs >= max_childs) { info(event->udev, "maximum number (%i) of childs reached\n", childs); return; } /* start new worker and pass initial device */ worker_new(event); } static void event_queue_insert(struct udev_device *dev) { struct event *event; event = calloc(1, sizeof(struct event)); if (event == NULL) return; event->udev = udev_device_get_udev(dev); event->dev = dev; event->seqnum = udev_device_get_seqnum(dev); event->devpath = udev_device_get_devpath(dev); event->devpath_len = strlen(event->devpath); event->devpath_old = udev_device_get_devpath_old(dev); udev_queue_export_device_queued(udev_queue_export, dev); info(event->udev, "seq %llu queued, '%s' '%s'\n", udev_device_get_seqnum(dev), udev_device_get_action(dev), udev_device_get_subsystem(dev)); event->state = EVENT_QUEUED; udev_list_node_append(&event->node, &event_list); /* run all events with a timeout set immediately */ if (udev_device_get_timeout(dev) > 0) { worker_new(event); return; } } static void worker_kill(struct udev *udev, int retain) { struct udev_list_node *loop; int max; if (childs <= retain) return; max = childs - retain; udev_list_node_foreach(loop, &worker_list) { struct worker *worker = node_to_worker(loop); if (max-- <= 0) break; if (worker->state == WORKER_KILLED) continue; worker->state = WORKER_KILLED; kill(worker->pid, SIGTERM); } } static int mem_size_mb(void) { FILE *f; char buf[4096]; long int memsize = -1; f = fopen("/proc/meminfo", "r"); if (f == NULL) return -1; while (fgets(buf, sizeof(buf), f) != NULL) { long int value; if (sscanf(buf, "MemTotal: %ld kB", &value) == 1) { memsize = value / 1024; break; } } fclose(f); return memsize; } /* lookup event for identical, parent, child device */ static int devpath_busy(struct event *event) { struct udev_list_node *loop; size_t common; /* check if queue contains events we depend on */ udev_list_node_foreach(loop, &event_list) { struct event *loop_event = node_to_event(loop); /* we already found a later event, earlier can not block us, no need to check again */ if (loop_event->seqnum < event->delaying_seqnum) continue; /* event we checked earlier still exists, no need to check again */ if (loop_event->seqnum == event->delaying_seqnum) return 2; /* found ourself, no later event can block us */ if (loop_event->seqnum >= event->seqnum) break; /* check our old name */ if (event->devpath_old != NULL) if (strcmp(loop_event->devpath, event->devpath_old) == 0) { event->delaying_seqnum = loop_event->seqnum; return 3; } /* compare devpath */ common = MIN(loop_event->devpath_len, event->devpath_len); /* one devpath is contained in the other? */ if (memcmp(loop_event->devpath, event->devpath, common) != 0) continue; /* identical device event found */ if (loop_event->devpath_len == event->devpath_len) { event->delaying_seqnum = loop_event->seqnum; return 4; } /* parent device event found */ if (event->devpath[common] == '/') { event->delaying_seqnum = loop_event->seqnum; return 5; } /* child device event found */ if (loop_event->devpath[common] == '/') { event->delaying_seqnum = loop_event->seqnum; return 6; } /* no matching device */ continue; } return 0; } static void events_start(struct udev *udev) { struct udev_list_node *loop; udev_list_node_foreach(loop, &event_list) { struct event *event = node_to_event(loop); if (event->state != EVENT_QUEUED) continue; /* do not start event if parent or child event is still running */ if (devpath_busy(event) != 0) { dbg(udev, "delay seq %llu (%s)\n", event->seqnum, event->devpath); continue; } event_run(event); } } static void worker_returned(void) { while (1) { struct worker_message msg; ssize_t size; struct udev_list_node *loop; size = recv(pfd[FD_WORKER].fd, &msg, sizeof(struct worker_message), MSG_DONTWAIT); if (size != sizeof(struct worker_message)) break; /* lookup worker who sent the signal */ udev_list_node_foreach(loop, &worker_list) { struct worker *worker = node_to_worker(loop); if (worker->pid != msg.pid) continue; /* worker returned */ worker->event->exitcode = msg.exitcode; event_queue_delete(worker->event); worker->event = NULL; if (worker->state != WORKER_KILLED) worker->state = WORKER_IDLE; worker_unref(worker); break; } } } /* receive the udevd message from userspace */ static void handle_ctrl_msg(struct udev_ctrl *uctrl) { struct udev *udev = udev_ctrl_get_udev(uctrl); struct udev_ctrl_msg *ctrl_msg; const char *str; int i; ctrl_msg = udev_ctrl_receive_msg(uctrl); if (ctrl_msg == NULL) return; i = udev_ctrl_get_set_log_level(ctrl_msg); if (i >= 0) { info(udev, "udevd message (SET_LOG_PRIORITY) received, log_priority=%i\n", i); udev_set_log_priority(udev, i); worker_kill(udev, 0); } if (udev_ctrl_get_stop_exec_queue(ctrl_msg) > 0) { info(udev, "udevd message (STOP_EXEC_QUEUE) received\n"); stop_exec_queue = 1; } if (udev_ctrl_get_start_exec_queue(ctrl_msg) > 0) { info(udev, "udevd message (START_EXEC_QUEUE) received\n"); stop_exec_queue = 0; } if (udev_ctrl_get_reload_rules(ctrl_msg) > 0) { info(udev, "udevd message (RELOAD_RULES) received\n"); reload_config = 1; } str = udev_ctrl_get_set_env(ctrl_msg); if (str != NULL) { char *key; key = strdup(str); if (key != NULL) { char *val; val = strchr(key, '='); if (val != NULL) { val[0] = '\0'; val = &val[1]; if (val[0] == '\0') { info(udev, "udevd message (ENV) received, unset '%s'\n", key); udev_add_property(udev, key, NULL); } else { info(udev, "udevd message (ENV) received, set '%s=%s'\n", key, val); udev_add_property(udev, key, val); } } else { err(udev, "wrong key format '%s'\n", key); } free(key); } worker_kill(udev, 0); } i = udev_ctrl_get_set_max_childs(ctrl_msg); if (i >= 0) { info(udev, "udevd message (SET_MAX_CHILDS) received, max_childs=%i\n", i); max_childs = i; } settle_pid = udev_ctrl_get_settle(ctrl_msg); if (settle_pid > 0) { info(udev, "udevd message (SETTLE) received\n"); kill(settle_pid, SIGUSR1); settle_pid = 0; } udev_ctrl_msg_unref(ctrl_msg); } /* read inotify messages */ static int handle_inotify(struct udev *udev) { ssize_t nbytes, pos; char *buf; struct inotify_event *ev; if ((ioctl(pfd[FD_INOTIFY].fd, FIONREAD, &nbytes) < 0) || (nbytes <= 0)) return 0; buf = malloc(nbytes); if (buf == NULL) { err(udev, "error getting buffer for inotify\n"); return -1; } nbytes = read(pfd[FD_INOTIFY].fd, buf, nbytes); for (pos = 0; pos < nbytes; pos += sizeof(struct inotify_event) + ev->len) { struct udev_device *dev; ev = (struct inotify_event *)(buf + pos); if (ev->len) { dbg(udev, "inotify event: %x for %s\n", ev->mask, ev->name); reload_config = 1; continue; } dev = udev_watch_lookup(udev, ev->wd); if (dev != NULL) { dbg(udev, "inotify event: %x for %s\n", ev->mask, udev_device_get_devnode(dev)); if (ev->mask & IN_CLOSE_WRITE) { char filename[UTIL_PATH_SIZE]; int fd; info(udev, "device %s closed, synthesising 'change'\n", udev_device_get_devnode(dev)); util_strscpyl(filename, sizeof(filename), udev_device_get_syspath(dev), "/uevent", NULL); fd = open(filename, O_WRONLY); if (fd < 0 || write(fd, "change", 6) < 0) info(udev, "error writing uevent: %m\n"); close(fd); } if (ev->mask & IN_IGNORED) udev_watch_end(udev, dev); udev_device_unref(dev); } } free(buf); return 0; } static void handle_signal(struct udev *udev, int signo) { switch (signo) { case SIGINT: case SIGTERM: udev_exit = 1; break; case SIGCHLD: while (1) { pid_t pid; int status; struct udev_list_node *loop, *tmp; pid = waitpid(-1, &status, WNOHANG); if (pid <= 0) break; udev_list_node_foreach_safe(loop, tmp, &worker_list) { struct worker *worker = node_to_worker(loop); if (worker->pid != pid) continue; info(udev, "worker [%u] exit\n", pid); if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { err(udev, "worker [%u] unexpectedly returned with status 0x%04x\n", pid, status); if (worker->event != NULL) { err(udev, "worker [%u] failed while handling '%s'\n", pid, worker->event->devpath); worker->event->exitcode = -32; event_queue_delete(worker->event); /* drop reference from running event */ worker_unref(worker); } } worker_unref(worker); break; } } break; case SIGHUP: reload_config = 1; break; } } static void startup_log(struct udev *udev) { FILE *f; char path[UTIL_PATH_SIZE]; struct stat statbuf; f = fopen("/dev/kmsg", "w"); if (f != NULL) fprintf(f, "<6>udev: starting version " VERSION "\n"); util_strscpyl(path, sizeof(path), udev_get_sys_path(udev), "/class/mem/null", NULL); if (lstat(path, &statbuf) == 0 && S_ISDIR(statbuf.st_mode)) { const char *depr_str = "udev: missing sysfs features; please update the kernel " "or disable the kernel's CONFIG_SYSFS_DEPRECATED option; " "udev may fail to work correctly"; if (f != NULL) fprintf(f, "<3>%s\n", depr_str); err(udev, "%s\n", depr_str); sleep(3); } if (f != NULL) fclose(f); } int main(int argc, char *argv[]) { struct udev *udev; int fd; sigset_t mask; const char *value; int daemonize = 0; int resolve_names = 1; static const struct option options[] = { { "daemon", no_argument, NULL, 'd' }, { "debug-trace", no_argument, NULL, 't' }, { "debug", no_argument, NULL, 'D' }, { "help", no_argument, NULL, 'h' }, { "version", no_argument, NULL, 'V' }, { "resolve-names", required_argument, NULL, 'N' }, {} }; int rc = 1; udev = udev_new(); if (udev == NULL) goto exit; udev_log_init("udevd"); udev_set_log_fn(udev, log_fn); info(udev, "version %s\n", VERSION); udev_selinux_init(udev); while (1) { int option; option = getopt_long(argc, argv, "dDthV", options, NULL); if (option == -1) break; switch (option) { case 'd': daemonize = 1; break; case 't': debug_trace = 1; break; case 'D': debug = 1; if (udev_get_log_priority(udev) < LOG_INFO) udev_set_log_priority(udev, LOG_INFO); break; case 'N': if (strcmp (optarg, "early") == 0) { resolve_names = 1; } else if (strcmp (optarg, "late") == 0) { resolve_names = 0; } else if (strcmp (optarg, "never") == 0) { resolve_names = -1; } else { fprintf(stderr, "resolve-names must be early, late or never\n"); err(udev, "resolve-names must be early, late or never\n"); goto exit; } break; case 'h': printf("Usage: udevd [--help] [--daemon] [--debug-trace] [--debug] " "[--resolve-names=early|late|never] [--version]\n"); goto exit; case 'V': printf("%s\n", VERSION); goto exit; default: goto exit; } } if (getuid() != 0) { fprintf(stderr, "root privileges required\n"); err(udev, "root privileges required\n"); goto exit; } /* make sure std{in,out,err} fd's are in a sane state */ fd = open("/dev/null", O_RDWR); if (fd < 0) { fprintf(stderr, "cannot open /dev/null\n"); err(udev, "cannot open /dev/null\n"); } if (write(STDOUT_FILENO, 0, 0) < 0) dup2(fd, STDOUT_FILENO); if (write(STDERR_FILENO, 0, 0) < 0) dup2(fd, STDERR_FILENO); /* init control socket, bind() ensures, that only one udevd instance is running */ udev_ctrl = udev_ctrl_new_from_socket(udev, UDEV_CTRL_SOCK_PATH); if (udev_ctrl == NULL) { fprintf(stderr, "error initializing control socket"); err(udev, "error initializing udevd socket"); rc = 1; goto exit; } if (udev_ctrl_enable_receiving(udev_ctrl) < 0) { fprintf(stderr, "error binding control socket, seems udevd is already running\n"); err(udev, "error binding control socket, seems udevd is already running\n"); rc = 1; goto exit; } pfd[FD_CONTROL].fd = udev_ctrl_get_fd(udev_ctrl); monitor = udev_monitor_new_from_netlink(udev, "kernel"); if (monitor == NULL || udev_monitor_enable_receiving(monitor) < 0) { fprintf(stderr, "error initializing netlink socket\n"); err(udev, "error initializing netlink socket\n"); rc = 3; goto exit; } udev_monitor_set_receive_buffer_size(monitor, 128*1024*1024); pfd[FD_NETLINK].fd = udev_monitor_get_fd(monitor); pfd[FD_INOTIFY].fd = udev_watch_init(udev); if (pfd[FD_INOTIFY].fd < 0) { fprintf(stderr, "error initializing inotify\n"); err(udev, "error initializing inotify\n"); rc = 4; goto exit; } if (udev_get_rules_path(udev) != NULL) { inotify_add_watch(pfd[FD_INOTIFY].fd, udev_get_rules_path(udev), IN_CREATE | IN_DELETE | IN_MOVE | IN_CLOSE_WRITE); } else { char filename[UTIL_PATH_SIZE]; inotify_add_watch(pfd[FD_INOTIFY].fd, LIBEXECDIR "/rules.d", IN_CREATE | IN_DELETE | IN_MOVE | IN_CLOSE_WRITE); inotify_add_watch(pfd[FD_INOTIFY].fd, SYSCONFDIR "/udev/rules.d", IN_CREATE | IN_DELETE | IN_MOVE | IN_CLOSE_WRITE); /* watch dynamic rules directory */ util_strscpyl(filename, sizeof(filename), udev_get_dev_path(udev), "/.udev/rules.d", NULL); inotify_add_watch(pfd[FD_INOTIFY].fd, filename, IN_CREATE | IN_DELETE | IN_MOVE | IN_CLOSE_WRITE); } udev_watch_restore(udev); /* block and listen to all signals on signalfd */ sigfillset(&mask); sigprocmask(SIG_SETMASK, &mask, NULL); pfd[FD_SIGNAL].fd = signalfd(-1, &mask, 0); if (pfd[FD_SIGNAL].fd < 0) { fprintf(stderr, "error getting signalfd\n"); err(udev, "error getting signalfd\n"); rc = 5; goto exit; } /* unnamed socket from workers to the main daemon */ if (socketpair(AF_LOCAL, SOCK_DGRAM, 0, worker_watch) < 0) { fprintf(stderr, "error getting socketpair\n"); err(udev, "error getting socketpair\n"); rc = 6; goto exit; } pfd[FD_WORKER].fd = worker_watch[READ_END]; util_set_fd_cloexec(worker_watch[WRITE_END]); rules = udev_rules_new(udev, resolve_names); if (rules == NULL) { err(udev, "error reading rules\n"); goto exit; } udev_queue_export = udev_queue_export_new(udev); if (udev_queue_export == NULL) { err(udev, "error creating queue file\n"); goto exit; } if (daemonize) { pid_t pid; pid = fork(); switch (pid) { case 0: break; case -1: err(udev, "fork of daemon failed: %m\n"); rc = 4; goto exit; default: rc = 0; goto exit; } } startup_log(udev); /* redirect std{out,err} */ if (!debug && !debug_trace) { dup2(fd, STDIN_FILENO); dup2(fd, STDOUT_FILENO); dup2(fd, STDERR_FILENO); } if (fd > STDERR_FILENO) close(fd); /* set scheduling priority for the daemon */ setpriority(PRIO_PROCESS, 0, UDEVD_PRIORITY); chdir("/"); umask(022); setsid(); /* OOM_DISABLE == -17 */ fd = open("/proc/self/oom_adj", O_RDWR); if (fd < 0) { err(udev, "error disabling OOM: %m\n"); } else { write(fd, "-17", 3); close(fd); } /* in trace mode run one event after the other */ if (debug_trace) { max_childs = 1; } else { int memsize = mem_size_mb(); if (memsize > 0) max_childs = 128 + (memsize / 8); else max_childs = 128; } /* possibly overwrite maximum limit of executed events */ value = getenv("UDEVD_MAX_CHILDS"); if (value) max_childs = strtoul(value, NULL, 10); info(udev, "initialize max_childs to %u\n", max_childs); udev_list_init(&event_list); udev_list_init(&worker_list); while (!udev_exit) { int fdcount; int timeout; /* set timeout to kill idle workers */ if (udev_list_is_empty(&event_list) && childs > 2) timeout = 3 * 1000; else timeout = -1; /* wait for events */ fdcount = poll(pfd, ARRAY_SIZE(pfd), timeout); if (fdcount < 0) continue; /* timeout - kill idle workers */ if (fdcount == 0) worker_kill(udev, 2); /* event has finished */ if (pfd[FD_WORKER].revents & POLLIN) worker_returned(); /* get kernel uevent */ if (pfd[FD_NETLINK].revents & POLLIN) { struct udev_device *dev; dev = udev_monitor_receive_device(monitor); if (dev != NULL) event_queue_insert(dev); else udev_device_unref(dev); } /* start new events */ if (!udev_list_is_empty(&event_list) && !stop_exec_queue) events_start(udev); /* get signal */ if (pfd[FD_SIGNAL].revents & POLLIN) { struct signalfd_siginfo fdsi; ssize_t size; size = read(pfd[FD_SIGNAL].fd, &fdsi, sizeof(struct signalfd_siginfo)); if (size == sizeof(struct signalfd_siginfo)) handle_signal(udev, fdsi.ssi_signo); } /* device node and rules directory inotify watch */ if (pfd[FD_INOTIFY].revents & POLLIN) handle_inotify(udev); /* * get control message * * This needs to be after the inotify handling, to make sure, * that the settle signal is send back after the possibly generated * "change" events by the inotify device node watch. */ if (pfd[FD_CONTROL].revents & POLLIN) handle_ctrl_msg(udev_ctrl); /* rules changed, set by inotify or a HUP signal */ if (reload_config) { struct udev_rules *rules_new; worker_kill(udev, 0); rules_new = udev_rules_new(udev, resolve_names); if (rules_new != NULL) { udev_rules_unref(rules); rules = rules_new; } reload_config = 0; } } udev_queue_export_cleanup(udev_queue_export); rc = 0; exit: udev_queue_export_unref(udev_queue_export); udev_rules_unref(rules); udev_ctrl_unref(udev_ctrl); if (pfd[FD_SIGNAL].fd >= 0) close(pfd[FD_SIGNAL].fd); if (worker_watch[READ_END] >= 0) close(worker_watch[READ_END]); if (worker_watch[WRITE_END] >= 0) close(worker_watch[WRITE_END]); udev_monitor_unref(monitor); udev_selinux_exit(udev); udev_unref(udev); udev_log_close(); return rc; }