/*-*- Mode: C; c-basic-offset: 8 -*-*/ #include #include #include #include #include #include #include #include #include "set.h" #include "unit.h" #include "macro.h" #include "strv.h" #include "load-fragment.h" #include "load-dropin.h" #include "log.h" const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = { [UNIT_SERVICE] = &service_vtable, [UNIT_TIMER] = &timer_vtable, [UNIT_SOCKET] = &socket_vtable, [UNIT_TARGET] = &target_vtable, [UNIT_DEVICE] = &device_vtable, [UNIT_MOUNT] = &mount_vtable, [UNIT_AUTOMOUNT] = &automount_vtable, [UNIT_SNAPSHOT] = &snapshot_vtable }; UnitType unit_name_to_type(const char *n) { UnitType t; assert(n); for (t = 0; t < _UNIT_TYPE_MAX; t++) if (endswith(n, unit_vtable[t]->suffix)) return t; return _UNIT_TYPE_INVALID; } #define VALID_CHARS \ "0123456789" \ "abcdefghijklmnopqrstuvwxyz" \ "ABCDEFGHIJKLMNOPQRSTUVWXYZ" \ "-_.\\" bool unit_name_is_valid(const char *n) { UnitType t; const char *e, *i; assert(n); if (strlen(n) >= UNIT_NAME_MAX) return false; t = unit_name_to_type(n); if (t < 0 || t >= _UNIT_TYPE_MAX) return false; if (!(e = strrchr(n, '.'))) return false; if (e == n) return false; for (i = n; i < e; i++) if (!strchr(VALID_CHARS, *i)) return false; return true; } char *unit_name_change_suffix(const char *n, const char *suffix) { char *e, *r; size_t a, b; assert(n); assert(unit_name_is_valid(n)); assert(suffix); assert_se(e = strrchr(n, '.')); a = e - n; b = strlen(suffix); if (!(r = new(char, a + b + 1))) return NULL; memcpy(r, n, a); memcpy(r+a, suffix, b+1); return r; } Unit *unit_new(Manager *m) { Unit *u; assert(m); if (!(u = new0(Unit, 1))) return NULL; if (!(u->meta.names = set_new(string_hash_func, string_compare_func))) { free(u); return NULL; } u->meta.manager = m; u->meta.type = _UNIT_TYPE_INVALID; return u; } int unit_add_name(Unit *u, const char *text) { UnitType t; char *s; int r; assert(u); assert(text); if (!unit_name_is_valid(text)) return -EINVAL; if ((t = unit_name_to_type(text)) == _UNIT_TYPE_INVALID) return -EINVAL; if (u->meta.type != _UNIT_TYPE_INVALID && t != u->meta.type) return -EINVAL; if (!(s = strdup(text))) return -ENOMEM; if ((r = set_put(u->meta.names, s)) < 0) { free(s); if (r == -EEXIST) return 0; return r; } if ((r = hashmap_put(u->meta.manager->units, s, u)) < 0) { set_remove(u->meta.names, s); free(s); return r; } u->meta.type = t; if (!u->meta.id) u->meta.id = s; return 0; } void unit_add_to_load_queue(Unit *u) { assert(u); if (u->meta.load_state != UNIT_STUB || u->meta.in_load_queue) return; LIST_PREPEND(Meta, load_queue, u->meta.manager->load_queue, &u->meta); u->meta.in_load_queue = true; } static void bidi_set_free(Unit *u, Set *s) { Iterator i; Unit *other; assert(u); /* Frees the set and makes sure we are dropped from the * inverse pointers */ SET_FOREACH(other, s, i) { UnitDependency d; for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) set_remove(other->meta.dependencies[d], u); } set_free(s); } void unit_free(Unit *u) { UnitDependency d; Iterator i; char *t; assert(u); /* Detach from next 'bigger' objects */ SET_FOREACH(t, u->meta.names, i) hashmap_remove_value(u->meta.manager->units, t, u); if (u->meta.in_load_queue) LIST_REMOVE(Meta, load_queue, u->meta.manager->load_queue, &u->meta); if (u->meta.load_state == UNIT_LOADED) if (UNIT_VTABLE(u)->done) UNIT_VTABLE(u)->done(u); /* Free data and next 'smaller' objects */ if (u->meta.job) job_free(u->meta.job); for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) bidi_set_free(u, u->meta.dependencies[d]); free(u->meta.description); free(u->meta.load_path); while ((t = set_steal_first(u->meta.names))) free(t); set_free(u->meta.names); free(u); } UnitActiveState unit_active_state(Unit *u) { assert(u); if (u->meta.load_state != UNIT_LOADED) return UNIT_INACTIVE; return UNIT_VTABLE(u)->active_state(u); } static int ensure_merge(Set **s, Set *other) { if (!other) return 0; if (*s) return set_merge(*s, other); if (!(*s = set_copy(other))) return -ENOMEM; return 0; } /* FIXME: Does not rollback on failure! Needs to fix special unit * pointers. Needs to merge names and dependencies properly.*/ int unit_merge(Unit *u, Unit *other) { int r; UnitDependency d; assert(u); assert(other); assert(u->meta.manager == other->meta.manager); /* This merges 'other' into 'unit'. FIXME: This does not * rollback on failure. */ if (u->meta.type != u->meta.type) return -EINVAL; if (u->meta.load_state != UNIT_STUB) return -EINVAL; /* Merge names */ if ((r = ensure_merge(&u->meta.names, other->meta.names)) < 0) return r; /* Merge dependencies */ for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) /* fixme, the inverse mapping is missing */ if ((r = ensure_merge(&u->meta.dependencies[d], other->meta.dependencies[d])) < 0) return r; return 0; } const char* unit_id(Unit *u) { assert(u); if (u->meta.id) return u->meta.id; return set_first(u->meta.names); } const char *unit_description(Unit *u) { assert(u); if (u->meta.description) return u->meta.description; return unit_id(u); } void unit_dump(Unit *u, FILE *f, const char *prefix) { static const char* const load_state_table[_UNIT_LOAD_STATE_MAX] = { [UNIT_STUB] = "stub", [UNIT_LOADED] = "loaded", [UNIT_FAILED] = "failed" }; static const char* const active_state_table[_UNIT_ACTIVE_STATE_MAX] = { [UNIT_ACTIVE] = "active", [UNIT_INACTIVE] = "inactive", [UNIT_ACTIVATING] = "activating", [UNIT_DEACTIVATING] = "deactivating" }; static const char* const dependency_table[_UNIT_DEPENDENCY_MAX] = { [UNIT_REQUIRES] = "Requires", [UNIT_SOFT_REQUIRES] = "SoftRequires", [UNIT_WANTS] = "Wants", [UNIT_REQUISITE] = "Requisite", [UNIT_SOFT_REQUISITE] = "SoftRequisite", [UNIT_REQUIRED_BY] = "RequiredBy", [UNIT_SOFT_REQUIRED_BY] = "SoftRequiredBy", [UNIT_WANTED_BY] = "WantedBy", [UNIT_CONFLICTS] = "Conflicts", [UNIT_BEFORE] = "Before", [UNIT_AFTER] = "After", }; char *t; UnitDependency d; Iterator i; char *prefix2; assert(u); if (!prefix) prefix = ""; prefix2 = strappend(prefix, "\t"); if (!prefix2) prefix2 = ""; fprintf(f, "%s→ Unit %s:\n" "%s\tDescription: %s\n" "%s\tUnit Load State: %s\n" "%s\tUnit Active State: %s\n", prefix, unit_id(u), prefix, unit_description(u), prefix, load_state_table[u->meta.load_state], prefix, active_state_table[unit_active_state(u)]); if (u->meta.load_path) fprintf(f, "%s\tLoad Path: %s\n", prefix, u->meta.load_path); SET_FOREACH(t, u->meta.names, i) fprintf(f, "%s\tName: %s\n", prefix, t); for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) { Unit *other; if (set_isempty(u->meta.dependencies[d])) continue; SET_FOREACH(other, u->meta.dependencies[d], i) fprintf(f, "%s\t%s: %s\n", prefix, dependency_table[d], unit_id(other)); } if (UNIT_VTABLE(u)->dump) UNIT_VTABLE(u)->dump(u, f, prefix2); if (u->meta.job) job_dump(u->meta.job, f, prefix2); free(prefix2); } /* Common implementation for multiple backends */ int unit_load_fragment_and_dropin(Unit *u) { int r, ret; assert(u); /* Load a .socket file */ if ((r = unit_load_fragment(u)) < 0) return r; ret = r > 0; /* Load drop-in directory data */ if ((r = unit_load_dropin(u)) < 0) return r; return ret; } int unit_load(Unit *u) { int r; assert(u); if (u->meta.in_load_queue) { LIST_REMOVE(Meta, load_queue, u->meta.manager->load_queue, &u->meta); u->meta.in_load_queue = false; } if (u->meta.load_state != UNIT_STUB) return 0; if (UNIT_VTABLE(u)->init) if ((r = UNIT_VTABLE(u)->init(u)) < 0) goto fail; u->meta.load_state = UNIT_LOADED; return 0; fail: u->meta.load_state = UNIT_FAILED; return r; } /* Errors: * -EBADR: This unit type does not support starting. * -EALREADY: Unit is already started. * -EAGAIN: An operation is already in progress. Retry later. */ int unit_start(Unit *u) { UnitActiveState state; assert(u); if (!UNIT_VTABLE(u)->start) return -EBADR; state = unit_active_state(u); if (UNIT_IS_ACTIVE_OR_RELOADING(state)) return -EALREADY; /* We don't suppress calls to ->start() here when we are * already starting, to allow this request to be used as a * "hurry up" call, for example when the unit is in some "auto * restart" state where it waits for a holdoff timer to elapse * before it will start again. */ return UNIT_VTABLE(u)->start(u); } bool unit_can_start(Unit *u) { assert(u); return !!UNIT_VTABLE(u)->start; } /* Errors: * -EBADR: This unit type does not support stopping. * -EALREADY: Unit is already stopped. * -EAGAIN: An operation is already in progress. Retry later. */ int unit_stop(Unit *u) { UnitActiveState state; assert(u); if (!UNIT_VTABLE(u)->stop) return -EBADR; state = unit_active_state(u); if (state == UNIT_INACTIVE) return -EALREADY; if (state == UNIT_DEACTIVATING) return 0; return UNIT_VTABLE(u)->stop(u); } /* Errors: * -EBADR: This unit type does not support reloading. * -ENOEXEC: Unit is not started. * -EAGAIN: An operation is already in progress. Retry later. */ int unit_reload(Unit *u) { UnitActiveState state; assert(u); if (!unit_can_reload(u)) return -EBADR; state = unit_active_state(u); if (unit_active_state(u) == UNIT_ACTIVE_RELOADING) return -EALREADY; if (unit_active_state(u) != UNIT_ACTIVE) return -ENOEXEC; return UNIT_VTABLE(u)->reload(u); } bool unit_can_reload(Unit *u) { assert(u); if (!UNIT_VTABLE(u)->reload) return false; if (!UNIT_VTABLE(u)->can_reload) return true; return UNIT_VTABLE(u)->can_reload(u); } static void retroactively_start_dependencies(Unit *u) { Iterator i; Unit *other; assert(u); assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))); SET_FOREACH(other, u->meta.dependencies[UNIT_REQUIRES], i) if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->meta.manager, JOB_START, other, JOB_REPLACE, true, NULL); SET_FOREACH(other, u->meta.dependencies[UNIT_SOFT_REQUIRES], i) if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->meta.manager, JOB_START, other, JOB_FAIL, false, NULL); SET_FOREACH(other, u->meta.dependencies[UNIT_REQUISITE], i) if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->meta.manager, JOB_START, other, JOB_REPLACE, true, NULL); SET_FOREACH(other, u->meta.dependencies[UNIT_WANTS], i) if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->meta.manager, JOB_START, other, JOB_FAIL, false, NULL); SET_FOREACH(other, u->meta.dependencies[UNIT_CONFLICTS], i) if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->meta.manager, JOB_STOP, other, JOB_REPLACE, true, NULL); } static void retroactively_stop_dependencies(Unit *u) { Iterator i; Unit *other; assert(u); assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u))); SET_FOREACH(other, u->meta.dependencies[UNIT_REQUIRED_BY], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) manager_add_job(u->meta.manager, JOB_STOP, other, JOB_REPLACE, true, NULL); } void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns) { assert(u); assert(os < _UNIT_ACTIVE_STATE_MAX); assert(ns < _UNIT_ACTIVE_STATE_MAX); assert(!(os == UNIT_ACTIVE && ns == UNIT_ACTIVATING)); assert(!(os == UNIT_INACTIVE && ns == UNIT_DEACTIVATING)); if (os == ns) return; if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns)) u->meta.active_enter_timestamp = now(CLOCK_REALTIME); else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns)) u->meta.active_exit_timestamp = now(CLOCK_REALTIME); if (u->meta.job) { if (u->meta.job->state == JOB_WAITING) /* So we reached a different state for this * job. Let's see if we can run it now if it * failed previously due to EAGAIN. */ job_schedule_run(u->meta.job); else { assert(u->meta.job->state == JOB_RUNNING); /* Let's check of this state change * constitutes a finished job, or maybe * cotradicts a running job and hence needs to * invalidate jobs. */ switch (u->meta.job->type) { case JOB_START: case JOB_VERIFY_ACTIVE: if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) { job_finish_and_invalidate(u->meta.job, true); return; } else if (ns == UNIT_ACTIVATING) return; else job_finish_and_invalidate(u->meta.job, false); break; case JOB_RELOAD: case JOB_RELOAD_OR_START: if (ns == UNIT_ACTIVE) { job_finish_and_invalidate(u->meta.job, true); return; } else if (ns == UNIT_ACTIVATING || ns == UNIT_ACTIVE_RELOADING) return; else job_finish_and_invalidate(u->meta.job, false); break; case JOB_STOP: case JOB_RESTART: case JOB_TRY_RESTART: if (ns == UNIT_INACTIVE) { job_finish_and_invalidate(u->meta.job, true); return; } else if (ns == UNIT_DEACTIVATING) return; else job_finish_and_invalidate(u->meta.job, false); break; default: assert_not_reached("Job type unknown"); } } } /* If this state change happened without being requested by a * job, then let's retroactively start or stop dependencies */ if (UNIT_IS_INACTIVE_OR_DEACTIVATING(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns)) retroactively_start_dependencies(u); else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns)) retroactively_stop_dependencies(u); } int unit_watch_fd(Unit *u, int fd, uint32_t events, Watch *w) { struct epoll_event ev; assert(u); assert(fd >= 0); assert(w); assert(w->type == WATCH_INVALID || (w->type == WATCH_FD && w->fd == fd && w->unit == u)); zero(ev); ev.data.ptr = w; ev.events = events; if (epoll_ctl(u->meta.manager->epoll_fd, w->type == WATCH_INVALID ? EPOLL_CTL_ADD : EPOLL_CTL_MOD, fd, &ev) < 0) return -errno; w->fd = fd; w->type = WATCH_FD; w->unit = u; return 0; } void unit_unwatch_fd(Unit *u, Watch *w) { assert(u); assert(w); if (w->type == WATCH_INVALID) return; assert(w->type == WATCH_FD && w->unit == u); assert_se(epoll_ctl(u->meta.manager->epoll_fd, EPOLL_CTL_DEL, w->fd, NULL) >= 0); w->fd = -1; w->type = WATCH_INVALID; w->unit = NULL; } int unit_watch_pid(Unit *u, pid_t pid) { assert(u); assert(pid >= 1); return hashmap_put(u->meta.manager->watch_pids, UINT32_TO_PTR(pid), u); } void unit_unwatch_pid(Unit *u, pid_t pid) { assert(u); assert(pid >= 1); hashmap_remove(u->meta.manager->watch_pids, UINT32_TO_PTR(pid)); } int unit_watch_timer(Unit *u, usec_t delay, Watch *w) { struct itimerspec its; int flags, fd; bool ours; assert(u); assert(w); assert(w->type == WATCH_INVALID || (w->type == WATCH_TIMER && w->unit == u)); /* This will try to reuse the old timer if there is one */ if (w->type == WATCH_TIMER) { ours = false; fd = w->fd; } else { ours = true; if ((fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK|TFD_CLOEXEC)) < 0) return -errno; } zero(its); if (delay <= 0) { /* Set absolute time in the past, but not 0, since we * don't want to disarm the timer */ its.it_value.tv_sec = 0; its.it_value.tv_nsec = 1; flags = TFD_TIMER_ABSTIME; } else { timespec_store(&its.it_value, delay); flags = 0; } /* This will also flush the elapse counter */ if (timerfd_settime(fd, flags, &its, NULL) < 0) goto fail; if (w->type == WATCH_INVALID) { struct epoll_event ev; zero(ev); ev.data.ptr = w; ev.events = POLLIN; if (epoll_ctl(u->meta.manager->epoll_fd, EPOLL_CTL_ADD, fd, &ev) < 0) goto fail; } w->fd = fd; w->type = WATCH_TIMER; w->unit = u; return 0; fail: if (ours) assert_se(close_nointr(fd) == 0); return -errno; } void unit_unwatch_timer(Unit *u, Watch *w) { assert(u); assert(w); if (w->type == WATCH_INVALID) return; assert(w->type == WATCH_TIMER && w->unit == u); assert_se(epoll_ctl(u->meta.manager->epoll_fd, EPOLL_CTL_DEL, w->fd, NULL) >= 0); assert_se(close_nointr(w->fd) == 0); w->fd = -1; w->type = WATCH_INVALID; w->unit = NULL; } bool unit_job_is_applicable(Unit *u, JobType j) { assert(u); assert(j >= 0 && j < _JOB_TYPE_MAX); switch (j) { case JOB_VERIFY_ACTIVE: case JOB_START: return true; case JOB_STOP: case JOB_RESTART: case JOB_TRY_RESTART: return unit_can_start(u); case JOB_RELOAD: return unit_can_reload(u); case JOB_RELOAD_OR_START: return unit_can_reload(u) && unit_can_start(u); default: assert_not_reached("Invalid job type"); } } int unit_add_dependency(Unit *u, UnitDependency d, Unit *other) { static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = { [UNIT_REQUIRES] = UNIT_REQUIRED_BY, [UNIT_SOFT_REQUIRES] = UNIT_SOFT_REQUIRED_BY, [UNIT_WANTS] = UNIT_WANTED_BY, [UNIT_REQUISITE] = UNIT_REQUIRED_BY, [UNIT_SOFT_REQUISITE] = UNIT_SOFT_REQUIRED_BY, [UNIT_REQUIRED_BY] = _UNIT_DEPENDENCY_INVALID, [UNIT_SOFT_REQUIRED_BY] = _UNIT_DEPENDENCY_INVALID, [UNIT_WANTED_BY] = _UNIT_DEPENDENCY_INVALID, [UNIT_CONFLICTS] = UNIT_CONFLICTS, [UNIT_BEFORE] = UNIT_AFTER, [UNIT_AFTER] = UNIT_BEFORE }; int r; assert(u); assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX); assert(inverse_table[d] != _UNIT_DEPENDENCY_INVALID); assert(other); /* We won't allow dependencies on ourselves. We will not * consider them an error however. */ if (u == other) return 0; if ((r = set_ensure_allocated(&u->meta.dependencies[d], trivial_hash_func, trivial_compare_func)) < 0) return r; if ((r = set_ensure_allocated(&other->meta.dependencies[inverse_table[d]], trivial_hash_func, trivial_compare_func)) < 0) return r; if ((r = set_put(u->meta.dependencies[d], other)) < 0) return r; if ((r = set_put(other->meta.dependencies[inverse_table[d]], u)) < 0) { set_remove(u->meta.dependencies[d], other); return r; } return 0; } int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name) { Unit *other; int r; if ((r = manager_load_unit(u->meta.manager, name, &other)) < 0) return r; if ((r = unit_add_dependency(u, d, other)) < 0) return r; return 0; } const char *unit_path(void) { char *e; if ((e = getenv("UNIT_PATH"))) if (path_is_absolute(e)) return e; return UNIT_PATH; } int set_unit_path(const char *p) { char *cwd, *c; int r; /* This is mostly for debug purposes */ if (path_is_absolute(p)) { if (!(c = strdup(p))) return -ENOMEM; } else { if (!(cwd = get_current_dir_name())) return -errno; r = asprintf(&c, "%s/%s", cwd, p); free(cwd); if (r < 0) return -ENOMEM; } if (setenv("UNIT_PATH", c, 0) < 0) { r = -errno; free(c); return r; } return 0; }