1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
|
/***
This file is part of systemd. See COPYING for details.
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
/*
* RB-Tree Implementation
* This implements the insertion/removal of elements in RB-Trees. You're highly
* recommended to have an RB-Tree documentation at hand when reading this. Both
* insertion and removal can be split into a handful of situations that can
* occur. Those situations are enumerated as "Case 1" to "Case n" here, and
* follow closely the cases described in most RB-Tree documentations. This file
* does not explain why it is enough to handle just those cases, nor does it
* provide a proof of correctness. Dig out your algorithm 101 handbook if
* you're interested.
*
* This implementation is *not* straightforward. Usually, a handful of
* rotation, reparent, swap and link helpers can be used to implement the
* rebalance operations. However, those often perform unnecessary writes.
* Therefore, this implementation hard-codes all the operations. You're highly
* recommended to look at the two basic helpers before reading the code:
* c_rbtree_swap_child()
* c_rbtree_set_parent_and_color()
* Those are the only helpers used, hence, you should really know what they do
* before digging into the code.
*
* For a highlevel documentation of the API, see the header file and docbook
* comments.
*/
#include <assert.h>
#include <stddef.h>
#include "c-rbtree.h"
enum {
C_RBNODE_RED = 0,
C_RBNODE_BLACK = 1,
};
static inline unsigned long c_rbnode_color(CRBNode *n) {
return (unsigned long)n->__parent_and_color & 1UL;
}
static inline _Bool c_rbnode_is_red(CRBNode *n) {
return c_rbnode_color(n) == C_RBNODE_RED;
}
static inline _Bool c_rbnode_is_black(CRBNode *n) {
return c_rbnode_color(n) == C_RBNODE_BLACK;
}
/**
* c_rbnode_leftmost() - return leftmost child
* @n: current node, or NULL
*
* This returns the leftmost child of @n. If @n is NULL, this will return NULL.
* In all other cases, this function returns a valid pointer. That is, if @n
* does not have any left children, this returns @n.
*
* Worst case runtime (n: number of elements in tree): O(log(n))
*
* Return: Pointer to leftmost child, or NULL.
*/
CRBNode *c_rbnode_leftmost(CRBNode *n) {
if (n)
while (n->left)
n = n->left;
return n;
}
/**
* c_rbnode_rightmost() - return rightmost child
* @n: current node, or NULL
*
* This returns the rightmost child of @n. If @n is NULL, this will return
* NULL. In all other cases, this function returns a valid pointer. That is, if
* @n does not have any right children, this returns @n.
*
* Worst case runtime (n: number of elements in tree): O(log(n))
*
* Return: Pointer to rightmost child, or NULL.
*/
CRBNode *c_rbnode_rightmost(CRBNode *n) {
if (n)
while (n->right)
n = n->right;
return n;
}
/**
* c_rbnode_next() - return next node
* @n: current node, or NULL
*
* An RB-Tree always defines a linear order of its elements. This function
* returns the logically next node to @n. If @n is NULL, the last node or
* unlinked, this returns NULL.
*
* Worst case runtime (n: number of elements in tree): O(log(n))
*
* Return: Pointer to next node, or NULL.
*/
CRBNode *c_rbnode_next(CRBNode *n) {
CRBNode *p;
if (!c_rbnode_is_linked(n))
return NULL;
if (n->right)
return c_rbnode_leftmost(n->right);
while ((p = c_rbnode_parent(n)) && n == p->right)
n = p;
return p;
}
/**
* c_rbnode_prev() - return previous node
* @n: current node, or NULL
*
* An RB-Tree always defines a linear order of its elements. This function
* returns the logically previous node to @n. If @n is NULL, the first node or
* unlinked, this returns NULL.
*
* Worst case runtime (n: number of elements in tree): O(log(n))
*
* Return: Pointer to previous node, or NULL.
*/
CRBNode *c_rbnode_prev(CRBNode *n) {
CRBNode *p;
if (!c_rbnode_is_linked(n))
return NULL;
if (n->left)
return c_rbnode_rightmost(n->left);
while ((p = c_rbnode_parent(n)) && n == p->left)
n = p;
return p;
}
/**
* c_rbtree_first() - return first node
* @t: tree to operate on
*
* An RB-Tree always defines a linear order of its elements. This function
* returns the logically first node in @t. If @t is empty, NULL is returned.
*
* Fixed runtime (n: number of elements in tree): O(log(n))
*
* Return: Pointer to first node, or NULL.
*/
CRBNode *c_rbtree_first(CRBTree *t) {
assert(t);
return c_rbnode_leftmost(t->root);
}
/**
* c_rbtree_last() - return last node
* @t: tree to operate on
*
* An RB-Tree always defines a linear order of its elements. This function
* returns the logically last node in @t. If @t is empty, NULL is returned.
*
* Fixed runtime (n: number of elements in tree): O(log(n))
*
* Return: Pointer to last node, or NULL.
*/
CRBNode *c_rbtree_last(CRBTree *t) {
assert(t);
return c_rbnode_rightmost(t->root);
}
/*
* Set the color and parent of a node. This should be treated as a simple
* assignment of the 'color' and 'parent' fields of the node. No other magic is
* applied. But since both fields share its backing memory, this helper
* function is provided.
*/
static inline void c_rbnode_set_parent_and_color(CRBNode *n, CRBNode *p, unsigned long c) {
assert(!((unsigned long)p & 1));
assert(c < 2);
n->__parent_and_color = (CRBNode*)((unsigned long)p | c);
}
/* same as c_rbnode_set_parent_and_color(), but keeps the current color */
static inline void c_rbnode_set_parent(CRBNode *n, CRBNode *p) {
c_rbnode_set_parent_and_color(n, p, c_rbnode_color(n));
}
/*
* This function partially replaces an existing child pointer to a new one. The
* existing child must be given as @old, the new child as @new. @p must be the
* parent of @old (or NULL if it has no parent).
* This function ensures that the parent of @old now points to @new. However,
* it does *NOT* change the parent pointer of @new. The caller must ensure
* this.
* If @p is NULL, this function ensures that the root-pointer is adjusted
* instead (given as @t).
*/
static inline void c_rbtree_swap_child(CRBTree *t, CRBNode *p, CRBNode *old, CRBNode *new) {
if (p) {
if (p->left == old)
p->left = new;
else
p->right = new;
} else {
t->root = new;
}
}
static inline CRBNode *c_rbtree_paint_one(CRBTree *t, CRBNode *n) {
CRBNode *p, *g, *gg, *u, *x;
/*
* Paint a single node according to RB-Tree rules. The node must
* already be linked into the tree and painted red.
* We repaint the node or rotate the tree, if required. In case a
* recursive repaint is required, the next node to be re-painted
* is returned.
* p: parent
* g: grandparent
* gg: grandgrandparent
* u: uncle
* x: temporary
*/
/* node is red, so we can access the parent directly */
p = n->__parent_and_color;
if (!p) {
/* Case 1:
* We reached the root. Mark it black and be done. As all
* leaf-paths share the root, the ratio of black nodes on each
* path stays the same. */
c_rbnode_set_parent_and_color(n, p, C_RBNODE_BLACK);
n = NULL;
} else if (c_rbnode_is_black(p)) {
/* Case 2:
* The parent is already black. As our node is red, we did not
* change the number of black nodes on any path, nor do we have
* multiple consecutive red nodes. */
n = NULL;
} else if (p == p->__parent_and_color->left) { /* parent is red, so grandparent exists */
g = p->__parent_and_color;
gg = c_rbnode_parent(g);
u = g->right;
if (u && c_rbnode_is_red(u)) {
/* Case 3:
* Parent and uncle are both red. We know the
* grandparent must be black then. Repaint parent and
* uncle black, the grandparent red and recurse into
* the grandparent. */
c_rbnode_set_parent_and_color(p, g, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(u, g, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(g, gg, C_RBNODE_RED);
n = g;
} else {
/* parent is red, uncle is black */
if (n == p->right) {
/* Case 4:
* We're the right child. Rotate on parent to
* become left child, so we can handle it the
* same as case 5. */
x = n->left;
p->right = n->left;
n->left = p;
if (x)
c_rbnode_set_parent_and_color(x, p, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(p, n, C_RBNODE_RED);
p = n;
}
/* 'n' is invalid from here on! */
n = NULL;
/* Case 5:
* We're the red left child or a red parent, black
* grandparent and uncle. Rotate on grandparent and
* switch color with parent. Number of black nodes on
* each path stays the same, but we got rid of the
* double red path. As the grandparent is still black,
* we're done. */
x = p->right;
g->left = x;
p->right = g;
if (x)
c_rbnode_set_parent_and_color(x, g, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(p, gg, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(g, p, C_RBNODE_RED);
c_rbtree_swap_child(t, gg, g, p);
}
} else /* if (p == p->__parent_and_color->left) */ { /* same as above, but mirrored */
g = p->__parent_and_color;
gg = c_rbnode_parent(g);
u = g->left;
if (u && c_rbnode_is_red(u)) {
c_rbnode_set_parent_and_color(p, g, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(u, g, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(g, gg, C_RBNODE_RED);
n = g;
} else {
if (n == p->left) {
x = n->right;
p->left = n->right;
n->right = p;
if (x)
c_rbnode_set_parent_and_color(x, p, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(p, n, C_RBNODE_RED);
p = n;
}
n = NULL;
x = p->left;
g->right = x;
p->left = g;
if (x)
c_rbnode_set_parent_and_color(x, g, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(p, gg, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(g, p, C_RBNODE_RED);
c_rbtree_swap_child(t, gg, g, p);
}
}
return n;
}
static inline void c_rbtree_paint(CRBTree *t, CRBNode *n) {
assert(t);
assert(n);
while (n)
n = c_rbtree_paint_one(t, n);
}
/**
* c_rbtree_add() - add node to tree
* @t: tree to operate one
* @p: parent node to link under, or NULL
* @l: left/right slot of @p (or root) to link at
* @n: node to add
*
* This links @n into the tree given as @t. The caller must provide the exact
* spot where to link the node. That is, the caller must traverse the tree
* based on their search order. Once they hit a leaf where to insert the node,
* call this function to link it and rebalance the tree.
*
* A typical insertion would look like this (@t is your tree, @n is your node):
*
* CRBNode **i, *p;
*
* i = &t->root;
* p = NULL;
* while (*i) {
* p = *i;
* if (compare(n, *i) < 0)
* i = &(*i)->left;
* else
* i = &(*i)->right;
* }
*
* c_rbtree_add(t, p, i, n);
*
* Once the node is linked into the tree, a simple lookup on the same tree can
* be coded like this:
*
* CRBNode *i;
*
* i = t->root;
* while (i) {
* int v = compare(n, i);
* if (v < 0)
* i = (*i)->left;
* else if (v > 0)
* i = (*i)->right;
* else
* break;
* }
*
* When you add nodes to a tree, the memory contents of the node do not matter.
* That is, there is no need to initialize the node via c_rbnode_init().
* However, if you relink nodes multiple times during their lifetime, it is
* usually very convenient to use c_rbnode_init() and c_rbtree_remove_init().
* In those cases, you should validate that a node is unlinked before you call
* c_rbtree_add().
*/
void c_rbtree_add(CRBTree *t, CRBNode *p, CRBNode **l, CRBNode *n) {
assert(t);
assert(l);
assert(n);
assert(!p || l == &p->left || l == &p->right);
assert(p || l == &t->root);
c_rbnode_set_parent_and_color(n, p, C_RBNODE_RED);
n->left = n->right = NULL;
*l = n;
c_rbtree_paint(t, n);
}
static inline CRBNode *c_rbtree_rebalance_one(CRBTree *t, CRBNode *p, CRBNode *n) {
CRBNode *s, *x, *y, *g;
/*
* Rebalance tree after a node was removed. This happens only if you
* remove a black node and one path is now left with an unbalanced
* number or black nodes.
* This function assumes all paths through p and n have one black node
* less than all other paths. If recursive fixup is required, the
* current node is returned.
*/
if (n == p->left) {
s = p->right;
if (c_rbnode_is_red(s)) {
/* Case 3:
* We have a red node as sibling. Rotate it onto our
* side so we can later on turn it black. This way, we
* gain the additional black node in our path. */
g = c_rbnode_parent(p);
x = s->left;
p->right = x;
s->left = p;
c_rbnode_set_parent_and_color(x, p, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(s, g, c_rbnode_color(p));
c_rbnode_set_parent_and_color(p, s, C_RBNODE_RED);
c_rbtree_swap_child(t, g, p, s);
s = x;
}
x = s->right;
if (!x || c_rbnode_is_black(x)) {
y = s->left;
if (!y || c_rbnode_is_black(y)) {
/* Case 4:
* Our sibling is black and has only black
* children. Flip it red and turn parent black.
* This way we gained a black node in our path,
* or we fix it recursively one layer up, which
* will rotate the red sibling as parent. */
c_rbnode_set_parent_and_color(s, p, C_RBNODE_RED);
if (c_rbnode_is_black(p))
return p;
c_rbnode_set_parent_and_color(p, c_rbnode_parent(p), C_RBNODE_BLACK);
return NULL;
}
/* Case 5:
* Left child of our sibling is red, right one is black.
* Rotate on parent so the right child of our sibling is
* now red, and we can fall through to case 6. */
x = y->right;
s->left = y->right;
y->right = s;
p->right = y;
if (x)
c_rbnode_set_parent_and_color(x, s, C_RBNODE_BLACK);
x = s;
s = y;
}
/* Case 6:
* The right child of our sibling is red. Rotate left and flip
* colors, which gains us an additional black node in our path,
* that was previously on our sibling. */
g = c_rbnode_parent(p);
y = s->left;
p->right = y;
s->left = p;
c_rbnode_set_parent_and_color(x, s, C_RBNODE_BLACK);
if (y)
c_rbnode_set_parent_and_color(y, p, c_rbnode_color(y));
c_rbnode_set_parent_and_color(s, g, c_rbnode_color(p));
c_rbnode_set_parent_and_color(p, s, C_RBNODE_BLACK);
c_rbtree_swap_child(t, g, p, s);
} else /* if (!n || n == p->right) */ { /* same as above, but mirrored */
s = p->left;
if (c_rbnode_is_red(s)) {
g = c_rbnode_parent(p);
x = s->right;
p->left = x;
s->right = p;
c_rbnode_set_parent_and_color(x, p, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(s, g, C_RBNODE_BLACK);
c_rbnode_set_parent_and_color(p, s, C_RBNODE_RED);
c_rbtree_swap_child(t, g, p, s);
s = x;
}
x = s->left;
if (!x || c_rbnode_is_black(x)) {
y = s->right;
if (!y || c_rbnode_is_black(y)) {
c_rbnode_set_parent_and_color(s, p, C_RBNODE_RED);
if (c_rbnode_is_black(p))
return p;
c_rbnode_set_parent_and_color(p, c_rbnode_parent(p), C_RBNODE_BLACK);
return NULL;
}
x = y->left;
s->right = y->left;
y->left = s;
p->left = y;
if (x)
c_rbnode_set_parent_and_color(x, s, C_RBNODE_BLACK);
x = s;
s = y;
}
g = c_rbnode_parent(p);
y = s->right;
p->left = y;
s->right = p;
c_rbnode_set_parent_and_color(x, s, C_RBNODE_BLACK);
if (y)
c_rbnode_set_parent_and_color(y, p, c_rbnode_color(y));
c_rbnode_set_parent_and_color(s, g, c_rbnode_color(p));
c_rbnode_set_parent_and_color(p, s, C_RBNODE_BLACK);
c_rbtree_swap_child(t, g, p, s);
}
return NULL;
}
static inline void c_rbtree_rebalance(CRBTree *t, CRBNode *p) {
CRBNode *n = NULL;
assert(t);
assert(p);
do {
n = c_rbtree_rebalance_one(t, p, n);
p = n ? c_rbnode_parent(n) : NULL;
} while (p);
}
/**
* c_rbtree_remove() - remove node from tree
* @t: tree to operate one
* @n: node to remove
*
* This removes the given node from its tree. Once unlinked, the tree is
* rebalanced.
* The caller *must* ensure that the given tree is actually the tree it is
* linked on. Otherwise, behavior is undefined.
*
* This does *NOT* reset @n to being unlinked (for performance reason, this
* function *never* modifies @n at all). If you need this, use
* c_rbtree_remove_init().
*/
void c_rbtree_remove(CRBTree *t, CRBNode *n) {
CRBNode *p, *s, *gc, *x, *next = NULL;
unsigned long c;
assert(t);
assert(n);
assert(c_rbnode_is_linked(n));
/*
* There are three distinct cases during node removal of a tree:
* * The node has no children, in which case it can simply be removed.
* * The node has exactly one child, in which case the child displaces
* its parent.
* * The node has two children, in which case there is guaranteed to
* be a successor to the node (successor being the node ordered
* directly after it). This successor cannot have two children by
* itself (two interior nodes can never be successive). Therefore,
* we can simply swap the node with its successor (including color)
* and have reduced this case to either of the first two.
*
* Whenever the node we removed was black, we have to rebalance the
* tree. Note that this affects the actual node we _remove_, not @n (in
* case we swap it).
*
* p: parent
* s: successor
* gc: grand-...-child
* x: temporary
* next: next node to rebalance on
*/
if (!n->left) {
/*
* Case 1:
* The node has no left child. If it neither has a right child,
* it is a leaf-node and we can simply unlink it. If it also
* was black, we have to rebalance, as always if we remove a
* black node.
* But if the node has a right child, the child *must* be red
* (otherwise, the right path has more black nodes as the
* non-existing left path), and the node to be removed must
* hence be black. We simply replace the node with its child,
* turning the red child black, and thus no rebalancing is
* required.
*/
p = c_rbnode_parent(n);
c = c_rbnode_color(n);
c_rbtree_swap_child(t, p, n, n->right);
if (n->right)
c_rbnode_set_parent_and_color(n->right, p, c);
else
next = (c == C_RBNODE_BLACK) ? p : NULL;
} else if (!n->right) {
/*
* Case 1.1:
* The node has exactly one child, and it is on the left. Treat
* it as mirrored case of Case 1 (i.e., replace the node by its
* child).
*/
p = c_rbnode_parent(n);
c = c_rbnode_color(n);
c_rbtree_swap_child(t, p, n, n->left);
c_rbnode_set_parent_and_color(n->left, p, c);
} else {
/*
* Case 2:
* We are dealing with a full interior node with a child not on
* both sides. Find its successor and swap it. Then remove the
* node similar to Case 1. For performance reasons we don't
* perform the full swap, but skip links that are about to be
* removed, anyway.
*/
s = n->right;
if (!s->left) {
/* right child is next, no need to touch grandchild */
p = s;
gc = s->right;
} else {
/* find successor and swap partially */
s = c_rbnode_leftmost(s);
p = c_rbnode_parent(s);
gc = s->right;
p->left = s->right;
s->right = n->right;
c_rbnode_set_parent(n->right, s);
}
/* node is partially swapped, now remove as in Case 1 */
s->left = n->left;
c_rbnode_set_parent(n->left, s);
x = c_rbnode_parent(n);
c = c_rbnode_color(n);
c_rbtree_swap_child(t, x, n, s);
if (gc)
c_rbnode_set_parent_and_color(gc, p, C_RBNODE_BLACK);
else
next = c_rbnode_is_black(s) ? p : NULL;
c_rbnode_set_parent_and_color(s, x, c);
}
if (next)
c_rbtree_rebalance(t, next);
}
|