/*-*- Mode: C; c-basic-offset: 8 -*-*/ /*** This file is part of systemd. Copyright 2010 Lennart Poettering systemd is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. systemd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with systemd; If not, see <http://www.gnu.org/licenses/>. ***/ #include <assert.h> #include <errno.h> #include <string.h> #include <sys/epoll.h> #include <sys/timerfd.h> #include <sys/poll.h> #include <stdlib.h> #include <unistd.h> #include "set.h" #include "unit.h" #include "macro.h" #include "strv.h" #include "load-fragment.h" #include "load-dropin.h" #include "log.h" const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = { [UNIT_SERVICE] = &service_vtable, [UNIT_TIMER] = &timer_vtable, [UNIT_SOCKET] = &socket_vtable, [UNIT_TARGET] = &target_vtable, [UNIT_DEVICE] = &device_vtable, [UNIT_MOUNT] = &mount_vtable, [UNIT_AUTOMOUNT] = &automount_vtable, [UNIT_SNAPSHOT] = &snapshot_vtable }; UnitType unit_name_to_type(const char *n) { UnitType t; assert(n); for (t = 0; t < _UNIT_TYPE_MAX; t++) if (endswith(n, unit_vtable[t]->suffix)) return t; return _UNIT_TYPE_INVALID; } #define VALID_CHARS \ "0123456789" \ "abcdefghijklmnopqrstuvwxyz" \ "ABCDEFGHIJKLMNOPQRSTUVWXYZ" \ "-_.\\" bool unit_name_is_valid(const char *n) { UnitType t; const char *e, *i; assert(n); if (strlen(n) >= UNIT_NAME_MAX) return false; t = unit_name_to_type(n); if (t < 0 || t >= _UNIT_TYPE_MAX) return false; if (!(e = strrchr(n, '.'))) return false; if (e == n) return false; for (i = n; i < e; i++) if (!strchr(VALID_CHARS, *i)) return false; return true; } char *unit_name_change_suffix(const char *n, const char *suffix) { char *e, *r; size_t a, b; assert(n); assert(unit_name_is_valid(n)); assert(suffix); assert_se(e = strrchr(n, '.')); a = e - n; b = strlen(suffix); if (!(r = new(char, a + b + 1))) return NULL; memcpy(r, n, a); memcpy(r+a, suffix, b+1); return r; } Unit *unit_new(Manager *m) { Unit *u; assert(m); if (!(u = new0(Unit, 1))) return NULL; if (!(u->meta.names = set_new(string_hash_func, string_compare_func))) { free(u); return NULL; } u->meta.manager = m; u->meta.type = _UNIT_TYPE_INVALID; return u; } bool unit_has_name(Unit *u, const char *name) { assert(u); assert(name); return !!set_get(u->meta.names, (char*) name); } int unit_add_name(Unit *u, const char *text) { UnitType t; char *s; int r; assert(u); assert(text); if (!unit_name_is_valid(text)) return -EINVAL; if ((t = unit_name_to_type(text)) == _UNIT_TYPE_INVALID) return -EINVAL; if (u->meta.type != _UNIT_TYPE_INVALID && t != u->meta.type) return -EINVAL; if (!(s = strdup(text))) return -ENOMEM; if ((r = set_put(u->meta.names, s)) < 0) { free(s); if (r == -EEXIST) return 0; return r; } if ((r = hashmap_put(u->meta.manager->units, s, u)) < 0) { set_remove(u->meta.names, s); free(s); return r; } if (u->meta.type == _UNIT_TYPE_INVALID) LIST_PREPEND(Meta, units_per_type, u->meta.manager->units_per_type[t], &u->meta); u->meta.type = t; if (!u->meta.id) u->meta.id = s; unit_add_to_dbus_queue(u); return 0; } int unit_choose_id(Unit *u, const char *name) { char *s; assert(u); assert(name); /* Selects one of the names of this unit as the id */ if (!(s = set_get(u->meta.names, (char*) name))) return -ENOENT; u->meta.id = s; unit_add_to_dbus_queue(u); return 0; } int unit_set_description(Unit *u, const char *description) { char *s; assert(u); if (!(s = strdup(description))) return -ENOMEM; free(u->meta.description); u->meta.description = s; unit_add_to_dbus_queue(u); return 0; } void unit_add_to_load_queue(Unit *u) { assert(u); assert(u->meta.type != _UNIT_TYPE_INVALID); if (u->meta.load_state != UNIT_STUB || u->meta.in_load_queue) return; LIST_PREPEND(Meta, load_queue, u->meta.manager->load_queue, &u->meta); u->meta.in_load_queue = true; } void unit_add_to_cleanup_queue(Unit *u) { assert(u); if (u->meta.in_cleanup_queue) return; LIST_PREPEND(Meta, cleanup_queue, u->meta.manager->cleanup_queue, &u->meta); u->meta.in_cleanup_queue = true; } void unit_add_to_dbus_queue(Unit *u) { assert(u); assert(u->meta.type != _UNIT_TYPE_INVALID); if (u->meta.load_state == UNIT_STUB || u->meta.in_dbus_queue || set_isempty(u->meta.manager->subscribed)) return; LIST_PREPEND(Meta, dbus_queue, u->meta.manager->dbus_unit_queue, &u->meta); u->meta.in_dbus_queue = true; } static void bidi_set_free(Unit *u, Set *s) { Iterator i; Unit *other; assert(u); /* Frees the set and makes sure we are dropped from the * inverse pointers */ SET_FOREACH(other, s, i) { UnitDependency d; for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) set_remove(other->meta.dependencies[d], u); } set_free(s); } void unit_free(Unit *u) { UnitDependency d; Iterator i; char *t; assert(u); bus_unit_send_removed_signal(u); /* Detach from next 'bigger' objects */ cgroup_bonding_free_list(u->meta.cgroup_bondings); SET_FOREACH(t, u->meta.names, i) hashmap_remove_value(u->meta.manager->units, t, u); if (u->meta.type != _UNIT_TYPE_INVALID) LIST_REMOVE(Meta, units_per_type, u->meta.manager->units_per_type[u->meta.type], &u->meta); if (u->meta.in_load_queue) LIST_REMOVE(Meta, load_queue, u->meta.manager->load_queue, &u->meta); if (u->meta.in_dbus_queue) LIST_REMOVE(Meta, dbus_queue, u->meta.manager->dbus_unit_queue, &u->meta); if (u->meta.in_cleanup_queue) LIST_REMOVE(Meta, cleanup_queue, u->meta.manager->cleanup_queue, &u->meta); if (u->meta.load_state != UNIT_STUB) if (UNIT_VTABLE(u)->done) UNIT_VTABLE(u)->done(u); /* Free data and next 'smaller' objects */ if (u->meta.job) job_free(u->meta.job); for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) bidi_set_free(u, u->meta.dependencies[d]); free(u->meta.description); free(u->meta.fragment_path); while ((t = set_steal_first(u->meta.names))) free(t); set_free(u->meta.names); free(u); } UnitActiveState unit_active_state(Unit *u) { assert(u); if (u->meta.load_state != UNIT_LOADED) return UNIT_INACTIVE; return UNIT_VTABLE(u)->active_state(u); } static void complete_move(Set **s, Set **other) { assert(s); assert(other); if (!*other) return; if (*s) set_move(*s, *other); else { *s = *other; *other = NULL; } } static void merge_names(Unit *u, Unit *other) { char *t; Iterator i; assert(u); assert(other); complete_move(&u->meta.names, &other->meta.names); while ((t = set_steal_first(other->meta.names))) free(t); set_free(other->meta.names); other->meta.names = NULL; other->meta.id = NULL; SET_FOREACH(t, u->meta.names, i) assert_se(hashmap_replace(u->meta.manager->units, t, u) == 0); } static void merge_dependencies(Unit *u, Unit *other, UnitDependency d) { Iterator i; Unit *back; int r; assert(u); assert(other); assert(d < _UNIT_DEPENDENCY_MAX); SET_FOREACH(back, other->meta.dependencies[d], i) { UnitDependency k; for (k = 0; k < _UNIT_DEPENDENCY_MAX; k++) if ((r = set_remove_and_put(back->meta.dependencies[k], other, u)) < 0) { if (r == -EEXIST) set_remove(back->meta.dependencies[k], other); else assert(r == -ENOENT); } } complete_move(&u->meta.dependencies[d], &other->meta.dependencies[d]); set_free(other->meta.dependencies[d]); other->meta.dependencies[d] = NULL; } int unit_merge(Unit *u, Unit *other) { UnitDependency d; assert(u); assert(other); assert(u->meta.manager == other->meta.manager); other = unit_follow_merge(other); if (other == u) return 0; /* This merges 'other' into 'unit'. FIXME: This does not * rollback on failure. */ if (u->meta.type != u->meta.type) return -EINVAL; if (other->meta.load_state != UNIT_STUB && other->meta.load_state != UNIT_FAILED) return -EEXIST; if (other->meta.job) return -EEXIST; if (unit_active_state(other) != UNIT_INACTIVE) return -EEXIST; /* Merge names */ merge_names(u, other); /* Merge dependencies */ for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) merge_dependencies(u, other, d); other->meta.load_state = UNIT_MERGED; other->meta.merged_into = u; /* If there is still some data attached to the other node, we * don't need it anymore, and can free it. */ if (other->meta.load_state != UNIT_STUB) if (UNIT_VTABLE(other)->done) UNIT_VTABLE(other)->done(other); unit_add_to_dbus_queue(u); unit_add_to_cleanup_queue(other); return 0; } int unit_merge_by_name(Unit *u, const char *name) { Unit *other; assert(u); assert(name); if (!(other = manager_get_unit(u->meta.manager, name))) return unit_add_name(u, name); return unit_merge(u, other); } Unit* unit_follow_merge(Unit *u) { assert(u); while (u->meta.load_state == UNIT_MERGED) assert_se(u = u->meta.merged_into); return u; } int unit_add_exec_dependencies(Unit *u, ExecContext *c) { int r; assert(u); assert(c); if (c->output != EXEC_OUTPUT_KERNEL && c->output != EXEC_OUTPUT_SYSLOG) return 0; /* If syslog or kernel logging is requested, make sure our own * logging daemon is run first. */ if ((r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_LOGGER_SOCKET)) < 0) return r; if (u->meta.manager->running_as != MANAGER_SESSION) if ((r = unit_add_dependency_by_name(u, UNIT_REQUIRES, SPECIAL_LOGGER_SOCKET)) < 0) return r; return 0; } const char* unit_id(Unit *u) { assert(u); if (u->meta.id) return u->meta.id; return set_first(u->meta.names); } const char *unit_description(Unit *u) { assert(u); if (u->meta.description) return u->meta.description; return unit_id(u); } void unit_dump(Unit *u, FILE *f, const char *prefix) { char *t; UnitDependency d; Iterator i; char *p2; const char *prefix2; CGroupBonding *b; char timestamp1[FORMAT_TIMESTAMP_MAX], timestamp2[FORMAT_TIMESTAMP_MAX]; assert(u); if (!prefix) prefix = ""; p2 = strappend(prefix, "\t"); prefix2 = p2 ? p2 : prefix; fprintf(f, "%s→ Unit %s:\n" "%s\tDescription: %s\n" "%s\tUnit Load State: %s\n" "%s\tUnit Active State: %s\n" "%s\tActive Enter Timestamp: %s\n" "%s\tActive Exit Timestamp: %s\n", prefix, unit_id(u), prefix, unit_description(u), prefix, unit_load_state_to_string(u->meta.load_state), prefix, unit_active_state_to_string(unit_active_state(u)), prefix, strna(format_timestamp(timestamp1, sizeof(timestamp1), u->meta.active_enter_timestamp)), prefix, strna(format_timestamp(timestamp2, sizeof(timestamp2), u->meta.active_exit_timestamp))); SET_FOREACH(t, u->meta.names, i) fprintf(f, "%s\tName: %s\n", prefix, t); if (u->meta.fragment_path) fprintf(f, "%s\tFragment Path: %s\n", prefix, u->meta.fragment_path); for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) { Unit *other; SET_FOREACH(other, u->meta.dependencies[d], i) fprintf(f, "%s\t%s: %s\n", prefix, unit_dependency_to_string(d), unit_id(other)); } if (u->meta.load_state == UNIT_LOADED) { fprintf(f, "%s\tRecursive Stop: %s\n" "%s\tStop When Unneeded: %s\n", prefix, yes_no(u->meta.recursive_stop), prefix, yes_no(u->meta.stop_when_unneeded)); LIST_FOREACH(by_unit, b, u->meta.cgroup_bondings) fprintf(f, "%s\tControlGroup: %s:%s\n", prefix, b->controller, b->path); if (UNIT_VTABLE(u)->dump) UNIT_VTABLE(u)->dump(u, f, prefix2); } else if (u->meta.load_state == UNIT_MERGED) fprintf(f, "%s\tMerged into: %s\n", prefix, unit_id(u->meta.merged_into)); if (u->meta.job) job_dump(u->meta.job, f, prefix2); free(p2); } /* Common implementation for multiple backends */ int unit_load_fragment_and_dropin(Unit *u, UnitLoadState *new_state) { int r; assert(u); assert(new_state); assert(*new_state == UNIT_STUB || *new_state == UNIT_LOADED); /* Load a .service file */ if ((r = unit_load_fragment(u, new_state)) < 0) return r; if (*new_state == UNIT_STUB) return -ENOENT; /* Load drop-in directory data */ if ((r = unit_load_dropin(unit_follow_merge(u))) < 0) return r; return 0; } /* Common implementation for multiple backends */ int unit_load_fragment_and_dropin_optional(Unit *u, UnitLoadState *new_state) { int r; assert(u); assert(new_state); assert(*new_state == UNIT_STUB || *new_state == UNIT_LOADED); /* Same as unit_load_fragment_and_dropin(), but whether * something can be loaded or not doesn't matter. */ /* Load a .service file */ if ((r = unit_load_fragment(u, new_state)) < 0) return r; if (*new_state == UNIT_STUB) *new_state = UNIT_LOADED; /* Load drop-in directory data */ if ((r = unit_load_dropin(unit_follow_merge(u))) < 0) return r; return 0; } int unit_load(Unit *u) { int r; UnitLoadState res; assert(u); if (u->meta.in_load_queue) { LIST_REMOVE(Meta, load_queue, u->meta.manager->load_queue, &u->meta); u->meta.in_load_queue = false; } if (u->meta.load_state != UNIT_STUB) return 0; if (UNIT_VTABLE(u)->init) { res = UNIT_STUB; if ((r = UNIT_VTABLE(u)->init(u, &res)) < 0) goto fail; } if (res == UNIT_STUB) { r = -ENOENT; goto fail; } u->meta.load_state = res; assert((u->meta.load_state != UNIT_MERGED) == !u->meta.merged_into); unit_add_to_dbus_queue(unit_follow_merge(u)); return 0; fail: u->meta.load_state = UNIT_FAILED; unit_add_to_dbus_queue(u); log_error("Failed to load configuration for %s: %s", unit_id(u), strerror(-r)); return r; } /* Errors: * -EBADR: This unit type does not support starting. * -EALREADY: Unit is already started. * -EAGAIN: An operation is already in progress. Retry later. */ int unit_start(Unit *u) { UnitActiveState state; assert(u); /* If this is already (being) started, then this will * succeed. Note that this will even succeed if this unit is * not startable by the user. This is relied on to detect when * we need to wait for units and when waiting is finished. */ state = unit_active_state(u); if (UNIT_IS_ACTIVE_OR_RELOADING(state)) return -EALREADY; /* If it is stopped, but we cannot start it, then fail */ if (!UNIT_VTABLE(u)->start) return -EBADR; /* We don't suppress calls to ->start() here when we are * already starting, to allow this request to be used as a * "hurry up" call, for example when the unit is in some "auto * restart" state where it waits for a holdoff timer to elapse * before it will start again. */ unit_add_to_dbus_queue(u); return UNIT_VTABLE(u)->start(u); } bool unit_can_start(Unit *u) { assert(u); return !!UNIT_VTABLE(u)->start; } /* Errors: * -EBADR: This unit type does not support stopping. * -EALREADY: Unit is already stopped. * -EAGAIN: An operation is already in progress. Retry later. */ int unit_stop(Unit *u) { UnitActiveState state; assert(u); state = unit_active_state(u); if (state == UNIT_INACTIVE) return -EALREADY; if (!UNIT_VTABLE(u)->stop) return -EBADR; if (state == UNIT_DEACTIVATING) return 0; unit_add_to_dbus_queue(u); return UNIT_VTABLE(u)->stop(u); } /* Errors: * -EBADR: This unit type does not support reloading. * -ENOEXEC: Unit is not started. * -EAGAIN: An operation is already in progress. Retry later. */ int unit_reload(Unit *u) { UnitActiveState state; assert(u); if (!unit_can_reload(u)) return -EBADR; state = unit_active_state(u); if (unit_active_state(u) == UNIT_ACTIVE_RELOADING) return -EALREADY; if (unit_active_state(u) != UNIT_ACTIVE) return -ENOEXEC; unit_add_to_dbus_queue(u); return UNIT_VTABLE(u)->reload(u); } bool unit_can_reload(Unit *u) { assert(u); if (!UNIT_VTABLE(u)->reload) return false; if (!UNIT_VTABLE(u)->can_reload) return true; return UNIT_VTABLE(u)->can_reload(u); } static void unit_check_uneeded(Unit *u) { Iterator i; Unit *other; assert(u); /* If this service shall be shut down when unneeded then do * so. */ if (!u->meta.stop_when_unneeded) return; if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))) return; SET_FOREACH(other, u->meta.dependencies[UNIT_REQUIRED_BY], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) return; SET_FOREACH(other, u->meta.dependencies[UNIT_SOFT_REQUIRED_BY], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) return; SET_FOREACH(other, u->meta.dependencies[UNIT_WANTED_BY], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) return; log_debug("Service %s is not needed anymore. Stopping.", unit_id(u)); /* Ok, nobody needs us anymore. Sniff. Then let's commit suicide */ manager_add_job(u->meta.manager, JOB_STOP, u, JOB_FAIL, true, NULL); } static void retroactively_start_dependencies(Unit *u) { Iterator i; Unit *other; assert(u); assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))); SET_FOREACH(other, u->meta.dependencies[UNIT_REQUIRES], i) if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->meta.manager, JOB_START, other, JOB_REPLACE, true, NULL); SET_FOREACH(other, u->meta.dependencies[UNIT_SOFT_REQUIRES], i) if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->meta.manager, JOB_START, other, JOB_FAIL, false, NULL); SET_FOREACH(other, u->meta.dependencies[UNIT_REQUISITE], i) if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->meta.manager, JOB_START, other, JOB_REPLACE, true, NULL); SET_FOREACH(other, u->meta.dependencies[UNIT_WANTS], i) if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->meta.manager, JOB_START, other, JOB_FAIL, false, NULL); SET_FOREACH(other, u->meta.dependencies[UNIT_CONFLICTS], i) if (!UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other))) manager_add_job(u->meta.manager, JOB_STOP, other, JOB_REPLACE, true, NULL); } static void retroactively_stop_dependencies(Unit *u) { Iterator i; Unit *other; assert(u); assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u))); if (u->meta.recursive_stop) { /* Pull down units need us recursively if enabled */ SET_FOREACH(other, u->meta.dependencies[UNIT_REQUIRED_BY], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) manager_add_job(u->meta.manager, JOB_STOP, other, JOB_REPLACE, true, NULL); } /* Garbage collect services that might not be needed anymore, if enabled */ SET_FOREACH(other, u->meta.dependencies[UNIT_REQUIRES], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_uneeded(other); SET_FOREACH(other, u->meta.dependencies[UNIT_SOFT_REQUIRES], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_uneeded(other); SET_FOREACH(other, u->meta.dependencies[UNIT_WANTS], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_uneeded(other); SET_FOREACH(other, u->meta.dependencies[UNIT_REQUISITE], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_uneeded(other); SET_FOREACH(other, u->meta.dependencies[UNIT_SOFT_REQUISITE], i) if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other))) unit_check_uneeded(other); } void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns) { bool unexpected = false; assert(u); assert(os < _UNIT_ACTIVE_STATE_MAX); assert(ns < _UNIT_ACTIVE_STATE_MAX); assert(!(os == UNIT_ACTIVE && ns == UNIT_ACTIVATING)); assert(!(os == UNIT_INACTIVE && ns == UNIT_DEACTIVATING)); /* Note that this is called for all low-level state changes, * even if they might map to the same high-level * UnitActiveState! That means that ns == os is OK an expected * behaviour here. For example: if a mount point is remounted * this function will be called too and the utmp code below * relies on that! */ if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns)) u->meta.active_enter_timestamp = now(CLOCK_REALTIME); else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns)) u->meta.active_exit_timestamp = now(CLOCK_REALTIME); if (u->meta.job) { if (u->meta.job->state == JOB_WAITING) /* So we reached a different state for this * job. Let's see if we can run it now if it * failed previously due to EAGAIN. */ job_add_to_run_queue(u->meta.job); else { assert(u->meta.job->state == JOB_RUNNING); /* Let's check whether this state change * constitutes a finished job, or maybe * cotradicts a running job and hence needs to * invalidate jobs. */ switch (u->meta.job->type) { case JOB_START: case JOB_VERIFY_ACTIVE: if (UNIT_IS_ACTIVE_OR_RELOADING(ns)) job_finish_and_invalidate(u->meta.job, true); else if (ns != UNIT_ACTIVATING) { unexpected = true; job_finish_and_invalidate(u->meta.job, false); } break; case JOB_RELOAD: case JOB_RELOAD_OR_START: if (ns == UNIT_ACTIVE) job_finish_and_invalidate(u->meta.job, true); else if (ns != UNIT_ACTIVATING && ns != UNIT_ACTIVE_RELOADING) { unexpected = true; job_finish_and_invalidate(u->meta.job, false); } break; case JOB_STOP: case JOB_RESTART: case JOB_TRY_RESTART: if (ns == UNIT_INACTIVE) job_finish_and_invalidate(u->meta.job, true); else if (ns != UNIT_DEACTIVATING) { unexpected = true; job_finish_and_invalidate(u->meta.job, false); } break; default: assert_not_reached("Job type unknown"); } } } /* If this state change happened without being requested by a * job, then let's retroactively start or stop dependencies */ if (unexpected) { if (UNIT_IS_INACTIVE_OR_DEACTIVATING(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns)) retroactively_start_dependencies(u); else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns)) retroactively_stop_dependencies(u); } if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns)) { if (unit_has_name(u, SPECIAL_DBUS_SERVICE)) { log_info("D-Bus became available, trying to reconnect."); /* The bus just got started, hence try to connect to it. */ bus_init_system(u->meta.manager); bus_init_api(u->meta.manager); } if (unit_has_name(u, SPECIAL_SYSLOG_SERVICE)) { /* The syslog daemon just got started, hence try to connect to it. */ log_info("Syslog became available, trying to reconnect."); log_open_syslog(); } } else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns)) { if (unit_has_name(u, SPECIAL_SYSLOG_SERVICE)) /* The syslog daemon just got terminated, hence try to disconnect from it. */ log_close_syslog(); /* We don't care about D-Bus here, since we'll get an * asynchronous notification for it anyway. */ } /* Maybe we finished startup and are now ready for being * stopped because unneeded? */ unit_check_uneeded(u); unit_add_to_dbus_queue(u); } int unit_watch_fd(Unit *u, int fd, uint32_t events, Watch *w) { struct epoll_event ev; assert(u); assert(fd >= 0); assert(w); assert(w->type == WATCH_INVALID || (w->type == WATCH_FD && w->fd == fd && w->data.unit == u)); zero(ev); ev.data.ptr = w; ev.events = events; if (epoll_ctl(u->meta.manager->epoll_fd, w->type == WATCH_INVALID ? EPOLL_CTL_ADD : EPOLL_CTL_MOD, fd, &ev) < 0) return -errno; w->fd = fd; w->type = WATCH_FD; w->data.unit = u; return 0; } void unit_unwatch_fd(Unit *u, Watch *w) { assert(u); assert(w); if (w->type == WATCH_INVALID) return; assert(w->type == WATCH_FD); assert(w->data.unit == u); assert_se(epoll_ctl(u->meta.manager->epoll_fd, EPOLL_CTL_DEL, w->fd, NULL) >= 0); w->fd = -1; w->type = WATCH_INVALID; w->data.unit = NULL; } int unit_watch_pid(Unit *u, pid_t pid) { assert(u); assert(pid >= 1); return hashmap_put(u->meta.manager->watch_pids, UINT32_TO_PTR(pid), u); } void unit_unwatch_pid(Unit *u, pid_t pid) { assert(u); assert(pid >= 1); hashmap_remove(u->meta.manager->watch_pids, UINT32_TO_PTR(pid)); } int unit_watch_timer(Unit *u, usec_t delay, Watch *w) { struct itimerspec its; int flags, fd; bool ours; assert(u); assert(w); assert(w->type == WATCH_INVALID || (w->type == WATCH_TIMER && w->data.unit == u)); /* This will try to reuse the old timer if there is one */ if (w->type == WATCH_TIMER) { ours = false; fd = w->fd; } else { ours = true; if ((fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK|TFD_CLOEXEC)) < 0) return -errno; } zero(its); if (delay <= 0) { /* Set absolute time in the past, but not 0, since we * don't want to disarm the timer */ its.it_value.tv_sec = 0; its.it_value.tv_nsec = 1; flags = TFD_TIMER_ABSTIME; } else { timespec_store(&its.it_value, delay); flags = 0; } /* This will also flush the elapse counter */ if (timerfd_settime(fd, flags, &its, NULL) < 0) goto fail; if (w->type == WATCH_INVALID) { struct epoll_event ev; zero(ev); ev.data.ptr = w; ev.events = EPOLLIN; if (epoll_ctl(u->meta.manager->epoll_fd, EPOLL_CTL_ADD, fd, &ev) < 0) goto fail; } w->fd = fd; w->type = WATCH_TIMER; w->data.unit = u; return 0; fail: if (ours) close_nointr_nofail(fd); return -errno; } void unit_unwatch_timer(Unit *u, Watch *w) { assert(u); assert(w); if (w->type == WATCH_INVALID) return; assert(w->type == WATCH_TIMER && w->data.unit == u); assert_se(epoll_ctl(u->meta.manager->epoll_fd, EPOLL_CTL_DEL, w->fd, NULL) >= 0); assert_se(close_nointr(w->fd) == 0); w->fd = -1; w->type = WATCH_INVALID; w->data.unit = NULL; } bool unit_job_is_applicable(Unit *u, JobType j) { assert(u); assert(j >= 0 && j < _JOB_TYPE_MAX); switch (j) { case JOB_VERIFY_ACTIVE: case JOB_START: return true; case JOB_STOP: case JOB_RESTART: case JOB_TRY_RESTART: return unit_can_start(u); case JOB_RELOAD: return unit_can_reload(u); case JOB_RELOAD_OR_START: return unit_can_reload(u) && unit_can_start(u); default: assert_not_reached("Invalid job type"); } } int unit_add_dependency(Unit *u, UnitDependency d, Unit *other) { static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = { [UNIT_REQUIRES] = UNIT_REQUIRED_BY, [UNIT_SOFT_REQUIRES] = UNIT_SOFT_REQUIRED_BY, [UNIT_WANTS] = UNIT_WANTED_BY, [UNIT_REQUISITE] = UNIT_REQUIRED_BY, [UNIT_SOFT_REQUISITE] = UNIT_SOFT_REQUIRED_BY, [UNIT_REQUIRED_BY] = _UNIT_DEPENDENCY_INVALID, [UNIT_SOFT_REQUIRED_BY] = _UNIT_DEPENDENCY_INVALID, [UNIT_WANTED_BY] = _UNIT_DEPENDENCY_INVALID, [UNIT_CONFLICTS] = UNIT_CONFLICTS, [UNIT_BEFORE] = UNIT_AFTER, [UNIT_AFTER] = UNIT_BEFORE }; int r; assert(u); assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX); assert(inverse_table[d] != _UNIT_DEPENDENCY_INVALID); assert(other); /* We won't allow dependencies on ourselves. We will not * consider them an error however. */ if (u == other) return 0; if ((r = set_ensure_allocated(&u->meta.dependencies[d], trivial_hash_func, trivial_compare_func)) < 0) return r; if ((r = set_ensure_allocated(&other->meta.dependencies[inverse_table[d]], trivial_hash_func, trivial_compare_func)) < 0) return r; if ((r = set_put(u->meta.dependencies[d], other)) < 0) return r; if ((r = set_put(other->meta.dependencies[inverse_table[d]], u)) < 0) { set_remove(u->meta.dependencies[d], other); return r; } unit_add_to_dbus_queue(u); return 0; } int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name) { Unit *other; int r; if ((r = manager_load_unit(u->meta.manager, name, &other)) < 0) return r; if ((r = unit_add_dependency(u, d, other)) < 0) return r; return 0; } int unit_add_dependency_by_name_inverse(Unit *u, UnitDependency d, const char *name) { Unit *other; int r; if ((r = manager_load_unit(u->meta.manager, name, &other)) < 0) return r; if ((r = unit_add_dependency(other, d, u)) < 0) return r; return 0; } int set_unit_path(const char *p) { char *cwd, *c; int r; /* This is mostly for debug purposes */ if (path_is_absolute(p)) { if (!(c = strdup(p))) return -ENOMEM; } else { if (!(cwd = get_current_dir_name())) return -errno; r = asprintf(&c, "%s/%s", cwd, p); free(cwd); if (r < 0) return -ENOMEM; } if (setenv("SYSTEMD_UNIT_PATH", c, 0) < 0) { r = -errno; free(c); return r; } return 0; } char *unit_name_escape_path(const char *path, const char *suffix) { char *r, *t; const char *f; size_t a, b; assert(path); /* Takes a path and a suffix and prefix and makes a nice * string suitable as unit name of it, escaping all weird * chars on the way. * * / becomes ., and all chars not alloweed in a unit name get * escaped as \xFF, including \ and ., of course. This * escaping is hence reversible. */ if (!suffix) suffix = ""; a = strlen(path); b = strlen(suffix); if (!(r = new(char, a*4+b+1))) return NULL; for (f = path, t = r; *f; f++) { if (*f == '/') *(t++) = '.'; else if (*f == '.' || *f == '\\' || !strchr(VALID_CHARS, *f)) { *(t++) = '\\'; *(t++) = 'x'; *(t++) = hexchar(*f > 4); *(t++) = hexchar(*f); } else *(t++) = *f; } memcpy(t, suffix, b+1); return r; } char *unit_dbus_path(Unit *u) { char *p, *e; assert(u); if (!(e = bus_path_escape(unit_id(u)))) return NULL; if (asprintf(&p, "/org/freedesktop/systemd1/unit/%s", e) < 0) { free(e); return NULL; } free(e); return p; } int unit_add_cgroup(Unit *u, CGroupBonding *b) { CGroupBonding *l; int r; assert(u); assert(b); assert(b->path); /* Ensure this hasn't been added yet */ assert(!b->unit); l = hashmap_get(u->meta.manager->cgroup_bondings, b->path); LIST_PREPEND(CGroupBonding, by_path, l, b); if ((r = hashmap_replace(u->meta.manager->cgroup_bondings, b->path, l)) < 0) { LIST_REMOVE(CGroupBonding, by_path, l, b); return r; } LIST_PREPEND(CGroupBonding, by_unit, u->meta.cgroup_bondings, b); b->unit = u; return 0; } static char *default_cgroup_path(Unit *u) { char *p; assert(u); if (asprintf(&p, "%s/%s", u->meta.manager->cgroup_hierarchy, unit_id(u)) < 0) return NULL; return p; } int unit_add_cgroup_from_text(Unit *u, const char *name) { size_t n; char *controller = NULL, *path = NULL; CGroupBonding *b = NULL; int r; assert(u); assert(name); /* Detect controller name */ n = strcspn(name, ":"); if (name[n] == 0 || (name[n] == ':' && name[n+1] == 0)) { /* Only controller name, no path? */ if (!(path = default_cgroup_path(u))) return -ENOMEM; } else { const char *p; /* Controller name, and path. */ p = name+n+1; if (!path_is_absolute(p)) return -EINVAL; if (!(path = strdup(p))) return -ENOMEM; } if (n > 0) controller = strndup(name, n); else controller = strdup(u->meta.manager->cgroup_controller); if (!controller) { r = -ENOMEM; goto fail; } if (cgroup_bonding_find_list(u->meta.cgroup_bondings, controller)) { r = -EEXIST; goto fail; } if (!(b = new0(CGroupBonding, 1))) { r = -ENOMEM; goto fail; } b->controller = controller; b->path = path; b->only_us = false; b->clean_up = false; if ((r = unit_add_cgroup(u, b)) < 0) goto fail; return 0; fail: free(path); free(controller); free(b); return r; } int unit_add_default_cgroup(Unit *u) { CGroupBonding *b; int r = -ENOMEM; assert(u); /* Adds in the default cgroup data, if it wasn't specified yet */ if (unit_get_default_cgroup(u)) return 0; if (!(b = new0(CGroupBonding, 1))) return -ENOMEM; if (!(b->controller = strdup(u->meta.manager->cgroup_controller))) goto fail; if (!(b->path = default_cgroup_path(u))) goto fail; b->clean_up = true; b->only_us = true; if ((r = unit_add_cgroup(u, b)) < 0) goto fail; return 0; fail: free(b->path); free(b->controller); free(b); return r; } CGroupBonding* unit_get_default_cgroup(Unit *u) { assert(u); return cgroup_bonding_find_list(u->meta.cgroup_bondings, u->meta.manager->cgroup_controller); } int unit_load_related_unit(Unit *u, const char *type, Unit **_found) { char *t; int r; assert(u); assert(type); assert(_found); if (!(t = unit_name_change_suffix(unit_id(u), type))) return -ENOMEM; assert(!unit_has_name(u, t)); r = manager_load_unit(u->meta.manager, t, _found); free(t); if (r >= 0) assert(*_found != u); return r; } static const char* const unit_type_table[_UNIT_TYPE_MAX] = { [UNIT_SERVICE] = "service", [UNIT_TIMER] = "timer", [UNIT_SOCKET] = "socket", [UNIT_TARGET] = "target", [UNIT_DEVICE] = "device", [UNIT_MOUNT] = "mount", [UNIT_AUTOMOUNT] = "automount", [UNIT_SNAPSHOT] = "snapshot" }; DEFINE_STRING_TABLE_LOOKUP(unit_type, UnitType); static const char* const unit_load_state_table[_UNIT_LOAD_STATE_MAX] = { [UNIT_STUB] = "stub", [UNIT_LOADED] = "loaded", [UNIT_FAILED] = "failed", [UNIT_MERGED] = "merged" }; DEFINE_STRING_TABLE_LOOKUP(unit_load_state, UnitLoadState); static const char* const unit_active_state_table[_UNIT_ACTIVE_STATE_MAX] = { [UNIT_ACTIVE] = "active", [UNIT_INACTIVE] = "inactive", [UNIT_ACTIVATING] = "activating", [UNIT_DEACTIVATING] = "deactivating" }; DEFINE_STRING_TABLE_LOOKUP(unit_active_state, UnitActiveState); static const char* const unit_dependency_table[_UNIT_DEPENDENCY_MAX] = { [UNIT_REQUIRES] = "Requires", [UNIT_SOFT_REQUIRES] = "SoftRequires", [UNIT_WANTS] = "Wants", [UNIT_REQUISITE] = "Requisite", [UNIT_SOFT_REQUISITE] = "SoftRequisite", [UNIT_REQUIRED_BY] = "RequiredBy", [UNIT_SOFT_REQUIRED_BY] = "SoftRequiredBy", [UNIT_WANTED_BY] = "WantedBy", [UNIT_CONFLICTS] = "Conflicts", [UNIT_BEFORE] = "Before", [UNIT_AFTER] = "After", }; DEFINE_STRING_TABLE_LOOKUP(unit_dependency, UnitDependency); static const char* const kill_mode_table[_KILL_MODE_MAX] = { [KILL_PROCESS] = "process", [KILL_PROCESS_GROUP] = "process-group", [KILL_CONTROL_GROUP] = "control-group" }; DEFINE_STRING_TABLE_LOOKUP(kill_mode, KillMode);